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CONVERGENCE OF NEWTON'S METHOD 
AND INVERSE FUNCTION THEOREM 

IN BANACH SPACE 

WANG XINGHUA 

ABSTRACT. Under the hypothesis that the derivative satisfies some kind of 
weak Lipschitz condition, a proper condition which makes Newton's method 
converge, and an exact estimate for the radius of the ball of the inverse function 
theorem are given in a Banach space. Also, the relevant results on premises of 
Kantorovich and Smale types are improved in this paper. 

We continue to discuss the problem of convergence in the Newton method 

(0.1) Xn+1 = Xn -f '(xn) 1f(xn), n=0,1, .... 
to solve an operator equation f which maps from some domain D in a real or 
complex Banach space X to another Banach space Y, 

(0.2) f(x) = 0. 

Now we come back to the problem which we bypassed in [1]. 
We always assume that f'(xo)-1 exists and f'(xo)-1f' satisfies some kind of 

Lipschitz condition similar to that of [1] in some open ball B(xo, r) C D with 
center xo and radius r (or some closed ball B(xo, r) C D) in order to study the 
convergence of Newton's method and the domain of the local inverse function of f 
at x0. 

1. THE DOMAIN OF THE INVERSE FUNCTION 

The inverse function theorem asserts that there is an inverse function fx-01 defined 
on some open ball B(f(xo), 6) c Y with the property that 

fLO (f(x0)) = xo, 

f(fx (Y) ) = y, Vy E B (f (x0)v 6)v 

and fx-01 is differentiable. Now we study the exact lower bound estimate of the 
radius of this ball. 

For this reason, we assume that f has a continuous derivative in the ball B(xo, r), 
f'(xo)-1 exists and f'(xo)-1f' satisfies the center Lipschitz condition with the L 
average, 

(1.1) |lf'(x)1lf'(x) -Ill < j L(u)du, Vx E B(xo, r), 
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where p(x) = Ilx - xo II and L is a positive integrable function in the interval (0, r). 
By Banach's theorem, when rO < r, for all x E B(xo, ro), f'(x)1 exists and 

(1.2) IIJ'x)J'x0)I < 
i] / L(u)du 

where ro satisfies 
'or 

(1.3) j L(u)du 1. 

Theorem 1.1. Suppose that r > rO and b = fJo' L(u)udu. Then under the hypoth- 
esis of condition (1.1), we have 

(1.4) B(f(xo), b/l f'(xo) 1 1) C f (B(xo, ro)), 

and in the open ball on the left, fxOl exists and is differentiable. Moreover, the 
radius of the ball is the best possible. 

Lemma 1.2. Let 
rt 

(1.5) h(t) =3 - t + jL(u)(t - u)du, O < t < R, 

where R satisfies 

(1.6) 1j L(u)(R-u)du = 1. 

Then when 0 < f < b, h is decreasing monotonically in [0, ro], while it is increasing 
monotonically in [ro, R] and 

h(/) > 0, h(ro) =/ -b < 0, h(R) =/3 > 0. 

Moreover, h has a uniqbue zero in each interval, denoted by r1 and r2. They satisfy 

(1.7) < Kr1 <-b 3< rO < r2 < R. 

Proof. It is obvious by the sign of h'(t) = -1 + fo' L(u)du that h(t) is piecewise 

monotone. By the positivity of L, we see that p(t) 1 ft L(u) (t-u)du is increasing t0 
monotonically with respect to t. In fact, for 0 < t, < t2, 

p(t2) - p(tl) = 1 L(u)du - (t2 + L(u)udu 

f2 tf 7 ti 

? L(u)du-I L(u)du - ---) ]: L(u)udu 
it1 it~~1 t2 tl 

= (h1 -h1 )it' L(u)udu > O. 

Thus we have 

< Kr1 = h(ri) + ri = + o(rj)rj <3 + ?O(ro)ri 

=3? + Irj L(u)(ro-u)du ri =3? +ri--ri rl. O 
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By this lemma, Theorem 1.1 implies a more precise proposition, as follows. For 
this purpose, we assume the inequality (1.1) can be extended to the boundary, i.e. 

s p(x) _ _ _ _ 

(1.1') llf'(xo)-1f(x)- I?1 <0 L(u)du, Vx E B(xo,r). 

Proposition 1.3. Suppose that r > r1 and 0 </3 < b = fJo0 L(u)udu, where ri is 
determined by Lemma 1.2 . Then, under the hypothesis of the condition (1.1'), 

(1.8) B(f(xo), / i f'(xo)- 1 ) C f(B(xo, rl)), 

and in the closed ball on the left, fx7ol exists, is differentiable, and its derivative 

(fx01) 
/ (y) = f' (x) - 1 at y = f (x) satisfies (1.2). Moreover, as a closed ball of the 

image, the radius r1 is as small as possible. 

