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STABILITY OF RUNGE-KUTTA METHODS 
FOR ABSTRACT TIME-DEPENDENT PARABOLIC PROBLEMS: 

THE HOLDER CASE 

C. GONZALEZ AND C. PALENCIA 

ABSTRACT. We consider an abstract time-dependent, linear parabolic problem 

u'(t) = A(t)u(t), u(to) = uo, 

where A(t): D C X -* X, t E J, is a family of sectorial operators in a Banach 
space X with time-independent domain D. This problem is discretized in time 
by means of an A(0) strongly stable Runge-Kutta method, 0 < 0 < Xr/2. We 
prove that the resulting discretization is stable, under the assumption 

II(A(t)-A(s))xll < Llt-sj( jxjj + IIA(s)x1j), x E D, t, s E J, 

where L > 0 and ae E (0, 1). Our results are applicable to the analysis of 
parabolic problems in the LP, p : 2, norms. 

1. INTRODUCTION 

Let X be a complex Banach space and let J c R be an interval. We consider 
a family of linear, densely defined operators A(t): D C X -* X, with domain 
D(A(t)) = D independent of t E J. We are concerned with the the stability of 
discretizations in time, based on Runge-Kutta methods, of the initial value problem 

f ul(t) = A(t) u(t), t E J) 
(1) lt u(to) = uo E D, to E J. 

For each angle 0 E (0, 7r/2), we set 

So := {o}U{z E C: z =0 ?, Iarg(-z)I < 0} 

Problem (1) is assumed to be parabolic in the sense that the operators are sectorial 
with constants independent of t E J, i.e., we assume that the following condition 
holds. 

Hi. There exist M > 1, wo E R and 0 E (0,7r/2) such that, for a complex z 
wo + So and for t E J, the resolvent (zI - A(t)): X -* X exists and the estimate 

I(zl -A(t))-l 11 < M 
iz - sof 

is satisfied. 

Received by the editor June 5, 1996 and, in revised form September 4, 1996. 
1991 Mathematics Subject Classification. Primary 65J10, 65M12, 65M15. 
Key words and phrases. Parabolic problems, time-dependent, H6lder, Banach space, resol- 

vents, sectorial, stability, Runge-Kutta. 

?)1999 American Mathematical Society 

73 



74 C. GONZALEZ AND C. PALENCIA 

The meaning of Hi is that the "frozen operator" problems 

f {u(t) = A(t*)W(t), t E R, 
l u (to) = uo (ED, 

where t* ranges over J, are uniformly holomorphic. In fact, under Hi it is well 
known that for each angle p E (0, 7r/2 -0) there exists C = C(p) > 0, independent 
of t* E J, such that lieoA(t*)11 < Cewolal, for -o E S(. 

For the applications we have in mind, including the future study of the stability 
of abstract quasilinear parabolic problems (see [11]), it is suitable to impose the 
relative Holder variation of the coefficients A(t), t E J. To be precise, we assume 
the following: 

H2. There exist L > 0 and ae E (0,1) such that 

IJ(A(t) - A(s))xIJ < Llt - sJ(JJxJJ + ?IA(s)xJI), x E D, t, s E J. 

It is well known that Hi and H2 guarantee the existence and uniqueness of the 
solution of (1) (see e.g., [1, 2, 3, 13, 18, 19, 21]). 

Problem (1) is discretized in time by means of a Runge-Kutta method defined 
by its Butcher array 

(2) cA ) 

(2) t ~~~~~bT ' 

where b = [b1,... ,bs]T E RsI, C = [Cl,... ,cS]T E Rs and A = (a,,)3 E RsXs. 

We suppose that 0 < ci < 1, for 1 < i < s. Let us recall that the stability function 
of the method is the rational function r(z) = 1 + bT(_I - zA)-le, where I E RsXs 

stands for the identity matrix and e = [1,... 1]T E Rs. The method is A(0)-stable, 

O < 0 < 7r/2, when (i) the spectrum of the matrix A is contained in the complement 

of the sector So and (ii) jr(z)I < 1, for z E So. Notice that for A(0)-stable methods, 

the matrix A is regular. Moreover, if the method also satisfies (iii) y := Jr(oo)I < 1, 

then we say that the method is strongly A(0)-stable. Hereafter, we only consider 

strongly A(0)-stable methods. This excludes the Gaussian methods, among others. 

On the other hand, there is a wide range of methods lying within this class of 

strongly A(0)-stable methods (see e.g., [12]). 

Let u: J -* X be the solution of problem (1). Let to < t < *... < tN be a finite 

sequence of time levels in J, with uniform spacing h = t+ - tn, 0 < n < N - 1. 

