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ABSTRACT. In this paper we develop and analyze a bootstrapping algorithm 
for the extraction of potentials and arbitrary derivatives of the Cauchy data 
of regular three-dimensional second order elliptic boundary value problems in 
connection with corresponding boundary integral equations. The method rests 
on the derivatives of the generalized Green's representation formula, which are 
expressed in terms of singular boundary integrals as Hadamard's finite parts. 
Their regularization, together with asymptotic pseudohomogeneous kernel ex- 
pansions, yields a constructive method for obtaining generalized jump rela- 
tions. These expansions are obtained via composition of Taylor expansions of 
the local surface representation, the density functions, differential operators 
and the fundamental solution of the original problem, together with the use 
of local polar coordinates in the parameter domain. For boundary integral 
equations obtained by the direct method, this method allows the recursive 
numerical extraction of potentials and their derivatives near and up to the 
boundary surface. 

1. INTRODUCTION 

The evaluation of layer potentials and also their derivatives near the supporting 
surface F C Rd, d = 2 or 3, has attracted attention in boundary element compu- 
tations recently (see e.g., [8, 10, 11, 12, 20]). If the point of interest x is sufficiently 
distant from F, the evaluation does not cause any difficulties due to the smoothness 
of the kernels. In contrast, if x is very close to F, severe numerical difficulties arise 
due to the oscillatory nature of the kernels, related to the so-called jump relations 
satisfied by the potentials at F. Much effort was spent on numerical techniques 
to cope with this problem. Such techniques have limited success if the analytic 
jump relations of the potentials are ignored. To illustrate this, consider the dou- 
ble layer potential of the density X[-1,1]2(y) as a function of the observation point 
x= (0,0,c): 

(1.1) wx?(x 3 Y)dy1dY2 = 27rsignE-8arcsin ( r2) 
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FIGURE 1. log1o (relative error) versus Nll3 

Figure 1 shows the relative quadrature error for E = 10)--O, j 0, ... , 6, of an 
advanced quadrature scheme applied to (1.1) (see [33] for tetails). 

The degeneracy for small E is clearly visible and even more pronounced for less 
sophisticated quadrature schemes. 

In this paper, we propose a different, analytical approach: Since the potentials 
used in the reduction to the boundary F are analytic on either side of F and admit 
analytic extensions through F (provided F and the data are analytic), they admit 
Taylor expansions about a point xo E F. To illustrate our approach, consider the 
classical potential problem 

(1.2) 

AU=O inQc, ,= on I, U(x) = ( for Ix- oo . 

Here and in what follows, Q C R d denotes a bounded, simply connected strong 
Lipschitz domain [30] with piecewise analytic boundary F. For d = 3, F is a 
finite union of analytic surface pieces Fj, and it is locally the graph of a Lipschitz- 
continuous function (precluding slits and cusps). For d = 2, the Fj are analytic 
arcs, correspondingly. We denote by 

r :=UJF, s :=F\f 

the sets of smooth, i.e., analytic, and singular boundary points, respectively. For 
every x E F, nx = n(x) will denote the exterior unit normal vector. The complement 
Rd\Q of Q will be denoted by QC. Then nx always points into QC. 

The classical direct reduction method of (1.2) to the boundary F is based on the 
representation formula 

(1.3) U(x) = WU(x) - V ,) for x E QC. 
On 

Here V, W are the single and double layer potentials of classical potential theory, 
respectively. For x - x' E F, (1.3) and the jump relations yield the boundary 
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integral equation 

(1.4) AC7 I-K) f=-VO atx'EFr 

for the unknown Cauchy datum :p Ul,. Here, for d= 3, 

(1.5) Vb(x) = j ] Y) dsy for x E F 

yEF 

is the single layer potential operator and 

(1.6) K = + J (x y) ;3y 9(y)dsy for x E 
7r x-y 
yEF 

is the double layer potential at the points of F, which is to be modified appropriately 
at x E S. 

Once we solve the classical boundary integral equation (1.4) for p, the Cauchy 
data p and b are inserted into (1.3) and U(x) is known for all x E QC. Moreover, 
if b is analytic on F, so is p (see e.g., [29]) and, hence, also U(x) at x E QC U F. 
Therefore, for x sufficiently close to F, there exists the nearest point xo E F and we 
may write 

(1.7) U(x) = U(xo) + Ix-Xo x-x 2 (Xo) (X-xo3). 

The Taylor series corresponding to (1.7) converges for x sufficiently close to xo in 
case of analytic data due to the analyticity of U(x), and represents the solution 
U for x E QC U E.l Using (1.7) yields approximations to U(x) which improve as 
x -*o x0in contrast to numerical evaluations of the representation formula (1.2). 

&kU 
The difficulty in using (1.7) is how to get Orik (xo) for k > 1. In our specific 

problem (1.2), the boundary datum ,) (xo) = b(xo) is available, but not the 
o9n 

higher order derivatives. To provide a stable algorithm by finding such derivatives 
from numerical solutions of the integral equation (1.4) is the purpose of the present 
paper. 

Let us explain our approach for the special boundary value problem (1.2) for 
d = 3. To this end, we need some standard background from the calculus of 
surfaces. 

For the two-dimensional case d = 2 the whole approach can rather easily be 
specified, correspondingly. 

We call an open surface piece IF C R 3 analytic if it has a real analytic parametric 
representation Xj: R2 --* R3 of 

(1.8) r;~~~~~IF = Xj (Vj) 

with a bounded, polygonal parameter domain Vj C 1R2, and Xj is analytic on Vj, 
i.e., it does not exhibit singularities on &Vj. Hence Xj can be extended analytically 
to some open neighborhood of V. in R2. Throughout, x, y will denote points in Rd 

1Note carefully that the Taylor series about xo allows us to extend U to certain points x E Q. 
However, this extension does not coincide with the solution of (1.2) in Q, nor with (1.3) for x E Q. 
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for d = 3, i.e., x = (x1,x2,x3)T etc., and for x, y E Fj their local coordinates will 
be denoted by u and v, respectively, i.e., 

(1.9) x = Xj(Ul, u2) E Fj , Y = Xj(V1, V2) E Fj 
If no ambiguity arises or if we prove statements that do not depend on the particular 
surface piece, we omit the subscript j. Partial derivatives with respect to local 
coordinates will be written in tensor notation, i.e., 

XX etc., v 1,2. 

We will assume that X1 is regular, i.e., 

(1 .10) IXj 1l X Xj322 | + 0 for all u EVj 

and the mapping Xj V3 -* Fj is invertible. Then, for y E Fj, the surface measure 
is given by 

(1.11) dsy V= dv with 'y = IX 12 IX12 2- (Xl X2)2 

and the metric tensor is rYnQ = XIV * Xle and its inverse ((-yLw)) = ((-yg))-1. 
The exterior unit normal vector to F at x E F. is given by 

(1.12) n(x):- IXjI1 X XjI21 1 (Xjil X Xjl2). 

We now construct an extension of Xi so that a whole tubular neighborhood of Fj 
in 1R3 is mapped bijectively to the cylinder Vj x (-C, C) with appropriately chosen 
E > 0. 

Proposition 1.1. For every IF C F there exists Ej > 0 such that the open set 

(1.13) 

U(IF) = ly E IR3y = XJ(V1,V2) + V3n(v1,V2), (Vl,V2) E Vj C R2 1V31 < ji} 

is diffeomorphic to 

V(Vj) := {v E R3 (V1, V2) E Vj, IV31 < Ej . 
The diffeomorphism 

"Dj : V(Vj) ,- u(Irj) 
in (1.13) is analytic, bijective, and extends Xj in the sense that ?j IV3=0= Xi(Vl, V2). 

Moreover, ?j is regular on V(Vj). 

Proof. We omit the subscript j in this proof. Since the Jacobian of 4D at v E V is 

IDJD(v)I = -y(v)(1 - 2v3H(v1, v2) + v2G(vi, v2))2, 

where H and G are the mean and the Gaussian curvatures, respectively, by the 
implicit function theorem there exists 0 <CO = minxEr {H - vH2 - G}/C such 
that 11 is bijective, analytic, and extends X for Iv31 < E <K C. LO 

&kU 
The main tool in deriving formulae for the normal derivatives -5 k (xo) is to 

express them by tangential derivatives of b and p by using the differential equation 
AU = 0 in Qc U F. For instance, in the tubular neighbourhood l(Fj), the Laplace 
equation reads 

(1.14) AU(xo) = 02U 
(xO) - 2H(xo) (xO) + ApU(x0) = 0, 

On2 ~~On 
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where 

(1.15) A~U 1 & & (X ) (rUo x(v)) 

denotes the Laplace-Beltrami operator on F. This yields, in our case, 

(1.16) &U 2 (Xo) = 2H(xo0),(xo) - Ar9p(xo). 
o9n2 (0 

Thus, since p is known as the solution of (1.4), its derivatives could be obtained 
directly and the Taylor formula (1.7) is, in principle, available. 