Proof. Arbitrarily choosing 

(1.9) y E B(f(xo), /13/lf'(xo)-l1l), 

we consider two sequences {xn} c X and {tn} c R, respectively given by 

(1.10) Xn+1 = Xn -f (xo) (f (xn) -y), n = 0,1, ... 

and 

(1.11) tn+1 = tn+h(tn), to =0, n=0,1, 1, 

First, by the fact that h(t) + t increases monotonically with respect to t and 
to = 0 < t1 = d < r1, we inductively find that {tn4 increases monotonically and is 
less than r1. Thus {tn4 converges to r1. 

Then, by induction, for all n we will prove that 

(1.12) ||Xn+l - xnl <- tn+1 - tn. 

By (1.9) and (1.7), 

lHxi - xoll < flf'(xo)->1H * Ilf(xo) - Yl < d3 = ti - to. 

This means (1.12) is true for n = 0. Suppose that (1.12) is valid until some n -1. 
For 0 < K< 1, let 

(1.13) Xn_l+-r = Xn1 + T(Xn -Xn-1) 

tn-l+p- = tn-1 + T(tn -tn-1)- 

We have 

||Xn-l+-r-XO|| < lXl -xOfl ? * ? *+ IXn-l- Xn-211 ? TflXn -Xn-111 
< (tl - to) + * * + (tn-1 - tn-2) + T(tn -tn-1) 

= tn_l+ <Krl < r 

Thus, by virtue of the equality 

Xn+1 - = -fl(xo)1(f (xn) -f (xn1) - fl(X0)(Xn -Xn-1)) 

-f 
/ O fX - I) (Xn - Xn /IdT 
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and (1.1), we obtain 
1 

flxn+l x-fnll < j -(xo)-lf'(xn_l+,) I llxn - x,fllldr 
1 P(Xn-l+T ) 

< j L(u)dullxn -Xn-1 dT 
1 /tn- 1+Tr < j L(u)du(tn - tn_)dT 

stn rtn-1 

- j L(u)(tn- u)du - L(u)(tn-l- u)du 

- tn+1 -tn- 

This indicates that (1.12) is valid for all n. 
The inequality (1.12) above shows that the sequence {xn4 is self-convergent and 

so is convergent. Taking the limit on both sides in (1.10), we see that x = limxn 
satisfies 

(1.14) f(x) = y. 

Also, since Hlxn - xOHI < ri, we have 

(1.15) x = fxO'(y) E B(xo,ri). 

For this reason we have to prove x satifying (1.14) is unique in the closed ball. 
This will be given togather with the proof of the next proposition. Finally, the 
differentiablity of the inverse function follows by (1.2). D 

Remark. Except for the differentiablity of the inverse function, the proposition is 
also true for 3 = b. 

Besides Proposition 1.3, we have the following proprosition, which is called the 
branch separation theorem 

Proposition 1.4. Suppose that ri < r < r2 and 0 < 3 < b, where rl, r2 and b are 
determined by Lemma 1.2 and Theorem 1.1. Then, under the condition (1.1'), 

(1.16) B(f(xo), o//lf(xo)-l||) n f(B(xo, r) \ B(xo, ri)) = 0. 

Proof. Arbitrarily choose 

(1.17) Y EE B(f (xo),,31 1f I(xo) 11), x/ cz B (xo,r). 

Let 

(1.18) Xn+l =x/ -f1(xo)1(f(x1) -y), n = O,1, 

(1. 19) t+l =1 tl + h(tl ), tlo = ||xX/- xoii, n = O, 1, 

Since 
(1.20) 

xn+l- 
=-j 

(fX(x)1-lf(xln + T(X - 
xn)) 

-I) (x 
-xn)dT, 

we can prove that 

(1.21) IIx/ - Xnll < tl - tni n-=O,l 1, 

Hence, {xl} is also convergent to x = lim xn. Therefore, there is only one x E 
B(xo, rl) in the open ball B(xo, r) that satisfies (1.14). D 
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Remark. The proof of Propositions 1.3 and 1.4 may be viewed as the proof of the 
existence and uniqueness theorems about the solution of the equation f (x) = y, 
and the premise (1.9) and (1.17) can be replaced by 

(1.22) flf'(xo)-1(f(xo) - y)H </3. 

