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A FAST ALGORITHM FOR GAUSSIAN TYPE QUADRATURE 
FORMULAE WITH MIXED BOUNDARY CONDITIONS AND 

SOME LUMPED MASS SPECTRAL APPROXIMATIONS 

ABDELKRIM EZZIRANI AND ALLAL GUESSAB 

ABSTRACT. After studying Gaussian type quadrature formulae with mixed 
boundary conditions, we suggest a fast algorithm for computing their nodes 
and weights. It is shown that the latter are computed in the same manner as 
in the theory of the classical Gauss quadrature formulae. In fact, all nodes and 
weights are again computed as eigenvalues and eigenvectors of a real symmetric 
tridiagonal matrix. Hence, we can adapt existing procedures for generating 
such quadrature formulae. Comparative results with various methods now in 
use are given. 

In the second part of this paper, new algorithms for spectral approximations 
for second-order elliptic problems are derived. The key to the efficiency of 
our algorithms is to find an appropriate spectral approximation by using the 
most accurate quadrature formula, which takes the boundary conditions into 
account in such a way that the resulting discrete system has a diagonal mass 
matrix. Hence, our algorithms can be used to introduce explicit resolutions for 
the time-dependent problems. This is the so-called lumped mass method. The 
performance of the approach is illustrated with several numerical examples in 
one and two space dimensions. 

1. INTRODUCTION AND MOTIVATIONS 

Consider a fixed nonnegative measure da with support in the interval [-1, 1]. 
The standard approach to estimating integrals of the form 

-1 010(f) j f (x)dou 

is to seek quadrature formulae 

n m 2k3?1 

Gn,m(f )=E ai,nf(Xi,n) + z z O3,i,Xnf(')(aj), 
i=1 j=1 1=0 

where a1 < a2 < ... < am are given real numbers. The free nodes {Xi,n} and the 
weights {ai,n} and {1j,1,n} are commonly chosen such that Gn,m has maximum 
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degree of exactness (MDE); that is, 

Gn,m (f) = j f (x)d, Vf P 
-1 

where s =sup {k: Rn,m(Pk) = O}, with Rn,m(f) f 1f(x)do--Gn,m(f) and Pk 

denotes the linear space of polynomials on [-1, 1] of total degree at most k. 
In a recent paper, Guessab and Milovanovic [23] have presented a new method 

for numerical construction of the generalized Gaussian type quadrature formula 
1 ~~~~~~~~n 

(1) ] f(t) dou = Anf'(-1) + Bnfl(1) + ? Ainf(Xi,n) + Rn(f), 

which has MDE = 2n + 1. The key to this algorithm is to determine numerically 
the coefficients that appear in the three-term recurrence relation, satisfied by cer- 
tain quasi-orthogonal polynomials {1wn(., do(.; irn))}n=0,1,2.... implicitly defined. A 
notable disadvantage of this construction is that the method requires the solution 
of a nonlinear system which is, unfortunately, very ill-conditioned if n is moderately 
large. 

In this paper, we propose to compute the nodes xi,n and the weights Ai,n and 
Wj,n (provided they exist) of the more general quadrature formulae 

(2) fLI f(t) do = Qn,k(f) + Rn,k(f) 