The application of the Runge-Kutta method given by (2) to problem (1) leads to 

the recurrence 

(3) Un+1 = Un+ hZ biA(tn + c2h)Un, 0 < n < N-1. 
i=1 

Here Un is the approximation to u(tn), 0 < n < N, and the internal stages Un E D, 
O < n < N - 1 1 < i < s, are defined by the system of equations 

(4) Un =Un+h EZajjA(tn + ch)U, 1<nis. 
j=1 

In Lemma 2.3 we prove that, assuming that the method is strongly A(0)-stable, 

system (4) is uniquely solvable, for h > 0 small enough, even for data Un E X not 

lying in the domain D. In fact we show that, for 0 < n < N - 1, there exists a 
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continuous, linear mapping r(tn+i, tn) X -* X such that the recurrence (3) can 
be written in compact form as 

(5) tUn+I = r(tn+Ii tn)Uni O < n < N-1 

We also show that r(tn+l, tn) maps D onto D. Thus, the method makes sense for 
generalized as well as for genuine solutions. The main problem we address in the 
present paper is the stability of the procedure (5). Given a family {F }IT of linear 
operators defined in a common space, we set 

m 

rl F. = Fm Fmi- Fn 
J=n 

The stability of the method demands the boundedness, in independence of h > 0 
small enough, of the compositions flT=n r(tj+i, tj) as bounded operators in X. Let 
us point out that in the present paper we address not only the question of the 
stability, but also the question of the so-called strong stability (see below) of the 
method. The strong stability result turns out to be basic for the study of the 
stability of the discretizations of quasilinear problems in [11]. We pay attention 
to the size of the stability constants. This point is very important for the study 
of quasilinear problems, as well as for the study of the asymptotic behavior of the 
numerical solution. 

For the proof of our results we require intermediate spaces between D and X. 
The domain D is assumed to be endowed with the graph norm i corresponding 
to any A(t*), t* E J, i.e., 

(6) llxlll := llxll + IIA(t*)xll, x E D, 

where t* E J has been fixed. After H2, any pair of such norms, corresponding to 
different choices of t* E J, are mutually equivalent (see below). The space D is 
Banach, since the operators A(t*), t* E J, are closed. We set Xo = X, X1 = D and, 
for 0 < r1 < 1, we denote by X1 -[Xo, X,]r, the Calderon interpolation space of 
order r1 between X0 and X1 (see e.g., [5, 22]). Only the basic interpolation properties 
are used in our analysis, so that the reader does not need a deep knowledge of 
interpolation theory. Let us point out that the interpolation spaces obtained by 
the real method could be used instead (see e.g., [5, 22]). However, the apparently 
simpler choice X7 = D((wol - A(t))>/), the domain of the fractional power, is 
troublesome since, due to the lack of validity of Heinz's theorem, such a domain may 
depend on t E J. The operator norm of a bounded linear operator F: Xb * X>, 
where ,u,v C [0,1], is denoted by JIFI ,. We set go = wo/2, for o0 < 0, and 
coo = 3w0/2, for w0 > 0. With this notation we can state the following theorem, 
which provides the main contribution of the present paper. 

Theorem 1.1. Assume that the parabolic problem (1) fulfills hypotheses HI and 
H2, for some M > 1, wo E R, 0 E (0,7r/2), L > 0 and ae E (0,1), and assume 
that the Runge-Kutta method given by (2) is strongly A(0)-stable. Then there exist 
constants K > 0 and Q > 0, that are independent of L, and there exists h > 0 
such that for any arbitrary finite sequence of time levels tj, 0 < j < N, in J with 
constant step-size 0 < h < h the stage equations (4) are uniquely solvable in X and 



76 C. GONZALEZ AND C. PALENCIA 

the following stability estimates hold: 

N-1 

(7) ]J r(tj+l,tj) -yNI < KTte(Po?+QL / )T(l + BLTa )5 
j=O 0b 

0 < ,l < 1, 

N-1 

(8) ]7J r(tj+l tj) 
_ 

_yNI < KT-le(?o+QLl/ )T(1 + BLTa)5, 
j=O 

O < v< 1, 

N-1 

(9) 1 Ir(t+l, tj) - yNI| < KT-Ie2(o+?QL1/')T(j + BLTa)10 

where r(tj+I, tj), 0 < j < N-1, are the operators defined in (5) and T = tN -to. 

In (7), respectively in (8), B > 0 depends on -y and ,u, respectively on y and v. 

Notice that for either ,lt = 0 in (7) or v = 1 in (8) we can dispense with the term 

N. Therefore, Theorem 1.1 yields the stability of the Runge-Kutta method in 

either Xo or X1. Furthermore, by interpolation, we deduce that the Runge-Kutta 

method is stable in X., for 0 < ,i < 1, and that we have th:- bound 

N-1 

(10) J J r(tj+?, tj) < Ke(wo+QL1/')T(] + BLTa)5. 

j=O 0A 

The way L enters in the estimates in Theorem 1.1 is crucial for the applications in 

[11]. Moreover, we see that in case of asymptotic stability, i.e., when o0 < 0, and 

for small enough L, Theorem 1.1 yields estimates that are uniform, even with an 

exponential damping, in t E J. This is an important remark from the qualitative 

point of view. 