In practical computations, however, (1.4) can only be solved by some approxima- 
tion method like, e.g., boundary elements, and differentiation of the approximate 
solution (Pappr is infeasible due to loss of accuracy (more precisely, derivatives of 
(Pappr converge at a reduced rate; the reduction being proportional to the order of 
the derivative). Therefore, the viability of the approach depends on our ability to 
compute numerical approximations of tangential derivatives &o = foj of p which 
exhibit the same accuracy as (Pappr. To this end, we derive a hierarchy of boundary 
integral equations for 9I1 by differentiating (1.4). This yields for lvl = 1: 

(1.17) A.p1l = -VO/v - A(v)(p - V(V) , 

where 

A(>) P[a, A] := A - M 

V(M) [all, V] (0OV - VOW) 

are the commutators. Note that (1.17) is an integral equation for 9Ij with the 
same operator A as in (1.4) but with a modified right-hand side. The viability 
of this approach depends on the properties and computability of the commutators 
A(,,) and V( ,). Both commutators define pseudo-differential operators on Fj of the 
same orders as A and V (here 0 and -1), respectively. In addition, we show that, 
in local coordinates, A(,) and V(,) can always be decomposed into commutators 
of differential operators whose kernels can be explicitly computed. For instance, if 
d = 3, we have 

(1.19) 

f) 
r (y - x) (xl>(v) - x o)) (lo g (y)dsy 

F 

and V( ,) is again a weakly singular integral operator. Relations analogous to (1.17) 
for Iv > 1 are obtained in the same manner but with corresponding higher order 
commutators. For the second derivatives of (p, needed in (1.16), differentiation of 
(1.17) leads to the equation 

(1.20) Ajvl_t ,! =-V+l= 1w/t - V(/_?)fIw - V( wyl/) - [O8, V( )]fb 
(1.20) - A(w)(pj - A(g)(pIj - [Or, A(M)](. 

Note that the right-hand side is given in terms of derivatives of p not exceeding 
the order one and commutators of A and V the orders of which do not exceed the 
respective orders. Clearly, the datum b in (1.20), i.e., in (1.2), needs to be given 
sufficiently smooth. The equations (1.4), (1.17) and (1.20) can be solved recursively 
for all the second derivatives f ,. Numerical approximations of these derivatives 
can be computed provided the discretization of A and its inversion is available and 
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the commutators are known. For higher order derivatives, equations analogous to 
(1.20) will be obtained. In all cases, the operator on the left-hand side is A. 

In the remainder of this paper we present the procedure for second order strongly 
elliptic systems generalizing (1.16), and also prove a general representation of the 
commutators in local coordinates which allows their explicit calculation. 

Finally we address the rate of convergence of arbitrary derivatives, including the 
normal derivatives obtained from boundary element discretizations of the boundary 
integral equations like (1.4), (1.17) and (1.20). 

The outline of the paper is as follows: In Section 2 we introduce the class of 
boundary value problems and reductions to the boundary integral equations to be 
considered. In Section 3 we derive the recurrence of boundary integral equations for 
arbitrary derivatives and give the formula for the calculation of the commutators. 
Finally, in Section 4 we address the boundary element discretization of the boundary 
integral equations for the higher derivatives of the solution, and obtain rates of 
convergence. An extraction technique for the computation of pointwise derivatives 
is also analyzed. 

Although the method is analyzed here for smooth F, it can also be applied to 
piecewise smooth F provided xo has an open neighbourhood where F still is smooth. 
However, the commutator formula needs to be modified at corners and edges; we 
leave these modifications to future work. 

The whole technique is presented for d = 3. The corresponding two-dimensional 
case where F consists of a closed curve can be derived from our presentation by 
corresponding modifications, and is presented in [32]. 

2. BOUNDARY VALUE PROBLEMS AND REDUCTIONS TO THE BOUNDARY IN 3 

In this section we will discuss the solution of elliptic boundary value problems by 
equivalent boundary integral equations following the approach in [6] (see also [17], 
and for special cases [9]). For simplicity, we confine ourselves to elliptic systems of 
second order in variational form: Given f E L2 (Q), find U E H1 (Q) such that 

(2.1) LU f inQ. 

Here 

3 

(2.2) ?=- E D3ajkDk+c, 
3,k=l 

Dj = 3~ ,and the coefficients ajk and c are real and analytic N x N matrix 
&9xj 

functions of x E Q which satisfy 

ajk(X)= akj(x), C(X) = C (x) 

(i.e., L is formally selfadjoint). General boundary conditions, including Dirichlet 
and Neumann conditions, are as follows: 

Let P E Coo(r, CNXN) be a family of orthogonal projectors with constant rank, 
P2 -~T 

i.e., p2 - p = p . Then require the boundary conditions 

(2.3) R(CyoU, yiU) := P-yoU + (I-P)yiU = 1)b, 
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where, for U E Cl(Q)j 

3 

(2.4) 71U =E nj a3kDkU Ir; 
j,k=l 

denotes the conormal derivative corresponding to L. By Hk (Q, CN) with k E No 
we denote the usual Sobolev spaces. The spaces with noninteger k > 0 are defined 
by interpolation (see for example [25]). The boundary spaces HS(F,CN) with 
0 < s < 1 are invariantly defined via a partition of unity on F and the local 
Lipschitz maps describing F [30]. For -1 < s < 0, we define HS(F, CN) via the 
L2-duality on F. We further note that the trace operator -yo is continuous [4], i.e., 

(2.5) _Yo HS(Q, CN) _> Hs-1/2(F,CN) with 1/2 < s < 3/2. 

We shall not indicate spaces of vector-valued functions explicitly when it will be 
clear from the context. Likewise, Hk(Q, CN) will be denoted by Hk(Q), etc. 

For (2.1), (2.3) we have the first Green's formula 

(2.6) 

(QyiU, wyoY)r = B(U, y) YT L Udx with Y E H1(Q), U E H (Q), 
Q 

where the sesquilinear form B(., ): H1(Q) x HI(Q) -, C is given by 

(2.7) B(U,Y) j { DjYTajkDkU?YTcU dx 

and 

Hz(Q) := {Uj jLU1 L2(Q) < ,} n H1(Q) 
equipped with the graph-norm IIU IIHL() = ||UIIH1(Q) + JILU IL2(7). 

The bracket K, )r in (2.6) is an extension of the boundary integral f -Y,UT-yoYdsy 
F 

by continuity from smooth U, Y to U E HL(Q), Y E H1 (Q). Since the trace map 
is surjective, (2.6) defines y1U for all U E HL(Q) as a continuous, linear functional 
on H1/2 (IF). Thus -y1 U E H- 1/2 (F); and -Yi : Hz(Q) -, H- 1/2 (F) is continuous. 
Analogously we extend the classical second Green's formula 

(2.8) f{Y ZU - LY} dx = (yoU,vyY)r - (y1U,yoY)r 

Q 

from U,Y E H2(Q) to U,Y E HL(Q). 
To give the weak formulation of the boundary value problems (2.3), we denote by 

1ZD and 1ZN the finite-dimensional linear spaces of solutions to the corresponding 
homogeneous adjoint boundary value problem. Then the weak formulation of the 
boundary value problem (2.3) reads: 

Given , with Po E H1/2 (F) and (I-P)> E H-1/2 (F), and f E L2 (Q) satisfying 

(2.9) 
J Tfdx= (PO,P'ylr)-((1-P)b, (1-P)-yor)r for all r EZ, 
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find U E H1(Q)/R1 such that P-yoU = Pb on F and 

(2.10) 

B(U, Y) JYTfdx + ((1-P),bY, (1-P)>yo)pr for all YE EJH(Q). 

Q 

Here, 

Ho (Q) C oH1 (Q) := {U C H1 (Q) I P-yoU = O} C H1 (Q). 

Note that for the Dirichlet problem P 1 and oH1(Q) = Ho (Q), whereas for 
the Neumann problem P = 0 and oH1(Q) = H1(Q). 