- Z=1 nf (Xi?n) + 1Wj,nCj(f) + Rn,k(f)v 

where C3, j = 1, ..., k, are given linear functionals of the form 

ql-1 ql-1 

(3) Ci(f) S aimf(m)(-1) + E bipf(P)(1), I = 1,...,k, 
m=O p=O 

that has MDE = 2n + k - 1. We call these quadrature formulae generalized Gauss- 
Lobatto-Birkhoff quadrature formulae. This definition is justified by the analogy be- 
tween some well-known quadrature formulae and (2). Indeed, note that MDE(Qn,k) 
is equal to the number of "free" parameters appearing on Qn,k, and that, as special 
cases, we obtain the well-known Gauss quadrature formula, as well as the quad- 
rature formulae usually associated with the names of Radau, Lobatto, Birkhoff 
and the quadrature formula (1). Here, we propose a numerical scheme for the 
construction of such Gaussian quadrature formulae. The main advantage of the 
new algorithm is to extend the well-known method of Golub and Welsch [19] for 
ordinary Gaussian quadrature formulae to (2). We shall in fact show, under addi- 
tional assumptions on the functionals Cl which guarantee existence of Qn,k, that 
all nodes and weights can again be (and have been) computed as eigenvalues and 
eigenvectors of a specific real symmetric tridiagonal matrix. Hence, an efficient and 
stable numerical method for the construction of a new class of quadrature formulae 
is almost immediate. Also, our approach is conceptually simpler than the method 
given in [23] and leads to considerable savings in computational time. Moreover, it 
will be shown that (2) possesses most of the desirable properties of the generalized 
Gauss-Lobatto quadrature formulae, and we obtain, for some boundary functionals 
Cl, an explicit expression for the "boundary" weights Wj,n Comparative numer- 
ical results with various existing quadrature formulae are given. Judging by our 
numerical examples, the new quadrature formulae appear to be very effective. 
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One of the main contributions of this work is to derive, in particular, a new 
approach for developing efficient algorithms for spectral approximations well suited 
for second-order elliptic problems. The advantages of this approach are that the 
discretization schemes are constructed with a judicious choice of an appropriate 
quadrature formula of a suitable MDE, which takes the boundary conditions into 
account in such a way that the resulting discrete systems have automatically diag- 
onal mass matrices. This property is important in the sense of required computing 
time, because this method can be used to introduce explicit schemes for the time- 
dependent problems. This is the so-called lumped mass method. Of course mass 
lumping is not a new concept (cf. for example [24], [37], among others) but our 
paper marks the first use of the method to obtain spectral approximations for ap- 
proximating the second-order elliptic problems with various boundary conditions 
common in applications. The mass lumping has only been obtained for Helmholtz 
equation with Dirichlet boundary conditions; this case is particularly easy, since we 
can use as collocation points the nodes of the classical Gauss-Lobatto quadrature 
formula (cf. [37]). The approach can be applied to more general problems. We 
explain briefly how to efficiently solve the biharmonic equation with mass lumping. 
It provides an initial motivation for this investigation. Some numerical experi- 
ments are presented: the result shows that the new set of nodes gives better results 
compared to the standard Gauss-Lobatto nodes commonly used. 

The remainder of this paper is organized as follows. In the next section, we 
state and prove, under certain assumptions about boundary conditions, existence 
and uniqueness of (2). We also develop some of their properties. The main results 
given in ? 3 show how such quadrature formulae can be constructed, and in ? 4, 
examples of such quadrature formnulae are given. We also compare (2) and the 
generalized Gauss-Lobatto quadrature formulae. Section 5 presents a number of 
applications to lumped mass spectral approximations for second-order elliptic prob- 
lems with various boundary conditions. Illustrative examples, in one and two space 
dimensions, are included to show the accuracy of the proposed methods compared 
with existing methods, when they are applied on a standard set of test problems. 
Some concluding remarks are given in the final section. We end this paper with an 
appendix containing several tables of nodes and weights of (2). 

2. EXISTENCE OF THE QUADRATURES AND SOME OF THEIR PROPERTIES 

In this section, under additional assumptions on the functionals CZ, we show 
that there exists one and only one quadrature formula of type (2). The existence 
results, that are valid for a more general class of quadrature formulae, have been 
obtained by Micchelli and Pinkus [30, Theorem 3.1]. The main difference between 
our proof and that in [30] (cf., in particular ? 3 of [30]) is that our method uses 
the classical Krein's theorem [27]. We also show that (2) possesses most of the 
desirable properties of the classical Gaussian quadrature formulae; for example the 
free nodes are all in the support of the measure, the weights A, are all positive, and 
the interior nodes have the interlacing property and are a solution of an extremal 
problem. 

We first introduce some basis notations that will be used in the subsequent 
sections. Let the function f in (2) be differentiable on [-1, 1] as many times as 
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needed. For given linear functionals 

ql-1 ql-1 

Cl (f) = aimf (m) (-1) + E b,f (P) (1) 1 = 1, ..., k, 
m=0 p=O 

we shall denote by SN-l,k the space defined by 

SN-l,k = {P E PN+k-1, Cl(P) = O, I = 1,..., k}. 
Throughout this paper, we assume that for every integer N the set of the linear 
functionals {C }ik= is independent over PN+k-1, that is, 

(4) rank iiC2(xj)ik, 
N?k-1 

= k i=1, j=O 

and 
SN-1,k has a basis of N functions, 

(5) that form a Chebyshev system on [-1, 1]. 