The estimate (9) can be viewed as the discrete counterpart of the analyticity of 

the continuous problem. It shows that, except for the term -y/uo, the numerical 

approximations Un, 1 < n < N, in (5) are smooth (in the sense that they belong to 

XI) even for non-smooth initial data uo E X. When ay = 0, (9) yields the so-called 

strong stability of the method. At first glance, it may seem natural to first prove 

(9) and then obtain (7) and (8) by interpolation. However, for the proof of the 

previous estimates we need some sort of Gronwall's lemma (see Lemma 2.1) for 

weakly singular convolution kernels. This lemma cannot be applied directly to the 

proof of (9) because a non-integrable singularity appears. Therefore, in the proof 

of Theorem 1.1, (9) is obtained as a consequence of (7) and (8). 

For the backward Euler method, stability was studied in [9, 20]. In [4] similar 

stability results for higher order methods are stated. However, the strong stability 

concept considered in [4] differs from ours, because in [4], in the definition of the 

intermediate spaces X7,, 0 < r < 1, the graph norm A(t)?7 of the discrete generator 

A(t) := (I -r(hA(t)))/h, t E J, is used instead of our choice. On the other hand, 

conclusions related to ours, but in the context of Hilbert spaces and Gelfand- 

Lions triplets, were obtained in [15]. Our general Banach spaces set-up cannot take 

advantage on the main ideas used in [15]. Finally, in [10] we studied the stability for 

time dependent problems (1), but there we assumed that the relative total variaton 

of the operators A(t), t E J, was bounded. In [10] methods with lr(oo) = 1 can be 
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considered. Moreover, in [10] we were able to give a precise account of the size of the 
stability constants obtained. Under the hypothesis H2, the perturbative argument 
of [10] cannot be used any longer. 

The applications of Theorem 1.1 include the semidiscretizations in time of clas- 
sical parabolic problems in the LP, 1 < p < +oo, spaces. The reader is referred to 
[10, Section 5], but taking into account that now, after Theorem 1.1, the coefficients 
are allowed to be H6lder continuous in time. The main limitation, as in [10], is that 
the domain of the operators must be independent of t E J. This may exclude Neu- 
mann boundary conditions. Finally, as we have already mentioned, Theorem 1.1 
is also basic for the study of the semidiscretizaton in time of abstract quasilinear 
parabolic problems (see [11]). Let us point out that for this study it is important 
to reflect the dependence of the bounds on L and ae, as in Theorem 1.1. 

In Section 2 we present some auxiliary lemmas needed for the proof of Theo- 
rem 1.1, including the Gronwall-type lemma. Section 3 is devoted to the proof of 
Theorem 1.1. 

2. SOME AUXILIARY LEMMAS 

In this section we present some lemmas that are necessary for the proof of The- 
orem 1.1, we maintain the notation and hypotheses of this theorem. We assume 
that we have fixed a uniformily spaced sequence t3, 0 < j < N, in J, with step 
h > 0. 

The first lemma provides a version of Gronwall's lemma with a weakly singular 
kernel. It is noteworthy that this lemma, in spite of its simple appearence, cannot be 
obtained directly by comparison with its continuous counterpart. Another version 
of a similar lemma can be found in [14]. We prefer our statement to that in [14] 
since it accounts for the dependence with respect to the parameters involved. A 
non-standard term is also included. This term will allow us to consider methods 
with r(oo) =$ 0. 

Lemma 2.1. Let h > 0, N > 1 integer and set t3 = jh, 0 < j < N. Let $ > 0, 
0 < j <N be a finite sequence of real numbers with 40 = 0. Assume that there exist 
a E (0,1), r y E [0,1) and Cl, C2, C3 > 0 such that h < h ((1 _ -)2/(4C2)) 
and that, for 1 < m < N, we have 

m-1 

(m ? Citml ?0C2 E (htm-il + tm_ m-j-1) 
j=1 

m-1 

? 03 E (hrlqtYy^/i + hT/ym ta _j) 
j=1 

Then there exists a constant B > 0, depending only on rq and -y, such that the 
estimate 

holds wih < 2ewt (Cl + BC3ta)(1 + BC2tm)tm1 1 < m < N, 

holds with 
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Proof. We begin by proving that there exists B1 > 0, depending only on r1 and , 
such that 

m-1 

(12) E (h 1-qtalji + h-7ml-ta _j) < B1to-, 1 < m < N. 
j=l 

We can assume that a > 0. Fix 1 < m < N and let M be the integer part of 
(ml-7)/2. We have that 

m -1 Mm-1 rn-i tA/ 1 1h-' hl-q t M-3j 
j < hl-n1 t1 ? h1- E ta-7lI/j 

j=1 j=1 j=M+l 

K h1qMte-17 + h-m -y M+l 

? 
MTrO t-' + T21- M+1ta-n 

< Bmm m 

m~~~~ where B': 1 + sup.,>0 x 21y(1/2)x 771. Moreover, we have 

m-1 

h am- lt_ < t ol nm- 1 < Bllta- 
j=1 

where B":= supx>l xl+?T-yl. Therefore, (12) holds with B1 = B' + B". 