Hence, setting y = 0 and 3 = Ilf'(xo) 1f(xo)l , we have 

Theorem 1.5. Let 3 = flf'(xo) f(xo)l < b. Assume that r1 < r < r2 if 3 < b, 
or r = r1 if 3 = b, where r1, r2 and b are determined by Lemma 1.2 and Theorem 
1.1. Then, under the conditions (1.1'), the equation (0.2) has a unique solution 

(1.23) x* E B(xo - f'(xo)- f(xo), r1 - 3) c B(xo, rl) 

in the closed ball B(xo, r). 

2. FURTHER DISCUSSION OF LIPSCHITZ CONDITIONS 

In the ball B(xo, r), the Lipschitz condition with the constant L is 

(2.1) flf(x) -f (x') 11 < Lflx - x'll, 

where x,x' E B(xo,r). If (2.1) is only true for all x E B(xo,r) and x' = xo, then 
it is called the center Lipschitz condition in [1]; if (2.1) is valid for all x' E B(xo, r) 
and for all x = xO + r(x' - xo) (0 < r < 1), then it is called the radius Lipschitz 
condition. Now, if (2.1) is valid for all x E B(xo, r) and for all x' E B(x, r -p(x)), 
then we call it the center Lipschitz condition in the inscribed sphere. For a constant 
or positive integrable function L, among all Lipschitz conditions with the constant 
L or the average of L, there is an implication relation >- as follows: 

Lipschitz condition in a ball 
.- the center Lipschitz condition in the inscribed sphere 

>- the radius Lipschitz condition 

>- the center Lipschitz condition. 

Custom is the only reason why we give the names of different Lipschitz conditions. 
It is not necessary in essence; see Theorems 6.3 and 6.4 in [1]. Sometimes, however, 
we have to pay attention to such accustomed thinking because it determines the 
development of the literature. 

3. CONVERGENCE OF NEWTON'S METHOD 

Suppose that f has a continuous derivative in the closed ball B(xo, r), f/(xo)1 
exists and f'(xo)-1f' satisfies the center Lipschitz condition in the inscribed sphere 
with the average of L, 

p(xx' ) 

(311f(X?)-l( -(X) -f'(x')) ? < L(u)du, 
(3.1) J (x 

Vx E B(xo, r), Vx' E pmB(x,r -p(x)) 

where p(x) = llx - xo,p(xx') = p(x) + llx' - xl K r, and L is a positive nonde- 
creasing function in [0, r]. Under this hypothesis, the conditions (1.1) and (1.1') are 
of course satisfied, and thus Theorems 1.1 and 1.5, Propositions 1.3 and 1.4 hold. 
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Theorem 3.1. Assume that 3 = If'(xo) f(xo)II < b and r > r1, where b and r1 
are determined by Theorem 1. 1 and Lemma 1.2. Then, under the condition (3.1), 
Newton's method (0.1) is defined for all n and converges to a solution x* of equation 
(0.2), 

(3.2) x* E B(xi, ri -3) c B(xo,ri). 

Moreover, for all n > nO > 0, the best possible error bounds 

(3.3) nX -xnH ?(ri-t ) (Hx*xnoH) 

and 

(3.4) 

21|Xn+l -Xnll < t)KliXno+l -Xno ||2n 
n 

2Hx~~?i - Xflfl 
?X -x XnII 

? 
(rl - tn)(x0? 

xH 

1+ /1+ 4rl tn+1 (tn+l - tn) tno+1 tnoJ 

are valid with 

(3.5) tn+1 = tn-hI((tn) to = 0, n = 0, 1, 

In order to prove Theorem 3.1, we need 

Proposition 3.2. Under the assumptions of Theorem 3.1, for any natural number 
n > 1, we have 

(3.6) ||Xn - xn-11 < tn -tn-l, 

(3 7) Ilf'(xo)_f _(Xn)_ _ < h(tn) (t - tn ) 

(3.8) I~lf'(XO)-lf (Xn)II < h(tn) llXn -Xn-1|| 

(3.8) Ilf'(xo)-lf(xnl)ll - h(tn-1) tn- tn- 
and 

(3.9) lXn+ 1- Xni I < (tn+ 1- tn)(t t ) 

Proof. By the hypotheses, (3.6) is true for n = 1. Now assume that it holds for 
some n > 1. Then 

(3.10) Xn E B(X* Itn) c B(x*, ri) 
Since 

f(Xn ) = f(xn) -f(xn-) -f'(Xn-1)(Xn -Xn-1) 
,1 

j (fI(Xn_+r) -f (xn-1))(xn -Xn-l)dr 

where 

Xn-l+r = Xn-1 + T(Xn Xn-1), 0 < T < 1, 

we obtain 
1 

lf(XO)-lf(Xn)ll < / lf1(XO)-1(f1(Xn-1+-r)- fl(Xn-1))Il II(Xn -Xn-1)||dT. 
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By the hypothesis (3.1), we have 

f1 P(XnlXn l?+-) 

f If'(xo)-lf (Xn) <101 L(u)dul lXn- Xn1I IdT 
O (xn-1 ) 

II xn xn-ill 
- j L(lin1 - xoHI + U)(||Xn - Xn 1- u)du. 