We assume that the differential operator L is strongly elliptic, i.e., it satisfies 
d 

(2.11) iinf Z Tajk (X)jk > AoJUj I(I 
(2.11) x(EQ 

~~j,k=1 

for ( C CN and = (4d, ,&() C R d 

Finally, we assume that the Garding inequality is valid on the whole space H'(a), 
i.e., that there exists a positive constant A so that 

(2.12) 
Re: B(U, U) > A11UI(12 -C(U, U) for all U C H1 (Q) 

where C is a compact sesquilinear form on H1 (Q) x H1 (Q). For the characterization 
of such sytems see [30, Theorems 7.5. and 7.6]. Then the boundary value problem 
(2.1), (2.3) admits under assumption (2.9) a unique weak solution U C H1(Q)/1Z 
satisfying (2.10). 

Let us give two examples. 
Example 1: Time harmonic heat transfer in Q. Here 

(2.13) L =-div(Agrad) - w2, 

where the matrix A C R3X 3 is symmetric and positive definite. The corresponding 
conormal derivative operator (2.4) can be written as 

(2.14) tyjU = nTA V Ujr. 

Example 2: Time-harmonic vibrations in a linear elastic body Q. For linear 
isotropic elasticity, 

(2.15) L -,u A -(A + ,u)graddiv - 2 

is the Lame operator, where 

(2.16) tyiU = 2,u + A(div U)n + ,un x curl U Ip 

is the traction operator. A and ,ui are the Lame constants. For the stationary 
problem, i.e., (2.3) and w = 0, we have {0} C 1Z C span{d+BAx}, where B = -BT 
is any real skew-symmetric matrix and a is an arbitrary constant vector. Thus, 
dim lZ < d + d(d- 1)/2. 

Due to the Poincare and Korn inequalities, the bilinear forms (2.7) for both ex- 
amples (2.13) and (2.15) satisfy a Garding inequality (2.12) on H1(Q), respectively. 

Together with (2.1), (2.3) we will also consider the exterior boundary value prob- 
lems, where (2.1) is required in Qc, and / is given on F. In this case, we assume in 
addition that the weak solution satisfies appropriate growth conditions at infinity 
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which ensure uniqueness, and also that the second Green's formula holds on QC in 
the form (2.8). More detailed discussion of the admissible exterior problems can be 
found in [5]. 

Remark 2.1. Assuming Green's formula (2.8) also in QC (see [5], [6]) will be suffi- 
cient for the derivations in Section 6 [5]; but we emphasize that usually (2.8) holds 
in the exterior only with certain additional functionals of U and V supported at 
infinity (see [16], and for radiation conditions [38]). 

We collect the regularity properties of the weak solutions U for both the interior 
and exterior problems, and recall to this end 

(2.17) f := Uri s := F\. 

Then, by standard elliptic regularity theory (see, e.g., [30] or [25]), we have 

Proposition 2.2. Assume f c C??(Q) and that in (2.3) we have Dirichlet data 
Pf = 0 C HlJsoc 2(Fj) noH/2 (F) and Neumann data (I-P)b = C H=a oc32(F) n 
H-1/2(r) for all j and with s > 1 satisfying (2.9). Then the weak solution U of 
(2.1), (2.3) satisfies U c HS(Q \ U) for every open, d-dimensional neighborhood U 
of S in Rd. If, in particular, p and a are irn Co() we have U c CO(Q \ U). 

A stronger result is due to C.B. Morrey [29, Chap. 6.7]. 

Proposition 2.3. Assume that p and a in (2.3) are analytic on each surface piece 
Fj and are globally in H1/2(r) or H-1/2(F), respectively, and satisfy (2.9). Then 
the solution U of (2.1), (2.3) is analytic in Q \U, where U is any open, non-empty 
neighborhood of S in Rd. 

Remark 2.4. Under the assumptions of Proposition 2.3, U admits an analytic con- 
tinuation beyond the boundary surface Fj into the exterior of Q. Consequently, 
also the Cauchy data -yoU and -y,U can be extended analytically beyond F\U. In 
the sequel, these extensions will also be denoted by -yoU and -yiU. 

We describe, following [3, 4, 6, 17], boundary integral equation formulations of 
the boundary value problems (2.2), (2.3) via the so-called "direct method". The 
derivation of boundary integral equations of the first kind which are equivalent to 
the weak form of the boundary value problem and their subsequent finite element 
discretization goes back to [14, 31]. We assume for simplicity that f = 0 in (2.1). 
If this is not the case, a particular solution can be constructed by means of a 
Newtonian potential with a fundamental solution G(x, y - x) of L defined as usual. 

Definition 2.5. A (matrix) function G(x, y - x): Rd X Rd\{x = y} - CNXN is a 
fundamental solution of L, if 

(2.18) L(Dy) G(x, y - x) = &(y - x) I 

in the sense of distributions. 

In the subseqent sections we need the following properties of the fundamental 
solution of L. 

Definition 2.6 (Pseudohomogeneous functions). A function K(z) defined on 
R d\{o} is homogeneous of degree a c R, if K(tz) = taK(z) for all z 7& 0, t > 0. We 
call K pseudohomogeneous of degree a, and write K c 4'h(a), if 

(2.19) K(z) = Ka(Z) + log(jzj)Qa(z), 
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where Ka, admits an asymptotic expansion 

(2.20) Ka(Z) ' Kaj (Z) = E 1Z|a+jKaj(Z/1ZI) 

j>0 j>0 

with respect to homogeneous functions Kaj, and where Qa is a homogeneous poly- 
nomial of degree a - d if a - d C No; and Qa = 0 otherwise. Matrix functions are 
pseudohomogeneous of degree a if all component functions are. 

Proposition 2.7. 10. The fundamental solution G(x, y - x) in (2.18) is of the form 
G(x, y-x) = K(x, x-y), where K(x, z) : Q x R CN<N is a pseudohomogeneous 
kernel of degree -1 in z for every x c Q and depends analytically on z on the unit 
sphere lzl = 1. For every lzl = 1, it is an analytic function of x C Q. 

20. Qa = 0 in (2.19) for our second order systems in R3. 
30 If the coefficients of L in (2.1) are constant, K is independent of x. 
40. If c = 0 in (2.2), then K is homogeneous of degree -1. 

For a proof, see for example [19, Chapter III]. Note that for d = 2 one has 
Qa 50 . 
Example 3: For L = -,A - w2 in R3 and w C C, we have 

e-iwlx-yl 
(2.21) G(x, y - x) = 47rlx - yl 

Example 4: For the three-dimensional Lame operator in (2.17) with w = 0, the 
fundamental solution in R3 is the matrix function 

(2.22) G(x, y - x) = A+23 )lI I + -AyK?A+It (x-y)(x- y)f 

In the general situation, if both Cauchy data 

2 = P-yoU + (I-P,)'yiU, 
(2.23) = 

are known, then we have 

(2.24) (Mou()) ((IfP) (IP) (P ) 

and the solution of (2.1), (2.3) is given by the representation formula 

(2.25) 

U(x) = J {(YyoG)(x,y x-yiU - (Y-yiG)T(x, - x)-yoU(y)} dsy for xE Q, 

yGF 

where Y>yj denotes the boundary operator ?yj applied to G as a function of y (at 
fixed x). Applying xyo, x-yl to (2.25) and utilizing the (two sided) jump relations 
for the single and double layer potentials (see, for example, [4, 3, 6, 17]), we find 
the boundary integral relations 

1 
(2.26) -yoU(x) = (-I-K) -yoU(x) + (V-yiU)(x) for xCF, 2 

1 
(2.27) -yi U(x) = (D-yo U) (x) + (- I + K'j yi U(x) for x cF 

2 
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Here, for x on the boundary F, the boundary integral operators are defined by 

(2.28) (Vu)(x) = J{YtyoG(x, y - x) 5(y)} dsy, 
F 

(2.29) (Ko)(x) = J{Tyyi G(x, y - x)T Q(y)} dsy 
F 

(2.30) (K'u) (x) = J{Ixyl G(x, y - x)' a(y)} ds, 

(2.31) (D )(x) = x_ lYJ{-Yi G(x, y - x) Q(y)} dsy 
r 

where, in general, the integrals are understood as an improper weakly singular 
integral in (2.28), as Cauchy principal value integrals in (2.29), (2.30) and as 
Hadamard's finite part integral in (2.31) [34]. 

Inserting (2.23) and (2.24), in view of the boundary conditions (2.3), we obtain 
two boundary integral equations for the second Cauchy datum p, namely 

PV(P(p) + (I - P)(1I + K')(P(p) + (I - P)D((I - P)(p) 

+ P( I - K)((I - P)p) 

( - P('I - K)Pb - PV(I - P)b - (I - P)DPb 

- (I-P)(1I + K')(I-P P,, 

which is a boundary integral equation of the first kind; and 

(2.33) 
- (I - P)(1I - K)(I - P)p - (I - P)VP(p - PD(I - P)p - ('I + K')P(o 

= (I - P)(1I - K)Pb + (I - P)V(I - P)b - PDPb + P('I + K')(I - P), 

which is a boundary integral equation of the second kind. 