Now, after (12), the proof of the lemma can be restricted to the case C3 = 0. 
Furthermore, with no loss of generality, we can assume that C, = 1. It is also clear 
that it is sufficient to prove (11) for m = N, because then the same result could be 
applied to a smaller value of 1 < m < N. 

Let g and ta, u> 0, be the sequences defined by g(j) = tj-1 and t,(j) = C-, 
for 1 < j < N, and by g(j) = t,(j) = 0, for the remaining values of j > 0 integer. 
Furthermore, let x = {x3}j+2o be the sequence defined by the convolution equation 

(13) x = t? + C2 (htl-,, + g) * x, 

where * stands for the discrete convolution of sequences. It is obvious that we have 
(j < xj, for 1 < j < N. Therefore the lemma is reduced to prove that, for j = N, 
inequality (11) holds with XN instead of (N. 

For each given sequence u = {uj}t+= of complex numbers, we set ui(z) = 

Z+=2 uizi, i.e., ui stands for the generating function of u. As is well known, in 
terms of the generating functions, equation (13) becomes 

(14) k(z) 1- t (z) 

Let r = {rj} +2 and s = {sj} +o be the sequences whose generating functions are 

i(z) = (1 -C2(hti-,, (z) + g(z)))1 and s(z) = r(z)2, respectively. Now we trans- 
form (14) by taking the derivatives and multiplying by z (recall that this process 
corresponds to taking the generating function of the original sequence multiplied 
componentwise by the sequence {f}j+2). This leads to 

zx'(z) = zt7 (z)i(z) + C2z.(z)(ht 4(z) + W'(z))s(z), 
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that after inverting leads to 

N N j-1 

(15) NXN = rN-jjtj + C2 E SN-j5 t7r1(ht l +tle11) 

j=1 j=1 1=1 

Let us assume for the moment the validity of the estimates 

N N 

(16) E Ir3l < 2ewtN, E sji < 4ewtN 

j=o j=o 

which we prove later. For 1 < j < N, we have that 

jtj7" < Nt-n 

and also, since B(1 + a, 1-) < 2/((l - ), that 

j-1 j-1 

5 t- I(ht-l ? t7y'1) ? (1 ? &*) 5t- tj 
1=1 1=1 

st3 
< (1 + *)h-l j (tj - 

T)-IT dT 

- (1 +?y*)jB(l + 1 ,1 -r)t- 

< 2(1 + y*)F(l - q)-'Nt N-q 

where -y* = sup,>, xay-y. By using the previous estimates in (15), it is straight- 
forward to conclude that 

N N 

NXN < E |rj) NtN+2C2( E Sjl)Nt7 ?(1?+ *)F(1-Y1) 

< 
2NtyneN 

(1 ? 4C2F(1 -1 (1 + 7*)tc) 

and, dividing by N, we get the desired bound for XN with 

B = max{Bi, 4F(1 - )-1(1+ ?y*)}. 

It remains to prove (16). Notice that j_,, (O) = g(O) = 0. Thus, for z E C with 
small enough lzl, we have that 

+00 

r(z) = E (C2(hil-ce(z) + ?(Z))) ; 
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hence rj > O, for all j > 0, since all the coefficients of htli,,(z) + g(z) are non- 
negative. Moreover, recalling the definition of w and h, it is clear that 

N 

C2 (hti_, (e-hw) + g(e-hw)) = C2hZ(t- ? hltj-l)eWt3 

j=1 

tN e-)U N 

<_ C2 1 adu+C2Et>1j-1 
j=1 

)tN N 
< C2W jX e-vvce-l dv + C2ha EN 

O=1 

< c2r(a)g-+ C2h"(1 
_ 

_)-2 K C21F(ca)W ?Ch(- 

* 1/4 + 1/4 = 1/2. 

Therefore, we have 
N N N 

E |r l = E r < ewtN E eWtJ rJ 
j=0 j=1 :7=1 

ewtN i(e-wh) 

ewtN (i-C2(hti (ehw) + g(eh))) 

< 2ewtN 

In the same way we see that 
N 

IS= s3 < ewtN (i-C2 (hti- (e-hw) + g(e-hw))) < 4e.tN [E 

n=O 

Hereafter, the letter K possibly with a subindex denotes positive constants that 
depend only on M, 0, wo and the Runge-Kutta method. Of course, the K's may 
take different values at different places. 

Lemma 2.2. There exist K > 0 and h > 0, depending on M, 0, w0 and the Runge- 

Kutta method such that for all t E J, n > 1 integer and 0 < h < h, the following 

estimate holds: 

JJA(t)(rn (hA(t)) -_ nh) 11o < 

Proof. The proof of this lemma is based on the Cauchy formula and it follows 
closely the proof of the main theorem in [17]. 