These standing hypotheses will not be mentioned explicitly in the results of this 
paper. 

Recall that a linear subspace Mm of C [-1, 1] of dimension m + 1 spanned by 
the functions uo(t), ..., um(t) is called a Chebyshev system on [-1, 1] if and only if 
for any points -1 < xo < ... < xm < 1 and any data yO9yl...Ym, there exists a 
unique u E Mm satisfying 

U(Xi) = yi, i = 0,1, ..., m. 

In particular, it follows that any nontrivial u E Mm has at most m distinct zeros. 
In order to illustrate assumptions (4) and (5), we list below a few known func- 

tionals that are independent and for which SN-1,k forms a Chebyshev system on 
[-1, 1] with dimension N. These functionals have been studied in detail in [30, p. 
216]. 

Example 2.1. Functionals with Hermite boundary conditions 

(6 CiMi = f M (-1)1 i=1, ...,1p, 
(6) C (f) = f(i)(i), j= p + 1,...,k. 

F;unctionals with anti-symmetric boundary conditions 

C2(f) = f(i)(-l)-+f(i)(1), i=0,1,...,k-1. 

F;unctionals with Birkhoff boundary conditions 

(7) C, (f) - f (i) (1), ,u = 1 ..., p, 
C/t(f) = f(iQl(i), = p + 1, ..., k, 

where 0 < i < ... < ip < N + k-1, 0 < i < ... < jp < N + k-1, and 
MV-1 + N > v, v = N + 1, ..., N + k, where M' counts the number of integers in 
fill ..., ip, ill ., jq} less than or equal to v. 

Another important class of functionals, which satisfy certain determinantal con- 
ditions (see [30, p. 216, Example 3.5]), is the set of functionals with separate 
boundary conditions 

(8) Cl(f) = Zqll aljf(U)(-1), =1,...,p, 
Cl(f) = Ejql b1bf(i)(1)I I = p + 1, ..., k. 

Also, for the general case (3) examples are given in [30, p. 214]. 
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Note that if the functionals (3) are of the form (6), then the quadrature formu- 
lae (2) are reduced to the so-called generalized Lobatto quadrature formulae, whose 
existence and uniqueness have been proved by Stancu [40]. A numerical algorithm 
for their construction was given by Golub and Kautsky in [21]. Another algorithm 
has also been developed recently by Bernardi and Maday [3], who presented some 
useful information about the boundary weights. Also, for the functionals with 
Birkhoff type boundary conditions (7), we obtain Micchelli and Rivlin type quad- 
rature formulae [31]. Existence and uniqueness of such quadrature formulae was 
proved in [31], but the problem of their construction is still open. The most difficult 
part is investigating the zeros of the polynomials that provide the nodes. Our main 
achievement in the following theorem is in the manner of establishing the existence, 
the uniqueness, and some properties of (2). 

Theorem 2.1. There exists a unique quadrature formula of type (2), which inte- 
grates exactly all polynomials of degree at most 2nr+k[k- 1. The nodes xln, ,. ,n 

are all in the open interval (-1, 1), and their weights A1,n.... , An,n are all positive. 

Proof. The result is an immediate consequence of the Krein theorem [27], which 
states that there exists a unique quadrature formula of the form 

1 ~~~n 
(9) j f (t) da A K 

f (xK ) + Rn (f), 
-1) in inni= 1 

which integrates all polynomials of S2n_l,k Moreover, 

X Kn E (-11 l) and Ai K 
> 0, i= ,. n. 

With the help of this result, the proof becomes very easy and we prefer to present 
it here to keep the paper self-contained. We are now ready to prove the uniqueness 
of (2). 