Remark 2.8. The integral relations (2.26), (2.27) must be modified at corner points 
x c S; it is well known that on S the factors 1/2 are to be replaced by certain 
geometry-dependent quantities (see [2, 13] and [39], for example). 

Remark 2.9. In fact, for smooth F c C', the operators V, D, K, K' are classical 
pseudo-differential operators of integer order. 

Proposition 2.10. [4]. Let Isl < 1/2. Then the operators in (2.28)-(2.31) are 
continuous mappings in scales of Sobolev spaces on F. More precisely, 

(2.34) 
V: H-l/2+s (r) - Hl/2+s (r) D Hl/2+s(F) - Hl/2+s (r), 

K: H1/2+s(r) - Hl/2+s(F), K' H-l/2+s(F) - H-l/2+s(F), 

continuously. 

This proposition motivates the weak or variational form of the boundary integral 
equations. If we denote the parts of the non-given Cauchy data by 

(2.35) a := P<p = P-yiU, Lo:= (1 - P)>p = (1 - P)jyoU 

then the weak form of the integral equations of the first kind reads: 
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Find (a, p) C pH-1/2(r) x (1 - p)H1/2(r) such that 

(2.36) , Vu)r - (a, Ko)r = (a, {(1I + K)Pp - V(1 -P)0j)r 
and 

(2.37) (Q, K'o)r + (Q, Do)r (Q, {(I - K')(I-P - 

for all (a, i) C PH-1/2(r) x (1 - p)H12(r). 

Remark 2.11. The integral equations are understood in the distributional sense on 
F; (, ))r- denotes the H-1/2(r) x H1/2(F) or H1/2(F) x H-1/2(F) duality pairing, 
respectively. 

The boundary integral equations of the second kind (2.33) read: 
Find (a, p) C pH-1/2(r) x (I - p)H1/2(r) satisfying 

(2.38) 

2Q+ ((I - P)K) - (I - P)V)o = (I - P) (V(I - P) - (I - P)KP) 

and 

(2.39) 2107 - (PKI)a - PDo = P ((2I + K') (I - P) o + DP+) . 

Remark 2.12. The integral operators K and K' in the equations of the second kind 
(2.38) and (2.39) have, in general, Cauchy singular kernels and have served for a 
long time for solving the corresponding boundary value problems. The correspond- 
ing weak formulation, however, should use the H1/2(F)-scalar product for (2.38) 
and the H-1/2(F)-scalar product for (2.39). Instead, Galerkin methods for these 
equations are based on the L2-scalar product for both equations (2.38) and (2.39). 

The next result shows that (2.36), (2.37) and (2.38), (2.39) are well posed and 
uniquely solvable. 

Proposition 2.13 ([4, 3, 6, 17]). Assume that f = 0 in (2.1). Then the integral 
equations (2.36), (2.37) and the boundary value problems (2.1), (2.2), respectively, 
are equivalent in the sense that for every given P C pHH/2(r) x (I - p)H-1/2(r) 
satisfying (2.9) and a corresponding solution U of the boundary value problem, 
a = P-yiU, 0 = (I - P)-yoU satisfy the boundary integral equations (2.36), (2.37). 
Conversely, if (a, p) is a solution of (2.36), (2.37), then U obtained from the rep- 
resentation formula (2.25) is a weak solution of (2.1). 

An analogous statement holds for (2.38) and (2.39) and also for the exterior 
boundary value problems. 

3. DERIVATIVES OF THE SOLUTION AND CAUCHY DATA ON F 

Our purpose is the evaluation of the representation formula (2.25) and its deriva- 
tives on and near to the boundary surface F by means of the Taylor formula (1.7). 
This will be done by utilizing the homogeneous differential equation LU = 0, valid 
up to the analytic boundary part F as in the introduction. The strong ellipticity 
(2.11) allows us to express the higher order normal derivatives of U at xo C F in 
terms of tangential and subordinate lower normal derivatives, thereby establishing 
a recursive algorithm which is Cauchy's method for solving the analytic Cauchy 
problem. However, the tangential derivatives of the Cauchy data at x0 are required 
here. 
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Once more, boundary integral equations for these tangential derivatives are ob- 
tained by differentiating the boundary integral equations (2.36), (2.37) or (2.38), 
(2.39). Finally, we obtain a general result on the calculation of the commutators 
arising in this context. 

3.1. Conversion of normal into tangential derivatives. In order to convert 
normal into tangential derivatives of the Cauchy data we observe that from (2.4) 
we have 

(3.1) -yiU = P1O9U + QljyoU, 

where 
d d d-I 0Xe 09 U 

'P S nj~ajent and QlnyoU = >3 >3 nj~ajte09 09 
j,t=1 j,e=1 V,c=l 

Here, Po is a matrix function which is C? or even analytic on F and invertible 
in the tubular neighborhood U(Fj), due to the strong ellipticity condition (2.11); 
and Q, is there a tangential operator of order 1 with smooth, respectively analytic 
coefficients. 

Theorem 3.1. Let k > 0 be an integer, and let U satisfy LU 0 in Q U F with 
Cauchy data -yoU, -y,U analytic or sufficiently differentiable on F. Then any tan- 
gential derivative O of arbitrary order lal of OnU at xo c F can be expressed 
exclusively by tangential derivatives of the Cauchy data -yoU and -y1U in xo. 

Proof. The proof is by induction and corresponds to Cauchy's algorithm for solving 
the Cauchy problem. 

For k = 0, the assertion is obvious. 
For k = 1, we differentiate 

O7nU =P6 (yU - QIo OU) 

tangentially. Then the Leibniz formula and smoothness of 'p-1 yield the assertion. 
For k = 2 we use the differential equation in the tubular neighbourhood of U(Fj) 

introduced in Proposition 1.1; i.e., 

d 

(3.2) 0 = LU =- 3 Djajk(x)DkU + cU =-p0U -laU -P2U. 
j,k=l 

Here, 'Pi are tangential differential operators of order i with coefficients which are 
analytic in U(Fj) given by L and the geometry of Fj. (The explicit formulae are 
presented in the Appendix.) From (3.1) and (3.2) we find on F 

(3.3) anU = -P&{1{Pio (-yI U - Q1 YO' U) + P2 yo U} 

Differentiating (3.3) tangentially and using the Leibniz rule proves the assertion. 
For the induction step, fix K > 2 and assume that the theorem holds for 0 < 

k < K - 1. Apply O>K-2 to (3.2), i.e., 
0K 

U = ?-2p?1lanU + 'p2U} 

(3.4) K-2 
- >3 (K-2) (OenlpI)OK-2-e{,plOU?+p2U} 
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Since 
K-2-e 

K-2-t = S 

t=O 

where 'Pi,t are tangential differential operators of orders < i = 1, 2, we obtain 
K-2 K-2-e 

OKU E (K-2)(p-1) 
I 

e=o t=O 
where the highest order of normal derivatives on the right-hand side is K - 1. 
F'urther tangential differentiation of (3.5) and the Leibniz rule together with the 
induction assumption yield the proposed representation of OadOU by a linear com- 
bination of 03yjU and O-yoU for 101 < lol + K -1 and 1,ul < lal + K. DH 

3.2. Boundary integral equations for tangential derivatives of the Cauchy 
data. 

Lemma 3.2. Let A be a classical pseudo-differential operator of integer order a 
on F C R3. Then 

k e 

(3.6) Ok tA(p = E(k) (t)A(i3j) (ki 

i=0 j=0 

where the commutators A(i,j) are defined recursively by 

A(o,o) A, 

(3.7) A(i+,j) : lA(i,j) - A(ij), 

A(i,j+,) = 02A(i,j) - A(i,j)02. 

Every A(ij) is a classical pseudo-differential operator of order a on F. 

Clearly, for d= 2, i.e., F C R2, these formulae simplify accordingly. 