Assume first that w0 = 0. Select h > 0, t E J and set A = hA(t). By using the 
Neumann series (see, e.g., in [8, Lemma 4.2.1]), it is easy to see that there exist 
M* > M and 0 < 0* < 0, depending only on M and 0, such that A satisfies Hi 
with respect M*, 0* and w0 = 0. Then, because of the maximum principle, we have 
jr(z) < 1, for z =, 0, z E So*. Since ay = jr(oo)I < 1, it is not hard to conclude that 
there exist c > 0, 0 < - < 1 and R > 0, depending only on M, 0 and r(z), such 
that 

f ecizi, if lzl < R, z V So*, 

(17) r(z) e-cZI if lzl < R, z E So*, 

1', if lzl > R, z E So*. 
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Select two radii 0 < Ro < R < R,, in such a way that all the poles of r(z) lay 
in the annulus Ro < lzl < R,,. For n > 1 integer, let FP be the negative boundary 
of the intersection of the annulus Ro/n < lzl < R,, with the complement of the 
sector So.. Following [17], we write 

(18) A(rn (A) _ 
_ynj) = 21 j Z(r(z)n - _n)(ZI - A)-1 dz. 

In order to estimate this integral, we first partition 1Fn as 

Frn = Fn,0UrooULn U Loo, 

where rn,O (respectively rF) is the part of rn on the circle lzl = Ro/n (respectively 
Iz = R,,) and Ln (respectively Loo) is the part of rn on the boundary of the 
sector So* lying in the disk lzl < R (respectively in the region lzl > R). After the 
representation (18), we have 

A(rn (A) -_ _n I) = I,n + 12,n ? 13,n + 14,ni 

where I1n, 12,n, I3,n and 14n stand for the contributions to the integral due to 

rn,Oi ]OO Ln and Lo, respectively. By taking into account that Hi holds for A, 
with M*, 0* and w0 = 0, and by (17), it is straightforward to see that there exists 
Ko > 0 such that 

III1nIIoo < M*(Ro/n)(ecR? +?y ) < Ko/n, 

II2,nII00 < M*Roo (-n +? _n) < Ko/n, 
R 

I3,n I ?0 < (M*/1r) R(e-ncs + ayn ) ds < Ko/n, 

I14,nlloo ? (M*Ro /1r) (n + _an) < Ko /n. 

These estimates in (18) yield 

IIA(t) (rn (hA(t)) _ _nTj) l o-o = h-1 A(rn (A) _ _Ynl) ll-oo < 4Ko/(nh). 

Therefore, for o0 = 0, (17) holds with h = +oo. 
Assume that w0 = 0. If w0 > 0, let h > 0 be such that all the poles of rh(z) 

lay outside the sector So. If wo < 0, let h = I ln -/ wo . For 0 < h < h, we set 
rh(z) = r(z + hwo). Fix 0 < h < h, t E J and set A = h(A(t) - wol). Notice that 
A satisfies Hi, but with w0 = 0. Now, for n > 1, we have 

(19) A(rhn(A) -_ _TI) = 21 j Z(rn(z) 
_ 

)(ZI - A)- dz. 

It is not hard to see, due to our choice of h, that there exists K1 > 0, R > 0, 
E (0, 1) and c > 0, such that rh(z) satisfies the following estimates, that are 

similar to the ones satisfied by r(z) in (17): 

{ KiecnIzIewonh, if lzl < R, z V So*, 

rh(z)n I < Kie-cnlzIewonh if lzl < R z E So 

K, K-newonh if lZl > R, z E So*. 

Then, by partitioning rn as we did in the previous case, we can estimate the integral 
in (19) and show that there exists K2 > 0 such that 

IIA(rn (A) _ _nIj) I lo_o < K2 ewonh /n. 
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On the other hand, it is known (see [6, 7, 16, 17]) that there exists K3 > 0 such 
that 

||rn(hA(t))jlo-o < K3ewonh. 

Therefore, 

11A(t) (rT(hA(t)) - nyTI)lloo ? woI(1rTh(hA(t))floo ? ano ) 

+ h-1fA(rn(A) -_ _TI) llo-o 

< |Woj(K3 ewonh + ewonh) + K2ewonh/((nh) 

and the lemma is proved, since it is clear that ewnh ? K4ewnh/(nh), for some 
K4> 0. D 

For each t E J, we consider the norm 11 in Xi = D defined by x = 

llxll + jfA(t)xjl, for x E XI. Because of H2, we have 

(20) 

(1 + Llt -sl')-lllxll' < llxll' < (1 + Llt - sj')jjxjj, x Ez Xi, t, s Ez J. 

For ,tt E (0, 1), 11 stands for the norm in the intermediate space X,, = [X, X1],, 
obtained by means of the complex interpolation method, between (X, 11) and 
(X1, 11 ). The product space Xjk, k > 1 integer and 0 < ti < 1, is endowed 
with the maximum norm component-wise. The norm in Xk is also denoted by 

Given 1, k > 1 integers and v E [0,1], the operator norm corresponding to 
a bounded operator F: (XIl, *11 A.Il) _* (Xk, II . III) is denoted by {IFII & s, t E J. 
For ,u = v = 0, we simply set jFjjo-o instead of JIF 18to At first glance, it 
appears more natural to fix t* E J and consider always the norm II * 11t in X1. 
In this way, we could have fixed norms in the product spaces Xl and X k and, 
consequently, we could avoid the cumbersome notation above for the norm of the 
operators F: Xl X1 Xk . However, with our technique, such a choice of the norm 
in X1 leads to an extra factor in the estimates in Theorem 1.1. This extra factor 
turns out to be of the form ecT, where c > 0 is independent of L, and, with this 
factor, we could not prove any result on asymptotic stability. 