Since L is a nondecreasing function, (p(t) := f fo L( p + u) (t-u)du is nondecreasing 
with respect to t in [0, r - p]. In fact, when 0 < t1 < t2 < r - p, we have 

9(t2) -0(tl) = (t-2 L (P+ 2 +u -L (P+ 2 -u) udu 

+ (t2 tl)2 Jt (L(p + tl -L(p + u))du 

ift2 
+ ?2 1 

(L(p + u) -L(p?+ t))(t2-u)du > 0. 

Hence 

| |f'(xo) f (Xn) 11 

1 IX 1 n -xn-ill 
<- j L( Jlxn- -xoII + u)(lxn - xn-i- u)du 

Xxn -nXn-1 12 

1 rtn-tn-1 

< I2 L(tn-1 + u)(tn - tn1 - u)dullxn- n-112 

(tn - Xnn1 )2 

h(tn) tn -tn-1 ) 

where we have used the inductive hypothesis (3.6). Therefore, (3.7) holds for all n, 
which makes (3.6) hold. 

Since 

(3.11) - < |ff(xn_.) f'(xo)ll .|f1(xo) f(Xn-1)||v 

we obtain 
(3.12) 

l f1(X0) f(Xn)1)jj < h(tn) (tln -tn ) 11f1(Xn_1) )f(X0) 

By (1.2) and (1.5) we have 

(3.13) 
1 ~~~~~~1 

Jjf1(Xn-1) nf (X0)jj < 
lXzn-l-XoII < -h/(tn-1)' 

1 - L(u)du 

Combining (3.12) and (3.13) and using (3.5), we get that (3.8) is also true if (3.6) 
is true for some n. 

Increasing n to n+1 in (3.11) and (3.13) and applying (3.7) and (3.13) to (3.11), 
we get (3.9). 

So (3.6) can be continued, and (3.6)-(3.9) hold for all n > 1. D 
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Proof of Theorem 3. 1. Obviously, {tn } is convergent to r1 monotonically. There- 
fore, the sequence {xn} c B(xo,r1) converges. Also by (1.1), Ilf'(xn)ll is bounded 
uniformly. So from 

(3.14) f (xn) + f '(xn)(xn+1 - xn) = 0 

we get limxn = x*. 

Finally, by (3.1) and 

en := fI(xo) l(f (x*) -f (xn) -f (Xn)(X - Xn)) 

= J ff(XO) (f/() - f(Xn))(X -Xn)dT, 
0 

Zz := Xn + T(X -Xn) 

we obtain 

P 1 Xp(XnZ -) 

lenml < 1 Ip L(u)dullx*- xnlIdT 
II (xnI) 

= 10 L( |lXn - XOH + u)(Hlx* xnfl - u)du. 

Since t2 f L(p + u) (t - u)du is nondecreasing with respect to t, we have 

||1X*-Xn || 

lienil < x xl2 L(flxn xofl +u)(Ilx* Xnr- u)du 

I -x* xn 112 

1r rr-tn 
< ('rl tn )2 J L(tn + u)(rl -tn- u)dullx*- Xnl2 

- I L(u)(ri - u)du 
n ~ ~ ~ Kr, - t 

Therefore, 

|x| -Xn+1<l ? I f '(Xn)1f'(xo)H nlemfl 
r 1 j L(u)(ri - u)du I x Xn 2 

1 - L(u)du ( l t 
) 

By the induction method, (3.3) follows. 
By (3.9), for all i > 0 and n > no > 0, we have 

flXn+i+l - 
Xn+ill < (tn+i+l - tn+i) 

(tnoH1 - )no 

Summing for all i > 0 results in the upper bound (3.4). It follows from (3.3) that 

|lXn+1 -Xn| <_ ?|X -Xn| + ?|X - Xn+1l < ?|X* -Xn 1 + 2 Xn 
(rl - tn)t loe - (3. 