Proof. The representation (3.6) follows from the definition (3.7) of the commutators 
and the binomial formula by elementary induction. Also recursively, from (3.7) 
follows the assertion on the order a with [37, Corollary 4.2], since the differential 
operators are scalar operators. El 

This lemma will now be applied to the boundary integral equations (2.36), (2.37), 
respectively (2.38), (2.39), which we write in the generic form 

(3.8) Ap = Fb 

for the missing Cauchy datum p. We now assume that the integral operator A in 
(3.8) is injective. Generically (but not always), this is the case when the original 
boundary value problem (2.1), (2.3) is uniquely solvable. For the equations of the 
first kind (2.36) and (2.37), the Garding inequality (2.12) in the domain together 
with its variant for the exterior domain implies the Garding inequality 

(3.9) Re((p, A(p) > Al 11112 - ReC(p, so) for all p CH 

(see [6, Theorem 3.9]), where 

(3.10) t: PH- l/2+t (F) x (I - P)H1/2+ (F) 

equipped with the norm 

(3.11) II(PlIt = II(o, Q)IIt I= IIUIIH-1/2+t(r) + IQOIIHI/2+t(r) 
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. (kI, ) 

FGR. I 2 D graph 

FIGURE 2. Dependency graph 

and where C(., ): 'H x 'HI -* C is a compact sesquilinear form. For so = (v, Q) 
and ; = (v, ) C 'Ho, the pairing (, ) is defined by 

(3.12) (P, s) (, Q)r + (Q, a)r. 

For the equations of the second kind (2.38), (2.39) we consider (,.) to be the 
L2-scalar product and take Ht' := Ht(F). In this case we assume (3.9) to hold, 
which must be verified for the particular problem at hand. (For details we refer to 

[40].) 
In practice, either type of integral equations can be used for solving the boundary 

value problem and as the basic formulation for its numerical solution. 
To obtain a boundary integral equation for tangential derivatives of p, we dif- 

ferentiate both sides of (3.8) and regroup terms. The boundary integral equation 
for &o9 := & 0k&e with al = (k, ) reads 

(3.13) Ao9 = F&a + E (c) {F&(%)0`:+ -Ap)0`(pl 

where a= = (k= ), j) (i,j) (k) (() and 0 < 3< a means (1 < i + j) A (O < 
i < k) A (O < j < ?). 

Note particularly, that the integral operator A in (3.13) is the same as in (3.8). 
Therefore, any available discretization of (3.8) can readily be used to solve (3.13). 
Recursive use of (3.13) allows the computation of Oca for any al = (k,?) C N2. To 
see this, consider the dependency graph in Figure 2. 

Each derivative corresponds to a grid point in the k-f-plane. For fixed (k,?) 
corresponding to * in the figure, all derivatives in the shaded region are generally 
needed. Starting with (0, 0), i.e., equation (3.8), compute p; then a boot-strapping 
procedure with rectangles of increasing size allows us to reach any a = (k, ?). 

In the two-dimensional case d= 2, all the indices ac, in (3.13) are only scalar 
indices. 

Remark 3.3. The integral operators in (3.8) and (3.13) must, for computational 
purposes, generally be written in the local coordinates of the charts Xj which are 
assumed to form a piecewise C?-atlas or sufficiently differentiable atlas of F; see 
also Remark 3.7, below. 
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3.3. Calculation of the commutators. As mentioned in Lemma 3.2, all the 
commutators in (3.13) are classical pseudo-differential operators whose orders are 
equal to those of A and F, respectively. 

Since A and F were obtained by boundary reduction, these operators admit 
in each chart the representation with "finite part", Cauchy singular and weakly 
singular integrals in connection with non-integrable kernels in the boundary integral 
operators (see [34]). 

Definition 3.4. Let E -* A(E) denote a complex-valued function which is con- 
tinuous on (0, Eo) for some E0 > 0 and admits an asymptotic expansion of the 
form 

m 
(3.14) A(E) = Ao + A1 log E + E A3E-i+1 + o(1) 

3=2 

as E -* 0, where A, E C. Then Ao is called the finite part of A(E), and we write 
Ao = p.f. A(E). 

The finite part in (3.14) is well-defined, since 

m 
Co + C, loge + E CjE-i+1 = o(1) 

3=2 

as E -* 0 implies that Co = ... = Cm = 0. For a detailed treatment of the 
finite part concept in conjunction with two-dimensional area and surface integrals 
with non-integrable kernels, we refer to [34]. There one can also find the behaviour 
of finite part integrals under the substitution of variables. 

Since A and F are matrices of classical pseudo-differential operators, their entries 
Bn in local coordinates on 1j have the form 

(3.15) Bn,P = PngP +p.f. JKn(u)v-u)7p(v)dv for ECo (Fj), 

where 

(3.16) 0n (P = b, (u) O' ao(u). 
lal I<n 

The subscript n denotes the order of Bn, and cn _ 0 if n < 0. Our aim is a 
representation of the commutator of Bn with tangential differentiation. Since, for 
gcn, the commutators 

0 & O -gcna O for I| a 1 
can be computed in the usual fashion, we consider only the integral operator in 
(3.15). Our main result is as follows. 

Theorem 3.5. Let p E CO (Fj), and let OA be any tangential differential operator 
of order JAI = 1. Then, in the local coordinates induced by the chart X3, we have 

(3.17) [OA, Bn>P(U) [0A, Pn]P(U) + p. f. (Kn(U, t)) p(v)dv. 

V3 
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Proof. The kernel function K, (u, t) with t = v - u is C? with respect to u for all 
t 7& 0 and is pseudohomogeneous in t of order -n - 2. In particular, for any L > 0, 

(3.18) Kn(u,t) = E kn-j (Ut) + Kn-L- 1 (U,t) 
0<3<L 

with 
kn_j (uz t) = r-2-n+ fn-j (U, 6) 

and 

Kn_L 1(U,t) = O(rL-n-l) uniformly in u, 

where t = r(cos e, sin 6)T. Here, for d = 3, logarithmic terms are absent since here 
we consider only boundary integral equations for second order elliptic boundary 
value problems in R3. In what follows we choose L > n. 

Due to (3.18) we will show (3.17) separately for the remainder Kn-L-1 (U, t) and 
the homogeneous terms kn-j 

For Kn-L-1(U,t) we use that 0\KK- L-1(U,v - u) is only weakly singular and, 
hence, integrable. Therefore, 

(3.19) A 
J Kn-L-l (U,V - u>)p(v)dv J (aAkn l(U,v - ) (p(v)dv. 

V3 V3 

Now we use the elementary property 

(3.20) 

u (Kn-L-1-(U, V-U)) = (uKn-L-1(U,t)) _ - - Kn-L-1(U, V - U), 

insert it into (3.18) and integrate the last term in the resulting integral by parts. 
Since p E Co (Vj), the corresponding line integral vanishes, and (3.18) with (3.20) 
yields the assertion (3.17) for KK-L-1- 

For the remaining terms choose R > 0 such that the ball BR(U) := {V I IV-Ul < 
R} satisfies BR(U) C V; and choose an associated cut-off function x E C? (Br(u)) 
with x(v) -1 for Iv - ul < R/2. Note, however, that X does not depend on u. Set 

(3.21) w := XfO E Co'? BR(U) ; fO = W + (1-X)(R 

Now consider the term 

kn-. (U, t) = r-2-n+ fn_j (U, E)) 

where E) = , r = Iv-ul. The corresponding operator is given by 

Bn-jO = Bn-jw + Bn-j(l -X)f 

fn - (u, E 
w(v (v -U)~ N 

Bn_yw(U) = rn+2-j w(v)- E B! (&w(u)) dv 

r<R O< 1/31<nm-j 

(3.22) + c8 (u)0,W(U), 
O< 131 <n-j 

and 

(3.23) Bn- (l - x)(U) J kn3 (U, v - U) ((1-x)p(v)) dv. 

supp((1-x) O) 
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Since the integrand in (3.23) is Co, we find, analogously to (3.20), that 

(3.24) 

uA Bn-j( - x)(x() = J (un - j (U, t)) t| _ ((1 - X) p(v)) dv 
supp(('-x)wO) 

- J (avkn-j(u, v - u)) ((1 - X)(p(v)) dv. 

supp((l-X)O) 

Integrating the last term again by parts, one gets 

(3.25) [|AIBn-((1 - J (&Ukn3(U) ) (( - X)dv. 

V 

It remains to analyze (3.22). First, note that 

c3(u) p.f. rn+2-j 
BR 

27r 

(3.26) J ffnj (u; (Cos W sin O)) 7r )d x {I W e l se1 , 

'0=0 

and 

7rC(L) = (cost), sin9)): cos)31 V sin)2 9 with / E N2. 