I) Uniqueness result. Suppose that there is another quadrature formula of the 
form 

1 ~ ~~n k 

|-f (t) do Z Ai,nf (Xifn) + ? ,j,nCj (f ) + Rn,k(f), 
-1 i=l ~~~~j=l 

having the desired property, and which is exact also for all polynomials from 
1P2n+k-1. Suppose that Xi,n 7& Xi,n for some i, and define the polynomial Qi c 
1P2n+k-1 such that 

Qi (xX1n) =O, I =1 1... , n, 
Cj (Qi) =O, 1,. ,k, 
Qi(xjn) - O, j 1,... ,n, j 7&i, 

Qi (xi-n) 1. 

The existence of Qi follows from the fact that S2n-1,k is a Chebyshev system of 
dimension 2n. Then, 

j Qi(t)do-0 

by the first quadrature formula, and 



222 ABDELKRIM EZZIRANI AND ALLAL GUESSAB 

by the second. This leads to a contradiction, so that Xi,,, Xi,n i = 1, ..., n. It 

follows easily that Ai,n = Aini =1, ..., n, since S2n-1,k is a Chebyshev system of 
dimension 2n. 

The equality of quadrature weightsWj,n = WJ j 1, ..., k, is an immediate 
consequence of the rank property (4). 

II) Existence result. We require of a good quadrature formula that its nodes be 
in the support of the measure. We show that, for (2), this holds true. To this end, 
let f be a given function on [-1, 1] and let I2n+k-1(f;.) be the (2n + k - 1)-th 
degree Lagrange interpolating polynomial based on the data 

{f(XKf), ij=1,. ,n; f (Xi,n), i = n + 1,... ,2n; Cj(f), j = 11 ... ,k}, 

where X i - 1,... , n, are the nodes of the Krein quadrature formula (9), and 

Xi,n i in =+1, . ., 2n, are n distinct points on the interval (-1, 1) such that Xj,n 7 

xn forallj n+1,...,2n andi1,..., n. Then, it is well-known that 

n 2n k 

I2n+k-1(f;t) Z i,n (t) Z f(X,n)hhi,n (t) + ? Cj (f ) Ij,n (t) v 
i=l i=n+l j=l 

where hi,n and Ijn are the so-called fundamental functions (the existence and 
uniqueness of hi,n, and Ijbn follow from the fact that S2n-1,k is a Chebyshev sys- 
tem of dimension 2n and the rank property (4)). Since I2n+k-1(f; ) = f for all 
f E 'P2n+k-1, an integration of '2n+k-l(f;t) leads to the following quadrature 
formula: 

I n 2n k 

(10) f (t) da = , Ai,nf(XK ) + Ai,nf(Xi,n) + wj,nCj(f) + Rn,k(f)v 
-1 i=l i=n+l j=l 

where 

Ain=] hin(t) da and Wpj ]__ l,n (t) da. 

Since hi,n E S2n-l,k, for all i n + 1, ..., 2n, and vanishes at the nodes of (9), 
we obtain Ai = 0 i = n + 1, .2n. We have also Ain = AiN i = 1 ...n, this 
fact following immediately by using the uniqueness of (9). Therefore, (10) is a 
quadrature formula of the form (2). The proof is complete. D 

The proof shows that the interior nodes of (2) are those of the Krein quadrature 
formula (9). 

The next theorem says that, as in the classical Gaussian quadrature formulae, 
the interior nodes of (2) have the interlacing property. 

Theorem 2.2. Let 

1 n k 
] (t) da = Ai,nf(Xi,n) + ZWj,nCj(f) + Rn,k(f) Rn,k(P2n+k-1) = 0 

i=1 j=1 
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and 

1 n+1 k 

Xf (t) da =E Ai,n+1f(xi,n+1) + ZWj,?n+(Cjf) + Rn+l,k(f), 
i=1 j=1 

Rn+l?,k(P2n+k+1) = 0, 

with -1 < Xln < ... < Xnn < 1 and -1 < Xl,n+l < ... < Xn+l,n+l < 1. Then the 
following interlacing property holds: 

-1 < Xl,n+l < Xln < X2,n+l < X2,n <*-< Xnn < Xn+l,n+l <1. 