Then, using Gragg and Tapia [3], we obtain the proof of the lower bound (3.4). D 
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4. UNDER THE PREMISE OF A KANTOROVICH TYPE 

About the convergence of Newton's method, the main point of Kantorovich [2] 
type premise is to make 

12 (4.1) h(t) =d-t + -Lt, 0 < t < RI 

become a majorizing function. For this reason, as I x-xoII + ? x' - xl < r, it is 
sufficient to assume that 

(4.2) flf'(x0)-1 (f'(x) - f'(x')) | < Lflx - 11, 

for a positive constant L. As 

(4.3) A = Lo < 
-2' 

corresponding to (1.7), the zeros of h 

(4.4) r } 1 }- 2A 

satisfy 

(4.5) < ri < 20 < L < r2 < 
2 

because ro = 1/L,R = 2/L,b = 1/(2L) in this case. So Theorems 1.1 and 1.5, 
Propositions 1.3 and 1.4 all have concrete forms. The concretization of Theorem 
3.1 requires that the solution of the sequence (3.4) has a closed form 

1 q2n_1 
(4.6) tn= 1q2n r, n = O,1, 

where 

(4.7) q 1 12A 
1?+ 1~- 2A 

(4.6) is independently given by [3]-[5]. 
For instance, the concrete forms of Theorems 1.1, 1.5 and 3.1 are, respectively, 

Theorem 4.1. Let L be a positive constant. Assume that f satisfies the condition 

(4.8) IIf'(xo)-1f'(x) - I < Lllx - xoll, Vx E B(xo, 1/L). 

Then fxol exists and is differentiable in the open ball 

(4.9) B(f(xo)I 1/(2LIf'(xo)- 11)) C f(B(xoI 1/L)). 

Moreover, the radius of this ball (the left in (4.9)) is the best possible. 

Theorem 4.2. Let L be a positive constant, d = If'(xo)-1f(xo)II and A = Lo < 
1. Assume that f satisfies the condition 

(4.10) llf'(x?)-1f'(x) - I 11 < Lllx - xoH, Vx E B(xo, r), 

where r1 < r < r2 if A < -, or r = r1 if A 2, while r1 and r2 are determined 
by (4.4). Then the equation (0.2) has a unique solution x* satisfying (1.23) in the 
closed ball B (xo, r). 
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Theorem 4.3. Let L be a positive constant, j3 = I I f '(xo) f (xo) I I and A = L/3 < 
2 Assume that f satisfies the condition (4.2). Then Newton's method (0.1) is well 
defined for all n and converges to the solution x* satisfying (3.2) of the equation 
(0.2). Moreover, for all n > 0, the best possible error bounds 

(4.11) q| qxi < 
- 

| Xl 4l1 |X X1 
i=O qi=O 

and 
(4.12) 

21|Xn+l 
- 

Xn II < - 

Xn 
q E q 2ijl2X - X-1 112 

1? 1?q)/1q2) i=O 
<2n-111l 

< q I'Xn 
- 

X-1 

are valid with (4.7). 

Remark. It is a posterior estimation to use I |Xn-- Xn-1 I to estimate ||x* - XnI-1 

The posterior estimation in (4.12) can be obtained by setting nO = n- 1 in (3.4). 
In the hypothesis of Kantorovich's type, more precise posterior estimations were 
studied by Potra [6] and Potra & Ptak [7]. 

5. UNDER A PREMISE OF SMALE TYPE 

Under the hypotheses that f is analytic and satisfies 

(5.1) f'(xo) -1 f (n) (xo) < n!{n-1- n > 2, 

Smale [8] studied the convergence and error estimation of Newton's iteration. Wang 
and Han [9] (also see [10], [11]) completely improved Smale's results by introducing 
a majorizing function 

(5.2) h(t)=f3-t+ J 
t ? < t < R. 

1 - yt 

When -yflx - xofl < 1, it is easy to derive from (5.1) that 

f'(xo)-1f (x) < h"(lx - xol) = - 
(1 - -Yfx - xoH1)3 

(see Lemma 3 in [12] or Lemma 3.5 in [13]). Hence, conditions (1.1) and (3.1) are 
satisfied for the function L defined by 

(5.3) L(u) 2= 
y 

(1 -yu)3' 

Furthermore, for this L, the function h given in (1.5) coincides with the one in 
(5.2). 