Differentiating (3.22), we get for AI 1 

(3.27) 

ABn- jW(u) = O !\ -H(u, v)dv 
r<R 

+ E { (OACA(U))03W(U) + C8(U)OA+,W(U) 
0<1/1<n-3 

with 

H(u, v) = fn {(j (), E)) -+ w(v)- -u>'3 aw(u) 
0< 13 1?<n-j 

Since H is bounded, the integral in (3.27) is weakly singular. Using the rule of 
differentiation for weakly singular integrals (see [27, Section 8]), we find that, for 
every 0 < E < R, 

(3.28) 

03A J 1H(u, v)dv J & (-H(u,v)) dv- J H(u, v)(v )Ac2ds. 
E<r<R E<r<R Iv-ul=E 
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We calculate 

u (H(u, v)) (ufn-j (u) ) ___r-T+i2{ . . } 

+ (afn j(;, ) I s 
(u rn-j+2 )[ ' 

(3.29) + fn-3 + (U3 \A) (v -U) 
03W(U) 

1<1,/1<n-j 

fn - j(u, E)) (v -3 0/3+ W(U) 

1<1/31<n-j 

Since E) = (v - u) and r v - uI, one has 

______fn - jAfh (s,OE) f- 8 )) 
(3.30) u U rnj+2 av rn j+2 

We use (3.30) in the second term of (3.29) and integrate the corresponding integral 
by parts to obtain 

(3.31) 

J<r<R( 

f.i+2 ( ) 

__{ 

}dv 
E<r<R 

= fn-3 (8.+ 9) 0'\ -...dv + H H(u, v) (v-_u)IE-2 ds, 

E<r<R Iv-ul=E 

since suppw c BR(U). Inserting (3.29) into (3.28) and using (3.31), we get 

(3.32) 

0a 
A J 

H(u, v)dv 
J 

u ( fn-3 (U )) r- ..2{. }dv 

E<r<R E<r<R 

+ I2 &) v w(v) - E ( U)o <+ W(b) }d 

Since the integrals in (3.32) are weakly singular, they depend on E continuously and 
(3.32) holds for E = 0, too. Inserting (3.32) in (3.27), we find that 

(3.33) 

0aBn-jw(u) = (Bn-jaAW(U)) + 
O 

(Ac,8(U) 0)3w(U) 

101<n-3 

+ / (fanf- j (a 4)) r n+j-2 { (V)/3 ( ! U)o (a)1dv 
E<r<R 1(v) 1 z (v3 
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Note that from (3.27) we have 

27r 
f 0 IR ifj+1/31=n, 

C/3 (au) IKUuJfn-i(@)) | O) /3! d'd x f{ele R, 11 

0 j+3-n 

p fP. (&Aufm (, - Kj ) -n+_-2 (V U) dv 
O<r<R 

which gives in (3.29) the desired equation for the special operator in (3.22) with 
(3.26). Hence, 

(3.34) 

DABn-jw(ut) = Bn-jDAw(u) + p. f. (DAfn-j (u, )) r-n+i-2w(v)dv. 

V3 

Summing (3.34) and (3.23) over 0 < j < L, adding it to (3.20) and referring to 
(3.18) completes the proof. C: 

Corollary 3.6. Let T CC Vj be some compact, simply connected and piecewise 

smoothly bounded subregion of Vj with u E T, and let p E C' (Xj(T)). Let 0A be 
any differential operator of order JAI = 1, A (A1, A2) with Ak E {0, 1}, k = 1, 2. 
Then for the operator 

(3.35) BnThT = gcnO + p. f J Kn(u, v -u) (v)dv 
T 

we have the commutator property 

(3.36) 

[0A, BnT]p(U) [0A, gc]n(U) + p- f. J (&JuKn(a t)) I vd 

T 

- J5 Kn(U,V-U)a>(v) (i(v)A )d-y. 
vE&T 

Here -y denotes the parameter of arc-length on OT, and ni(v) the exterior two- 
dimensional normal vector of OT. 

Proof. For the proof we write 'p(u) = w(u) + 9p1(u) as in (3.21) and get (with 
-P = (1 - X)9 as in (3.24)) 

AnBnTP K t)) It 1 (v) dv 
supp(pi)OnT 

- J (av Kn(ulv-au))so(v)dv. 

supp(oi )nT 

Integration by parts of the last term yields (3.36) for p = 9i, since 9p is identically 
zero in BR/2(u). For w E CO (T) we apply Theorem 3.5, which completes the 
proof. C 
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Remark 3.7. So far we have considered only the three-dimensional case. All as- 
sertions, however, have exact analogues in two dimensions where F is a piecewise 
C??-curve. 

The details for the two-dimensional case can be found in [32]. 

Example 5: As an example for the application of the commutator formula (3.17) 
consider the single layer potential 

- 1 
flIn Ix x-yls(y)ds, inR 2, 

(.37) V(p {1 y Ix-yJ-l(p(y)ds1 in R 3 
4r 

Here we have, of course, g 0 since n =--1. 
The commutators are as follows: 
In 2-D: - l I (y - x) . (x'() - x'(x)) 

(3.38) V(l)p [+s j 2' = 1 | -x)dXY)-X 

where X' denotes the tangential vector defined by the derivative to s, the parameter 
of the arc length on F. 

In 3-D for IN = 1: 

(3.39) 
V(A9 = [a', V]( 

_1 fr{(Y-X).(X A(Y)-XIA(X)) + 1 ?) }9(Y Y 

4w 
( 

-x I3\ + xx-y\ (log 'jY) JA>~p(y) ds. 

4. NUMERICAL APPROXIMATION OF THE DERIVATIVES 

In the present section we analyze Galerkin discretizations for the system of 
boundary integral equations (3.13). The basic idea is that any stable discretization 
of the original equation (3.8) is also applicable to the system (3.13), since the latter 
is triangular. This yields numerical approximations and corresponding error esti- 
mates for the differentiated Cauchy data 0&. We consider only Galerkin schemes 
based on h-refinements on the boundary F. It should be clear, however, that all 
the arguments carry over to more general Galerkin-Petrov projection schemes (as 
e.g., least squares methods, Nystrom methods and collocation methods) as well as 
to more general approximation schemes such as p- and hp-versions of the BEM. 

The error estimates are obtained in the usual scales of Sobolev norms. To exploit 
the Taylor formula (1.7), however, pointwise approximations of 0&f are needed. To 
this end, we use an extraction formula based on the Riesz potentials and present 
corresponding pointwise error estimates. 

4.1. Galerkin schemes for tangential derivatives. As usual, a Galerkin ap- 
proximation of (3.8) reads: Find soh E 7Hh such that 

(4.1) (rh, A'Ph)r= (=h, F4)r for all soh E Hh- 

Here 'h is a family of finite-dimensional subspaces of PH-/2 (r) x (1-P)H1/2(r) 
providing the approximation property 

(4.2) inf s|-m hlt < chT1 || |l- for t < T. 
(OhE7hh 
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For example, for the integral equations of the first kind (2.36) and (2.37) we select 

d r (1p)Qd+l,r+l (4.3) 7-Hh =PSh' X PS 

where Sd,r with t < r < d denotes a family of finite elements on the boundary in 
the sence of Babuska and Aziz [1]; then r < d + 1 in (4.2). 

For the integral equations of the second kind (2.38) and (2.39) we may select 

H h:= Sd,r C 'Ho = L2(F); then T < d in (4.2). 
As is well known, the Garding inequality (3.9) and injectivity of A provide quasi- 

optimal asymptotic convergence, i.e., 

(4.4) 119 - ohllt < ch'-ttIV9II 

for -d - < t < 0 < T < d + 2 in case of equations of the first kind (2.36), (2.37) 
and for -d < t < 0 <T < d in case of equations of the second kind (2.38), (2.39) 

(see [15]). 
To approximate the derivative 0&p of the Cauchy data p for a given l = (k, ), 

we introduce the vector 6 
- {8%} of partial derivatives of orders 6 8 (i, j), 0 < 

i < k A 0 < j < ?. We order the components of 3 according to ascending orders 
i+j. This is a partial ordering, denoted by 8m with m =1,.. , M = (k+l)(f +1). 
Then (3.13) can be written as 

(4.5) Ad bo p+ E ( 
m 

A(p)a6 
M- 

o = d6 (FO) I m = 1, . .. , Ml 

or as a triangular system of equations 

(4.6) A-o= Af:- (&6mFb)R>i 

with the diagonal Amm = A. 

Lemma 4.1. There exists a positive diagonal constant matrix C) E RM X RM such 
that 

(4.7) Re((Af, ) > AO lJO() M -ReCC(',5) for all oe (HO)M, 

where A0 > 0 and C: (7O)M X (7lO)M -* C is a compact sesquilinear form. 

The duality pairing in (4.7) is the natural extension of (., ) to the vector case. 