Proof. Let us assume on the contrary that there exists ,t with 

XA,n V [X[t,n+1iX[t+1,n+1] 

Define the polynomial Qi, E 'P2n+k-1 by the interpolation conditions 

QA (Xi,n) = O, i =1,... ,n, 

Ci (Q A) = O, j =1 1... ,k, 

Qi, (Xj,n+l) = 0, j =1..,n + 1, j :& ,ut and j :& ,ut + 1, 
Q1, (X[t,n+1 ) = 1. 

Since S2n-1,k is a Chebyshev system of dimension 2n and the number of the zero 
evaluations of Qi, is maximal, we have Q1,(x?,+1?n+1) > 0. Then, 

1 

/Ql, (t) doa = O 
-1 

by the first quadrature formula, and 

J Q11(t) da = A,?n+1Q[t(X[t,n+1) + At,u+1n+1Q[t(X[t+1,n+1) > 0 

-1 

by the second. This leads to a contradiction, and the interlacing property is proved. 
C] 

We conclude this section with a remark about an extremal property of (2). We 
recall first of all that the ordinary Gauss quadrature formula [16] has the remarkable 
property that its nodes minimize the integral 

fl (t -Xi,n )2 do 

over the n-simplex -1 < xl,n < ... < xn,n < 1. Let Q2n+k be the unique polynomial 
belonging to 'P2n+k with the leading coefficient 1 and satisfying the interpolation 
conditions 

Q2n+k(Xi,n) = Q2?n+k(xi,n) = iO n, 
Cj (Q2n+k) = Oi j =1, k. 

The relation between the extremal problem, 

(11) J Q2n+k(t)do -> minimum 

and the interior nodes of (2) was given by Micchelli and Rivlin [31] in the case of 
boundary conditions of Birkhoff type (7). 
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Note that (11) is the major term in the estimate of the error 

Rn,k(f) J f(t)do- -Qn,k(f). 
-1 

Indeed, if f is n + 2k times continuously differentiable, then, as in the classical 
Hermitian case, we can easily show for (7) (see [28, Theorem 7.5]) that the modulus 
of the error has the representation 

1Rn,k(f) < M j Q2n+k(t)do- I 
with M = maxi,<t<l If(2n+k) (t) I/((2n + k)!). 

The extremal property (11) has been extended to Birkhoff type nodes; see, for 
example, the papers by Jetter [25], Bojanov and Nikolov [6]. We also mention that 
this property has been examined in the case of a wide class of functions including 
smooth functions (not necessarily polynomials). See Bojanov, Braess and Dyn [5], 
Bojanov, Grozev and Zhensykbaev [7]. 

3. QUASI-ORTHOGONAL POLYNOMIALS AND JACOBI MATRICES 

In this section, we show that the interior nodes of (2) are zeros of certain quasi- 
orthogonal polynomials. Then, we establish that the quasi-orthogonal polynomials 
that lead to (2) can be represented as characteristic polynomials of symmetric 
tridiagonal matrices. Because of such a representation, the nodes and weights of 
(2) can be computed in a stable and efficient way. 

Let do- be a nonnegative measure with support in the interval [-1, 1], and let 
{1r7n(=) =Fn(.; do-)}n==01,2 . be the unique sequence of (monic) orthogonal polyno- 
mials with respect to do-, 

Tk (t) = tk + lower-degree terms, k = 0, 1, 2, .... 

f!ln (t) Trm (t) do- = 0, if n : m. 

It is well known that every sequence of monic orthogonal polynomials satisfies a 
three-term recurrence relation 

Tk+1 (t) (t - ak)7k(t) - f3krk- (t), k = 0,1, 2, ..., 
7r_ 1 (t) = 0, 1 ro (t) = 1,1 

with coefficients 

aYk := ak(do-), f3k := fk(do-) > 0 

that are uniquely determined by the measure do-, and by convention i3o = o(do-) 

fi1, do-. These coefficients define a tridiagonal matrix called the Jacobi matrix, with 
aYk, k = 0,1, ..., on the main diagonal and /3k, k = 1, 2, ..., on the side diagonals. 
This matrix plays an important role for the computation of orthogonal polynomials. 
We can express 7r as the characteristic polynomial of the nth-order Jacobi matrix 
Jn(do-) = Jn, 7rn(t) = det(tIn - Jn), where In is the nth order identity matrix. The 
zeros of the orthogonal polynomial 7rn are the eigenvalues of Jn, which are also the 
nodes of the well-known Gauss quadrature. For a history and further extensions of 
these results, we refer to the extensive survey [16] of Gautschi (cf. also [42]). 