As a = -y/3 < 3 - 2vX-, corresponding to (1.7), the zeros of h 

(5.4) 'r }=1 + aot ( (1 +a c) 2 - ~8c 
'r2f 4-y 

satisfy 

(5.5) 3?r< <(1+ 1)3<(1- < r21< 
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because ro = (1- 1),R = 21 ,b = (3- 2Xv')? in this case. So Theorems 1.1 
and 1.5, Propositions 1.3 and 1.4 all have concrete forms. The concretization of 
Theorem 3.1 requires that the solution of the sequence (3.4) has a closed form 

(5.6) tn 1- , n=0,1, *, 

where 

1-a- (1?)2-8a 1 - (1? +)2 - 8a 
(5.7) q= --r- = 

1-a?+ (1+a)2 -8a 1+a?+ (1a)2 -8a 

For instance, the concrete forms of Theorems 1.1, 1.5 and 3.1 are, respectively, 

Theorem 5.1. Let -y be a positive constant. Assume that f satisfies the condition 

(5.8) f~lf'(xo)1'f'(x) - 11 - 
(1 - 1l -xf) - 1, (5.8) -ltX)ltX 1<( 

-yallX 
- 

X011)2 

Vx E B(xo, (1 - 1_ ) 

Then fxoJ exists and is differentiable in the open ball 

(5.9) B(f(xo), (3 - 2V2)/(y If'(xo) l l)) C f (B(xo, (1 - /y)) 

Moreover, the radius of this ball (the left in (5.9)) is the best possible. 

Theorem 5.2. Let -y be a positive constant, 3 = IIf'(xo) 1f(xo)II and ao = /3y < 
3 - 2vX2. Assume that f satisfies the condition 

(5.10) 
1 

lIf (xo)<f (x)- <H ? (1-lx-X )2 -1, Vx E B(xo, r), 

where r1 < r < r2 if ce < 3- 2vX, or r = r1 if ce = 3- 2VX, while ri and r2 are 
determined by (5.4). Then the equation (0.2) has a unique solution x* satisfying 
(1.23) in the closed ball B(xo, r). 

Theorem 5.3. Let -y be a positive constant, 3 = I I f'(xo) f (xo) I I and a = /3-y < 
3 - 2vX2. Assume that f satisfies the condition 

(5.11) 

1(x0) (f (x) 
- 

f( ))Il <- 
(1 - -yllx - Xoll - -yllx' - xIl)2 (1 - -ylx - xofl)2' 

lix - xoll + llx' -xl < r. 

Then Newton's method (0.1) is well defined for all n and converges to the solution 
x* satisfying (3.2) of the equation (0.2). Moreover, for all n > 0, the best possible 
error bounds 

(5.12) 1 q H 2x* xo - 
< (1?+ ae)(1 -q2Thn ) - J qXofl 
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and 

(5.13) 
2 ||x,+l -I nll 

1? \/'1 ? 4q2fl 
(1 -q2 1q2-l1r7)2 

< q ( -q1 
2 

-1 ) (1 
- , 

1 < || * 1 < 
q(I q 5(11 )2|7 X17-1 2| 

< q l~1q2f I X1 q21-1 1 il 71 1 

are valid with (5.7). 

The results above can be made more general by replacing (5.3). Now we take 

(5.3') L(u) 2c-y 
(1 - -yut)3 

where c is a positive number. In this case the majorizing funiction is 

(5.2') h(t) - t + ciyt2 

and its zeros are 

(5.4/) Tl } 
I + oa::F 1+ t -( +c 

They satisfy 

(5.5)Cd(1 < ( C < r2 < 
(c +1)i 

because ro (1 - ) 14,R= (C+ ,b =(1+ 2c-2 ( L) . Hence, we have 

Theorem 5.3'. Let -y and c be positive constants, a= I If'(xo)1- f (xo) I I and a= 

03y < 1 + 2c - 2 c(c +1)/. Assume that f satisfies the condition 

(5.11') 

1f1(XO<-1(f1(x) - f/(x/))I <- CIC llf x0) f (x 0 ( ))1 - ( - yllX - Xoll - -llXl - Xtl1)2 (I - -yllX - X011)2 ' 

lix-xoll + lIx/-rxl 
< r. 

Then Newton's method (0.1) is well defined for all n and converges to the solution 
x* satisfying (3.2) of the equation (0.2). Moreover, for all n > 0, the best possible 
error bounds (5.12) and (5.13) are valid with 

(55.7') 
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6. UNDER THE PREMISE OF ANALYTICITY 

We come back to the analytic premise about f, to see what stronger conclusion 
can be obtained. When f is assumed to be analytic in the ball B(xo, r), f can be 
expanded to a convergent power series 

00 

(6.1) f(x) S E rf ()(X0)(X -X0) 

If we suppose 

(6.2) f /(xo) -f ( 12) (xo) < yn v n > 2, 

and write 

(6.3) g(t) t3 n!t 
n nl=2 

where the sequence -Yn satisfies 

(6.4) lirnsup A! -, 

then f'(xo) 1f' satisfies the Lipschitz condition about g" in B(xo, r). Thus, The- 
orem 1.1 asserts that jJ exists in B(f(xo), bl/ f(xo)>1 1) and is analytic, where 

(6.5) b J g"(u)udu = rO-g(ro), 

and ro satisfies 
rr 

(6.6) /g"(u)du = g'(ro) = 1. 