Proof. The proof is by induction with respect to M. The case M = 1 corresponds 
to one equation and (3.9). Now assume that (4.7) holds for some Mo > 1, i.e., 

Re(8MoAMo 'O I)M ?oAMO I OAm (O)MO -Re CMo( O, O) for all E e (Ej.( )Mo 

Then, for M = Mo + 1 we write 

<HY ( EM 9 ? A )(( 

Here A ((%M)) A(M T)),...,MO are the commutators in (4.5) for m = M 

MO + 1. Hence, 

Re(OAW, ,3) > AMo kl(l.(o)MO + ,A1 H<-o 

-Re CMo(0 oo) -Re 9Ci(p,a,) -P) KII(o I(Xo)M looVHo, 
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where K depends on the norms of A but is independent of t > 0. Applying 
Cauchy's inequality yields 

-OKI 1o II(Ro)Mo 11 o>l-2 1 ) 
1 

Io 2 M0 11 P 11 

Selecting W = AlAMo/K2 > 0 completes the proof. C] 

If we apply the Galerkin method (4.1) to (4.6), i.e., we perform the boot- 
strapping algorithm for the evaluation of 0&ap in combination with the approxi- 
mation procedure, then it is equivalent to: Find soh E (7h)M such that 

(4.8) ( Ah,As'h) = (sh f) for all h E (7h)M 

Because of (4.7), this method converges asymptotically of optimal order (4.4): 

Proposition 4.2. For every M and sufficiently small h, (4.8) admits unique solu- 
tions Ph = ( ()) 1 which satisfy 

(4.9) K63) I)||t < c(j)hTrt||9|IaT+}s, for-j M. 

Here r and t are as in (4.4). 

4.2. Point value extraction for tangential derivatives. For the numerical 
evaluation of the Taylor expansion (1.7) we require normal derivatives of orders 
up to K of the Cauchy data at xo E F. They can be expressed exclusively in 
terms of the tangential derivatives 06-7Jp(xo) of orders 86jl < K by Theorem 3.1. 

The tangential derivatives are approximated by ph6.) obtained from the Galerkin 
scheme (4.8). 

Rather than evaluating h) (xo) directly from the Galerkin approximation Sh63) 
we calculate point values by averaging. We depart from the identity 

(4.10) (_Av)kGk(r) = (v - U), 

where 

(4.11) Gk (r) = ( 2 (k-) In r2 

7r4k ((k - 1)! 

is the fundamental solution of the polyharmonic operator (_/A)k, k 1, 2,.. ., in 
R 2 (see [36, p. 288]) . This yields for any f E Co(R 2) the identities 

f(U) = (-1)k J(AVkf)(v)Gk( v - uI)dv 

(4.12) R2 

(_l)k-1 
J VV(Ak1f)(V) . V Gk( v - | )dv. 
R2 

Both relations can be written as 

(4.13) f (U) J Pe() f (v) G (v - u)dv 
R2 

for any f E N, where G2k = Gk and G2k-1 = VvGk,k E N, and where Re is 
the operator in the parametric plane defined in (4.12). We observe that Ge(z) E 
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HI' 
- -J(R 2) for every E > 0. We will use formula (4.13) with f(v) = ((v-u)acO(v), 

where E Co' (R2) is a suitable cut-off function with ((0) = 1. With 

(4.14) PtQ (9) (((v - u)f (v)) = ,3 do (v-u)03 f (v) 
?<131 <l, 

the extraction formula (4.13) takes the form 

(4.15) 0a,(u) J do(v - u)(O'+3p(v))d,(v - u)dv. 
1R2 

Using here on the right-hand side the approximations (+: obtained from the 
boot-strapping procedure (4.8), we recover the pointwise approximations 

(4.16) &i(u) p(u) : Jdo(v - u)s(a+7)(v)G(v - u)dv. 
0< lol < L R2 

For the corresponding error we have 

Theorem 4.3. For the extracted derivatives (a) in (4.16) we have the error esti- 
mate 

(4.17) & p(u) - h)(U)I < ch -+ t 

where t> 2+ 1 and 

0 < t < min{d+ - t -1--e - < < - + d, 
2'1 2 - -2 

where , = 0 for equations of the second kind, s 1 for equations of the first kind, 
and c > 0 is arbitrary. 

Note that the choice t = d + 2 + i ensures the maximum rate of convergence 
for the extracted derivatives in (4.16), whereas t = d + 1 + i implies an order 
O(h2d+?-E). 

Proof of Theorem 4.3: Subtracting (4.15) from (4.16), we estimate 

10a(p(u) -f h )(U)l < E j1idoJIL 110(ao)9- ( h IIH-t(B+u) llddlHt(B) 

Since G H E HjOc1-J(R2), we must have t < t - 1-c for some c > 0 for both types 
of integral equations. We discuss the cases now separately. 

Case 1: Equation of the second kind. Here Ht = Ht in (4.9), i.e., (4.2) gives 

11 (P (' P_h IIH-t(B+u) < Chr +P ||IHTI+H-?k+1 

for O < t < d, O < r < d, i.e., O < t < min(d, l - 1-e). This is (4.17) with K = . 
Case 2: Equation of the first kind. The Galerkin solution sOh = (Uh, Ph) E Hh 

satisfies, according to (4.2), 

110(a+:)3)7- )IIH-t'(B+u) ? Ch (11C71HT+1?kII+I0 + IIPIIH'?+IcI+I?I+1), 

where < t'< d +1 -' <T'<d,and 

II (ap)P- P+h )IIH-tH"(B+u) < chr (IIPIIH/I"I+1I?I/ + IIaIIHT/+1I-I1II1-1)1 

where - < t" < d,i < T11 < d + 1. Therefore 

110(o- ah IIH_t'(B+u) < chr +t 
2 

'P 
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PPh 1H-t"(B+u) 

<Ich 

?t" 

hIET 
-I+1a1+101 

where the indices must satisfy 

< <t' <d +1, -2 r' < di t' <l- 1-e, 

-2< tll < d, 2< T11 < d + 1, t", <l-1 e. 

Selecting here T' + 2 = - 7, we find that 

2 ~ ~ <Td 2 

0< <T d - 
_ - 2 

Selecting further t'-2 t" + 2 t, we find that t must satisfy 
2 ~ O td 2 

0 < t < d?+ - 
_ - 2 

Moreover, we get from GC E H-l-E for any c > 0 the conditions 

t' = t+ - < -1 - C A t" t - - K-1 - 
22 

i.e., 

0 < t < min{d+ 2 v---3 } 
2' 2 

where E > 0 is arbitrarily small, which is the assertion (4.17) with s, 1. 

Remark 4.4 (on first kind equations). For P = 1 we have 'H- = HT- 2 (weakly 

singular equations) and 

11 3 
0 < r < d + - and 0 < t < min{d + 2 --2-}. 

2 -2 2 

For P = 0 we have 'H- = H?+ 
1 

(hypersingular equation) and 

0 <T < d + and 0 < t < min{d + lt- -c} 

We see that the choices t = d + 2 for the weakly singular and t = d + 1 for the 

hypersingular equation and r = d + 2 provides the convergence rate h2d+l-, for 

the extracted data. This is almost optimal. The c > 0 can be removed and the 

optimal rate h2d+? achieved with the choices t = d + 3 and t = d + 2, respectively. 

In practice, this difference will hardly be noticable and may not be worth the extra 

term in (4.16) corresponding to t = d + 2. 

4.3. Error Estimates near F. We use Theorem 4.3 to analyze the error in the 

truncated Taylor expansion 

M k 

U(x) = Z(1) k! (0kU)(X0) + ?(M+ ) 
k=O 

of the potential U(x) at x = xo - en(xo), when replacing (&kU)(xo) by the ap- 

proximations (&nU)k(XO) obtained with the postprocessed tangential derivatives 

-(c (xo), i.e., 
M k 

Uh(Xm E (_-1) k ! -(1 )(Xo). k! 
k=1 
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Theorem 4.5. Assume that F is smooth. For the approximate potential U,h' (x) at 
x = Xo-en(xo), we have the error estimate 

|U(X) - UO (X) ? C(h'+ +r IIptII+m(r) + eM+[ (PIIHM+2+8(r) + II'0IIHM+2+6(rF)]) 

Here 6 > 0 is arbitrary and C depends on Q, 6, M, d and 

0 <?r < d+ 2 I ? < t < min{d + 2 -1-2-6} 
2' 2 2 

with s as in Theorem 4.3. 