A matrix M E CkXI is identified with the operator M 0 I: Xl _* Xk. Fort E J 
such that t + h E J, we set B(t), Bo(t): Ds c Xs -* X' the operators defined 
by B(t) = diag(A(t + c1h), ... , A(t + csh)) and by Bo(t) = diag(A(t),... A(t)), 
respectively. 

The solvability of the equations of the stages (4) is a direct consequence of the 
following lemma. 

Lemma 2.3. There exists K > 0 and there exists h > 0, with h depending on 
M, 0, the Runge-Kutta method, L and a, such that, for t E J and 0 < h < h 
with t + h E J, the operators (I - hAB(t)), (I - hABo(t)): DS C X' -* X are 
boundedly invertible with 

11 (T - hAB(t))-1 1o-o < K, 11(I - hABo(t))->1 1oo < K. 

Proof. As shown in the proof of Theorem 4.1 in [10], there exist constants K1 > 0 
and ho > 0, with ho depending only on M, 0 wo and A, such that, for 0 < h < ho, 
the inverse (I - hABo(t))-1 exists as a bounded operator in X' and 

11(I - hABo(t))->1 1o < K1, JjhBo(t)(T - hABo(t))-1lloo < a(1 + K1), 
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where a = IIA-'Ilo-o. Fix 0 < h < ho. Then it makes sense to define the operator 
A/(h): X8 -* X by A/(h) = hA(B(t) - Bo(t))(I - hABo(t))-1. By hypothesis H1, 
we have 

JjA(h)jjoo < JjAjo,oLh'jjhBo(t)(T - hABo(t))-llloo < KoLh. 

By writing 
I - hAB(t) = (I - A (h))(I - hABBo(t)), 

we see that, for h < h := min{ho, (2KoL)-"/'}, the inverse (I - hAB(t))-l exists 
and 

+00 

1(77 - hA4B(t))- lo,o < 1(77 - hA4Bo (t))- lo --o E I||/\(h) jjoko < 2KI. D 
k=O 

Let h > 0 be the threshold given by Lemma 2.3. For t E J and 0 < h < h with 
t + h E J, we set 

R(t, h) = (IT - hAB(t))-1, Ro(t, h)- (I - hABo(t))1. 

In this way, the discrete operator associated with the Runge-Kutta method in (5) 
is well defined for 0 < h < h and is given by 

r(t + h, t) = I + hbTB(t)R(t, h)e. 

Furthermore, for s, t E J and 0 < h < h with s + h, t + h E J, we set 

8(t, s, h) = B(t)R(t, h) - Bo(s)Ro(s, h). 

(Several useful estimates for these operators are collected in the next lemma.) 
In the rest of the paper h1 > 0 denotes the the minimum of the thresholds given 

in Lemmas 2.2 and 2.3 and of L-11a. 

Lemma 2.4. There exists K > 0, such that, for s,t E J, s < t, and 0 < h < h 
with t + h E J, the following estimates hold: 

(21) jjR(tjh)jj'--- < K i JRo (t Ih)l iJ'---" < K, O <A,l< 1, 

(22) JJR(tj h) lto,+tl < Kh-1, JRo(tj h) Ilot-- < Kh-1, 
(23) 6(t, s, h) 11"t < hA-'-"KLmax{(t - s)a, h}, A, v E [, 1], 

(24) 1jr(t + h, t) - -llot-- < Kh-1. 

Proof. For x E X1 and t E J, we set 

jjxjj*t = llxll + 11B(t)x1j. 

Because of H2 and the choice of h1, we have 

(25) (1/2)llxlltt < llxllt < 211xllt, x E X1, tEJ. 

By Lemma 2.3 we know that (21) holds for p = 0. Then, by interpolation, only 
the case p = 1 must be considered. Let a > 0 be a bound for the norms of A, A-1, 
bT and e as operators in either the space Xo or the space X1, and let Ko be the 
constant provided by Lemma 2.3. Notice that 

B(t)R(t, h) = B(t)(1 -hAB(t))-1 =A1AB(t)(1-hAB(t))-I 
=A-1(1-hAB(t))-1AB(t). 
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Hence, by (25), 

R(t, h) II't+ < 2(11R(t, h)II o + IIB(t)R(t, h) llt-2) 

? 2(Ko + a2 2IR(t, h) Boo B(t) j t 

? 2(Ko + 2a 2KO) 
* 2(1 + a2)Ko; 

thus, (21) holds for R(t, h), with K = 4(1 + a2)KO. 
Notice that we also have 

B(t)R(t, h) = A-1AB(t)(1-hAB(t))1- 
= h-1A-1(R(t,h) -1). 