So, we have 

Theorem 6.1. Assume that f is analytic in the ball B(xo, r) and r > ro. If 

(6.7) Ily - f (xo) 11 < 
b 

then the Euler series 
00I d 

- 

(6.8) x = xo + ? 
n! (dy) f22(Y)y=f(o(Y-f(xo))T 

converges, and the constant b in the right of (6.7), which is determined by (6.5), is 
the best possible. 

When X = Y = C, we have 

Theorem 6.2. Assume that f and F are analytic in the open ball B(xo, r) C C 
and r > rO. Then the convergence radius, R(F o fo1) of the Lagrange series 

(6.9) 
F(fJ- (y)) 

F(xo) + n! (x) (- (x) K 
fx f(xn)f) ) _(X_))_ 
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has an exact lower bound 

(6.10) R(F ? fx-1) > blf' (xo) 1. 

It is a very technical thing to choose the sequence {f?n} or the function g such 
that it can give a bound of the different Taylor coefficients of f and be convenient to 
give the values of the parameters b and ro in Theorems 6.1 and 6.2. In this paper we 
propose to choose a different generating function G of the unit sequence { 1, 1,... } 
with the positive constants ay and c, and then the function g can be obtained by 

g(t) = G {G(yt) - GI(O)yt - G(0)}. 

Example 1 (Exponential type). Taking G(t) = et as the exponential generating 
function of the unit sequence, we have 

g(t) =- (et - yt-1). 

Under the condition 

jjf'(xo)-1f(n)(XO)jj < C_Yn1 n > 2, 

we obtain that 
c?1 

yro = ln n 

c? 

Especially, as c= 1, we have 

yro= ln 2 = 0.69314 
-yb=ln4-I = 0.38629 

Theorem 6.1 with the values above has been obtained in [14] by the method of 
taking the exponential generating function of the number of Schroder system as 
the majorizing sequence. 

Example 2 (Binomial type). Taking G(t) =1 + sign(m){(1 -t)-m - 1} as the 
binomial generating function of the unit sequence, where m > -1 and m :A 0 is a 
real number, we have 

g(t) =-{ f(1- -Yt)-M -mAt - 1 
m-y 

Under the condition 

lf' (Xo)-f lJ(n)(Xo) < c(m + 1)(m + 2) ... (m + n- - 1 l_,nv n > 2, 

we obtain that 
c m+1 

-yb= 1+c (1 (c+) 
m \~c, 

Especially, as m= 1 and c = 1, we have 

aYrO =0 - X = 0.29289 

-yb = 3 - 2v = 0.17157. 
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Theorem 6.1 with the values above has been obtained in [13] by the method of 
taking the normal generating function of the number of blankets added to n letters 
as the majorizing sequence. 

Also, as m I,c =1, we have 
2~~~~~~~ 

'Yro = 1- = 0.37003 , 4 
-yb=4-3,/-=0.22023. 

As m=- , c=1, we have 
3 

"'YrO = - 
-yb' -- 

= 2 

The required condition of these simple numbers is not complicated, i.e. 

IJfXOJJ)-f(nk(XO)jj < (2n_ 3)!! n-I 

Example 3 (The first logarithmic type). Taking G(t) = 1 - ln (1 - t) as the first 
logarithmic generating function of the unit sequence, we have 

g(t) =-n 1 -ct. 

Under the condition 

jjf(xo)1f0(n)(xo) ?j < c(n - 1)!yn-1 rn > 2 

we obtain that 

yb 1-cln-. 

Especially, as c= 1, we have 

7tro 2 - 

yb = 1-ln 2 = 0.30685 

Example 4 (The second logarithmic type). Taking G(t) +1 2t?+(1-t) ln (1 - t) 
as the second logarithmic generating function of the unit sequence, we have 

g(t) = -(1 -'yt)ln(1 -'yt) +ct. 
-y 

Under the condition 

Ijf'(xo)<1f(n)(xo)Hj < c(n - 2)!-yn-1 n > 2 
we obtain that 

'yro-l-e c, 

ib= 1 -c+ce-. 