Proof. Inspecting the proof of Theorem 3.1, we get with (2.24) 

(4.18) 19h&U(Xo) = Pl,k () ()YO U) (Xo) + P2, k-1 (0) (Y1 U) (Xo) 

(4.19) P1,k (0) [P4O + (I - P) (] + P2,k -1[(I - P)4' + P(p] 

(4.20) = c' (0a) (xo) + E C2 (Oao) (XO) 
jatl<k oj?l<k 

Since O is given explicitly, we have with Theorem 4.3 the error estimate 

h0U(x) - (0hU)h(XO) = E ca [(0 p)(Xo) - h (XO)] 

C. E S (0w )(xo)--h (xo)I 

? cht+-r E | |TII< cht+' II|PII|+k+, 

Using the Taylor formula 

M k 
U(x) = , (-1)k (0knU)(XO) + Q(eM+1) 

k=O 

and the corresponding approximation 

M k 

UM (X) := 1) k! (ankU) (XO) 
k=O 

we find the error estimate 

M k 

|U(X)-Uj'(X)l 
k 

E k! 0U(xo) (0kU)(xo)l + (eM+1) 

M M 
K c>3 Z 

E (0 )(xo) - O) (xo) + (eM + 1) 
k=O all<k 

K cht+r 11p1-|+Mr+ + Q(6M+). 

The remainder o(cM+?) is equal to 

CM1 6M+ 1 (C+1 U) ( xo, xo fe (XO,XO - en(xo)) 
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Using the embedding theorem, we get, using 1U = 0 in Q and the smoothness 
of F, that 

(&M+1U)(() < Cb(Q) 11U HM+1+32 +6 (Q) 

< c6(Q) I ao0U HM+2+ (rF) 

< c6(Q) IIP + (I -P) fIIHM+2+6 (rF) 

< c6(Q) ( | |1|HM+2+6 (r) + 1 (P11HM+2+?6(rF)) 

which completes the proof. C 

Remark 4.6. In the previous theorem, we assumed that F is smooth. The result 
holds, however, also in the case of piecewise smooth F, if xo is sufficiently far away 
from the set S of edges and vertices. 

5. A NUMERICAL EXAMPLE 

The following two-dimensional example is due to H. Schulz and can be found in 
more detail in [32]. Consider the interior Dirichlet problem with the Laplacian, 

(5.1) 
AU=O inQ={xlx 2+4x2 <0.36}, Ul, log x-y , 

where F X(t) = (0.6 cos t, 0.3 sin t), t E [0, 2wr], and y = yo + 6n(yo), Yo = X(37r/4), 
6 = 0.4. 

The boundary integral equations of the first kind for W au and its tangential 

derivative p' := X 1-1, where d/dt=, read 

27r 

(5.2) AW In Ix J l- X(t) J(t)l I Idt 

27r~~~~~~~7 0 

- f(t): 0.3cost+ [ n(t) (X(t) - x) 0.3cost X Idt 2wr J X(t) -X12 
0 

and 
27r 

(5 3) AWP =27 
In Inx -X(t)l 'P (t)dt =f I X 1-1 -V(,)W 

0 

with V(1) given by (3.38). The system (5.2), (5.3) is numerically solved by Galerkin's 
method on the family of regular partitions and grids with h = 27r/N for N = 2e with 
f = 4,... , 8 and with piecewise constant periodic functions S"'0([O, 2wF]). Table 1 

shows the L2-error of W9h, W (1) and of the recovered soh (with t = 1) for successively 
refined uniform meshes, together with the convergence rates al. In Figure 3 we 
see the different behaviour of the pointwise errors of a): direct evaluation of the 
representation formula 

(5.4) 
27r 27r 

Uh(x) Jln x-X(t)l Wh IX |dt + j (t) . (X(t)- x) X dt 

0 0 
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(1) " 

TABLE 1. L2-errors of m,h ' Poh I,Oh 

N |P '-Ph a L2 (F) - -f ()1 a 11) - |-h I a 

8 0.724432 0.634889 0.162597 
16 0.338135 1.1 0.833876 0.5 0.032748 2.3 
32 0.167685 1.0 0.941592 0.9 0.006806 2.2 
64 0.083584 1.0 0.468299 1.0 0.001583 2.1 

128 0.041751 1.0 0.233676 1.0 0.000389 2.0 
256 0.020869 1.0 0.116770 1.0 0.000097 2.0 

.1 

0.01 - -- - 

0.001 

0.0001 

16-0 
,, - 

;;j-/..... .......... . ..- - - - 

l e-0G 

1 e-07,. . . . . . , ....... . . . . . . ,. . . . . . . 
0.1 0.01 0.001 0.0001 

FIGURE 3. Errors of Uh(x) and Uh(x) at x = (0.6 - c, 0) versus c 

with various numbers of quadrature points (broken lines) and b): of the Taylor 
approximation 

(5.5) Uh(x) = +b(xo) - 6Ph(XO) + c2(Kk(x) -+(xO)) 

for points x = (0.6 - , 0) with c E [10-8, 10-1] and xo = (0.6, 0) where N = 64. 
Here , is the curvature of F. 

The solid line in Figure 3 shows that the error IUh(xo - enr(xo)) - U(xo -en(xo)) 
exhibits two different asymptotic behaviours - namely Q(c3) first and, for small 
c, O(c). From the Taylor expansion 

U(x) = +b(xo) - co(xo) + c2 (KO- )(Xo) + 0(e3) 

we expect Q(c3) behaviour. Note, however, that the computed approximation (5.5) 
uses the extracted values kh(xo) rather than So(xo). For small c, therefore, the error 



ON THE EXTRACTION TECHNIQUE IN BOUNDARY INTEGRAL EQUATIONS 119 

So(xo) - kh(xo)I e dominates, as we see in Figure 3. The crossover point from O(c3) 
to 0(c) behaviour is determined by the accuracy of kh(XO), the superconvergent, 
extracted point value of the Cauchy datum p. We also note that the approximations 
Uh(x) obtained by quadrature evaluation of the representation formula (5.4) are 
clearly inferior at points close to F, even if many quadrature points are used. 

6. APPENDIX. THE REPRESENTATION OF SECOND ORDER ELLIPTIC SYSTEMS 

IN TUBULAR COORDINATES [17, Chapter 3] 

For the local surface representation of Fj C R3, we have in addition to (1.8) - 

(1.12) the well-known Weingarten formulae for the curvatures (see e.g., [24, Chap. 
III, 11.7]): 

2 

(6.1) LI,, X nAv n, LA L=ELy V forA, 1u= 1, 2; 
v=1 

2 2 

(6.2) n1 = - n L>x, K = det ((L>)), 2HL vL - K-y ,l = EL> K 
,u-1 A=1 

For the diffeomorphism defined in (1.13), we have the following representations of 
the Riemann fundamental tensor: 

(6.3) 9jk -= ay * y for j, k = 1, 2,3; 

(6.4) 9VA= (1 - v32 K)-y, - 2v3(1 - v3H)L,A for A, v = 1, 2; 

93, = 0 forA=1,2andg33=1. 

If 1 is differentiable, then 

(6.5) (V3 ) -O anD=Vb *n in U. 

The Christoffel symbols 

(6.6) Gk . 9& where ((ger)) = ((9jk))X1, 

satisfy in U: 

(6.7) 
= (1 - 2v3H)Lvlt + V3K-y ,/ and Gd) = = 0 for v, , A = 1,2; 

(G2 L (2 
3 

E L2L2 (L 
2 

Go (XIO - V3 E LAXI3) .XI (xv V3 S LOXIf311) 9 
Ce=1 0=1 0=1 

for A,,u,Q= 1,2; 

G"3=0 forr=1,2,3. 



120 C. SCHWAB AND W. L. WENDLAND 

The local representation of the operator IU reads 

a au __a U ajk(x)a ) + cU = 2P+ P1 +l'Ok4))U, 

where, in U, 

3 

'o= S njajaknk, 

j,k=l 

2 3 2 

'Pi =5 E ( ajkE yi lnkg9vA) &VA 
,\=1 sj,k=l V=1 

+ (2?/;(v3K-H)- G,3) E njajknk 
V/9- Kc=l j,k=l 

3 2 

- 
5 E3 aJkYjloLAXklvg 

j,k=1 e,A,v=1 

3 3 2 

kE njnk+ E E y . 
&yeyjIvnkg 

j,k=l OV3 j,k,e=1 Q,V= 
x 

1~2 2 (3 2 
P2 E1 40Vs {4 E ajkYjjvYkjI9 9} 

?S{S ajknj (? 2/P (V3K - 
H)Ykll, 

2 2\ 

21(Xkl 
- 

+ YklvGX3) 9\ 
- 

YkIv9IG/3) 
v=1 ,L,v=l 

(2jL3 aajk / 1 _a 
+ 1: 1: nj g 

1 
+ C. = j,k=l OV3 / aV\ 
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