Hence, again by (25), 

R(t, h) I KItt < 2( jR(t,h)jjtt + JjB(t)R(t, h) jjt) 
< 2(Ko + h-1a2(Ko + 1)), 

and (22) holds for R(t, h). 
The proofs of (21) and (22) for Ro(t, h) are identical. 
On the other hand, after some manipulation, we see that 

6(t, s, h) = h-1A-l(hAB(t)R(t, h) - hABo(s)Ro(s, h)) 
= h-1A1-(R(t, h) - Ro(s, h)) 
= A1-R(t, h)A(B(t) - Bo(s))Ro(s, h). 

Therefore, for pt, v E {0, 1}, we have 

(26) 

116(t, s, h)I1itv < a2I R(t, h) jIt2t IB(t) - Bo(s) Iit IIRo(s, h) li2i 

By hypothesis H2 and (25), we also have 

JIB(t) -Bo(s)JI't0 < 2L(h + It -sl)a < 8L max{ It -slc', h}'. 
This estimate together with (21) and (22), in (26), yield (23), for Al = 0,1 and 
v = 0,1. By interpolation, we obtain (23) for the remaining values A, v e (0,1). 

Furthermore, we have 

jr(t + h, t)- _yjjtlt< lIr(t + h,t)-r(hA(t)) Ilt-t + 1jr(hA(t)) -y 

hllbT(t + h, t, h)ejj` + 1jr(hA(t))- ylltt 
- 4a2LKha-1 + 4Kewh-1 

< 4(a2 +ewoh)Kh-l, 

since Lho' < 1. D 

3. PROOF OF THE MAIN RESULT 

Proof of Theorem 1.1. Fix 0 < h < h1. We know that the stage equations are 
uniquely solvable for such values of h. Let t, 0 < j < N, be a sequence in J with 
step size h. For 0 < j, n < N - 1, denote 

6j,n = h-1 (r(tj+I1,tj )-r(hA(tn))) 
= bTB(t3)(I - hAB(tj))-le - bTBo(tn) (I -hBO(tn))e 

= bT6(t , tn, h)e 
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and, for 0 < n < m < N integers, 
m-1 

Fm,n = H r(tk+l, tk) _ _ym-n and E3n =rrm-n(hA(tj)) _ unm-n 
k=n 

where we take 
n-I 

11 r(tk+l, tk) =ro(hA(tn)) = -Y I 
k=n 

We begin by proving (7). Let 0 < p < 1. Because of the well-known telescopic 
identity 

m m - 1 

(27) Fm,n= S ( J r(ti+i,ti))(r(tj,tj_) __)yj-n-i 
j=n+l l=j 

and Lemmas 2.2 and 2.3, we conclude that Fm,n is a bounded operator from X to 

XA1. Let us point out that (27) is useless in order to establish bound (7), though 
the existence of the number IlFmnnltnltm is required in the forthcoming argument. 
We also have the similar identity 

m m-1 

Fmn,n - En ( 11 r(ti+i, t1)) (r(tj,tj 1) - r(hA(tn)))rji--n(hA(tn)) 
j=n+l 1=3 

m 

- h E (Fm,j + -yj)6 in(Ej_1,n +/ ni) 
j=n+l 

Hence, because of (20), 

(28) 
IlFin tn -+tm < IEn tnIlntm 1m,11Ou - 1 mn,n 1 O-u 

m 
+hE JjF jjjt^tqm 116j_l,n(Ej_- 1n + 0i )loo 

=n+l 
m 

+ h 5 7 it &j--l,n(Ej_i,n + yin) llo 2;t 

=n+l 

where n = (1 + LT'). 
On the one hand, by Lemma 2.2, there exists Ki such that IFn 

ltntn < 

(Ki/2)eo(tatn)(t3 - tn)-4, 0 < j < N. Moreover, by Lemmas 2.2 and 2.4, there 
exists a constant K2 such that for n + 2 < j < m and either o = 0 or o = t,, we 
have 

llFi-,nEi tn 11 ? < li-n 11 EjLin I ntn 

K 2h-OL(K2/2)ewo(t.7_1-tn)(tj - tn)'(tj-1 - tn)i 

< 2LK2e o(t3 _1 -tn )h-'J(tj -t) - 

and 

lj-i-,n lIIt7nt < 2(K2/2)Lh-i-Of(tj-l - tn)R < 2K2Lh-i-Of(t3 -tn)a 

since (tj -tn) < 2(t7-I tn) in the range n+2 < j < m. Furthermore, for j = n+1, 
by (23), we have the analogous estimate 

116_1,n 113ii7Pt = 11nn n-n+0 < 2L(K2/2)h-i-0h?1 < 2LK2h-o(tj - tn)?i. 
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Thus, for n + 2 < j < m, we deduce that 

n~,(7, +y j-1-n )trV--tJ i16-l,n(E j_l In + 0i-- + 0lnt 

? 61,~EL1~I +tn 
t- Itnl*t3 ,j-1-nl ? 116j-l,nEjn-l,n 0--or(t + 1163-1,n 0--ort,/-- 