Especially, as c = 1, we have 

'yro = 1-- =0.63212 , 

'yb= - =0.36787 . 
e 
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7. APPLICATIONS TO SMALE'S ae-THEORY 

We continue the discussion of Chapter 7 in [1]. It is well known that Smale [8] 
first used the criterion 

(7.1) atf, xo) = -YI If'(Xo)-1f (Xo) II 

to judge xo is an approximate zero of Newton's iteration of f, where 

(7.2) sY = SUP 1 (X0) 1f(n)(Xo) 
n>2 n!fm)(o 

Definition 7.1. Suppose xo E D is such that Newton's iteration (0.1) is well 
defined for f: D c X -* Y and satisfies 

e(xm ) < () (Xn-1), 

for all positive integers n, where e(Xn) denotes some measurement of the approxi- 
mation degree between Xn and x*. Then xo is said to be an approximate zero of f 
in the sense of e(Xn). 

The approximate zero defined in [8] was introduced in the sense of mn I X-n 
while the second kind of approximate zero is defined in the sense of m x - Xn.1 Now 
a more reasonable definition for the second kind was introduced in [15]. We find 
that it is not necessary to introduce the definition of an approximate zero in the 
sense of f I'(Xo)-If(Xn) I 

In fact, similarly to Theorem 7.2 in [1], by Theorem 5.3' we have 

Theorem 7.2. Let y, c and q be positive numbers, 0 < q < 1. Assume that f 
satisfies the condition 

IIf'(xo)-l(f'(x) - f'(x')) 
c c 

(7.3) - (1 -llX r- Xoll - yllX - XII)2 (1 - ainX- XOIn)2' 

-YllIx 
- xoIl I+rl' -Y Ix 

ll < I ! 
c +1 

Then, as 

< 2q+c(1 +q)2 - (1 +q)c2(1+q)24cq 
(7.4) 2q 

for all natural numbers n > 1, it follows that 

(7.5) x -` m < q 1Xn- - m1, 

(7.6) 2+`1-x < q mlXn -Xn-1 

and 

(7-7) ~~~~~IIfJ (X )-1fJ (Xn)II < q 2`II |f /(XO) If (Xn- 1)I 

where x* satisfies f (x*) = 0. 
Especially, as 

(7.4a) o(f, o) < 4+9c-3Vc/(9c+8) 
4 
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xO is an approximate zero of f in any sense of m|X -Xnl, mIXn+l - Xnll or 
||f'(xo)>if(Xn)l|. 

Proof. The representation in the inequality (7.4) at the right side can be obtained 
from (5.7') by representing q by ae. Hence, under the hyposethis of (7.4), by Theo- 
rem 5.3' and Proposition 3.2, we have 

IXn-X*i ri -t IXn-I -X*11 
ril - tm-I 

m?Xn+I -Xnm| < t+m n -tXn -mXn 
tn - tn-I 

and 

Ilf'(X )-If(Xn)11 
< h(tn) 

Ilf'(XO)-If(Xn_1)11. f/(mo>f(mm) 
h(tn-1) 

Thus, Theorem 7.2 follows from the following lemma. D 

Lemma 7.3. For (5.2'), (5.4') and (5.7'), if ae = pa7 < 1 = 2c - 2/c(c + 1), then 

ri- tm I 1q ?-1j 7 2n-1 2n-1 
(7.8) ri- tm-I 

- - q2nir q < q, 

tn t,, l 
- 

tn 77 *q2 2n 

and 

(7.10) h(tn) 1-c((1iYtn)2 -1) tn+ - tn <q2n- 

h(tn-i) 1-c ((Ijth1)2 -) tn - t-I 

Proof. As (5.2) becomes (5.2'), the representation (5.6) about ri - tn remains true 
provided that ri and r2, q and rR are determined by (5.4') and (5.7'). Hence, (7.8)- 
(7.10) follow immediately. D 

Finally, similarly to Colloray 7.3 in [1], we have 

Corollary 7.4. Let y be a posiitve number. Assume that f/(xo)-l exists, f is 
analytic in B(mo, 1/ay), and for some q E (0, 1) 

(7.11)~ ~n !f (X0) - If(n) (X0) < (-q) ,>yn-I > 2. 

Then, as 

(7.12) ce(f ,xo) <q, 

(7.5) holds. 
Especially, as 

(7.11a) 1! 9 n > 21 

and 

(7.12a) a(f, xo) < 2 
2 2 

mo is an approximate zero of Newton's iteration of f. 
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