? 2LK2eo(t3-1-tn)h-of((tj - tn)Y-l + h-1(tj -tn)ai jn 

and, for j-n + 1, that 

63-1,n(Ej_ I,n + ,)-l) IIn+tJ 

< 2LK2ewo(t3 -1tn)h-oJ((tj - tn)-l + h-'(tj -tn) n 

Therefore, by using these estimates in (28), we get 

F1lF 1n tm <-Kiewo(tmtn) (tM - 
11 m,n llOu < ;K e1~ mt tn 

m 
+ 2LK2h E IIFmjIj It3 tmeCio(t1--tn) 

j=n+1 
X ((tj -tn) t- I + h - 1(tj tn) a'-Y3-n-1 

+ 2nLK2e o(tm -tn) hl1-,U 

m 
x 5 (-y 3 (tj -ttn) 

c + h (tj - tn)omn) 
j=n+1 

For the proof of (7) we apply Lemma 2.1, considering that 

C- e-o(tm-tm_u) I m-jIitOm- tm: 
0 < j < m-n, 

with C, = ,K1, C2 = 2K2L and C3 = 2,K2L. We take h, the minimum of h1 and 
of the corresponding threshold given by Lemma 2.1. Notice that (20) is applied 
again, so that the presence of another factor r, is needed in (7). 

Assume now that 0 < v < 1. As before, identity (27) shows that Fm,n is a 
bounded operator from X, onto X1. Now we write 

m-1 

Fm,-Em = hE,(Emm + + , m-j 1 )6m,j (Fj,n + -' j) 
j=n 

Hence, 

(29) 

lFm,n IItnjtm < IIEm ltntm 

m-1 

+ h E II(Em,j+1 + ymJ+1) j tj4tm F tn tj 

j=n 

m-1 

+ h5 (IEm + arnj+l )8m tj tm aj-T 

3=n 
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Let us take norms in (29). Arguing as before and using Lemmas 2.2 and 2.4, it 
is possible to prove that there exist constants K1 and K2 such that 

IIFm, tntI n tn )Kiew(tmtn)(t - 

m-1 

+ 2LK2h E e'o(tmta)((tm- tj)o1 + h-1(tm-tj)aYm-jl)IIFj,n> 
j=n 

m-i 

+2E,;LK2eo(tmtn)hv S ((tin- t)a- 1y3-n + h-1(tm -tj)?tYm-n) 

j=n 

Now (8) is obtained by a direct application of Lemma 2.1, if we consider that 
( = F92+,92 (tn+30-tn I 

I?t.t_+n < j < m - n, C, = KK1, C2 = 2K2L, 
C3 = 2iK2L, and we take h the minimum of h1 and of the corresponding threshold 
given by Lemma 2.1. 

Finally, let us prove (9). Notice that now we cannot proceed as before, because 
the value q = 1 is not covered by Lemma 2.1. If N = 1, then we have directly 

IF1,011o'ti < IIE1,0 t < + 1, o0?1 ?2K2h-1 + 2LKIh-1 

for some constants K1 and K2, as required. Let N > 2. We set J = [N/2] and 
write 

FN,O = FN,J+1FJ,o + AN-JFJO + 'yFN,J+1, 

whence 

(30) FN,O || Io tN < I 
FN,J+l lltJ1tNI FJlt 1O 1/2-J 

F N-JFJ OlltotJ+ J FN,J+1 +0_ 

The first term on the right side of (30) is estimated by means of (7) and (8). Now 
let us estimate the central term yN- J IIFj,0o -j+tj. By (8) with v = 1, we can bound 

m-1 

I|J r(tl+l, tL) lt3tm < Nmi + rlFm,j 11n1j < K + i-Fm,j 1131t 
1=J 

Therefore, by taking norms in identity (27) with m = J and n = 0 and applying 
(24) we conclude that 

^N J IIFJ,0 llto-+tj 

J J-1 
? 

-YNJ II 11 r r(t, + I tj) I-Itj r(t,t7 - 1) 
- aIIti-tj-j-1 

j=1 l=j 

? N-JS E 2(nS; + IlFj X 1t +1tJ)Kh-1-y1. 
j=1 

The final term is estimated in a similar way. These estimates together in (30) yield 
(9) because I I FJ,3 I I t- t J is bounded. D 

Remark. We can also prove the first part of Theorem 1.1 by constructing the dis- 
crete fundamental solution in a similar way to the continuous case. In fact, this is 
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the idea used for the backward Euler method in [19]. For instance, when y = 0, it 
turns out that it is possible to obtain the representation 

m 
Fm,n = r(hA(tn))m-n + h E r(hA(tn))m-3 A3,,n 0 < n < m < N, 

j=n 

where A1,n X -- X are the linear and bounded operators defined by the recurrence 

/\l, 611n 1-n-2 (hA(tn)) 

1-2 

+ h E8 61,jr1-j-2(hA(tj))Aj,n, 0 < n < 1 < N, 
j=n 

starting from An,n = 0. These operators may be estimated by using Lemma 2.1. 
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