We shall say that a polynomial qn,r E 'Pn generates a (2n - r - 1, n, do-) positive 
quadrature formula (that is, a quadrature formula which has n nodes t1,n < ... < 
tn,n, positive weights and MDE =2n - r - 1) if all nodes tln, ,. . ., tn,n are zeros 
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of qn,r and are all located in the open interval (-1, 1). Since MDE is 2n - r- 1, 
it is easy to see that the underlying polynomial q7,,r must be orthogonal to 'Pn-r-I 
with respect to the measure da. Hence, apart from a multiplicative constant, qn2, 
must be of the form 

(12) qn,r =Tn + P7lTn-I + + PrlTn-r, 

where P1, .. ., Pr are real constants. Such a polynomial is called a quasi-orthogonal 
polynomial of degree n and order r. The quasi-orthogonal polynomials and the 
positive quadrature formulae have been studied by many authors. For the histor- 
ical development and a number of practical computations, we refer to Askey [1], 
Peherstorfer [35, 36], Guessab and Rahman [22]. For an earlier paper on the sub- 
ject, see Micchelli and Rivlin [31]. Recently, Xu [44] showed that a large class of 
quasi-orthogonal polynomials can be expressed as characteristic polynomials of a 
symmetric tridiagonal matrix. 

Our computational method is based on the important fact that the interior nodes 
of (2) are zeros of a quasi-orthogonal polynomial of the form (12), which can be 
expressed as a characteristic polynomial of a symmetric tridiagonal matrix, that is, 

qnX,r(t) = det(tIn -Jn,r(do-))v 

where JnX,(do7) is defined by 

ao, /3r 0 

Jn, (do-) =.n2. .. ,r IRflxn 

VA ? 87r t--2,,r A ,~ 

0 N/n-1,r a 

with 

/3k,r > Oi k =1, .. n -1, and k,r E IX, k = O, .. ., n -1. 

In general, such a matrix is not difficult to construct, this point being discussed 
further in Theorem 3.2 and Theorem 3.3. Thus, the nodes can be found numerically 
using one of the existing methods for computing the eigenvalues, for example, a 
standard QR-algorithm. 

We now consider a quadrature formula of the form 
n 

(13) Gn,r(f) Ak,nf(Xk,n), Ak,, E IR, Xk E (-1, 1), 
k=1 

with MDE(Gn,r) = 2n - r- 1. As we mentioned before, the polynomial qn,r(t) 
1kn= (t - Xk,n) is orthogonal to all polynomials of degree < n - r - 1 with respect 

to do-. This condition can be expressed equivalently in the form (12). 
Using the symmetric tridiagonal matrix representation of quasi-orthogonal poly- 

nomials, we begin by recalling the following characterization of positive quadrature 
formulae, which is due to Xu [44, Theorem 4.1]. 

Theorem 3.1. Let qn,, generate a (2nr-r-1, n, do-) quadrature formula Gn,, of the 
form (13). Then Gn,, is a positive quadrature formula if and only if q,2,r is a quasi- 
orthogonal polynomial of degree n and order r that has a symmetric tridiagonal 
matrix representation. 
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In order to present the next theorem, we have to introduce some more notation. 
For given linear functionals 

ql-l ql-1 
Cl(f) = aim f(m)( 1) + E bipf(P)(1), 1= 1 ... ,k, 

m.=O p=O 

let 

(14) q = maxql, q max ql, and r=q+q'-k. 
1<1<k ~ 1<1<k 

We shall always assume r < n, al, q,l - 0 and bl,q- I =& 0 for 1 1, ..., k, and we 
shall denote by Eri,-n+q+q-l the space defined by 

(15) 
Er_ l,n+q+ql-l1 = {P EE 1Pn+q+qX_ I, Cj(P) = P(Xi,n) = 0, j =1..,k, i =1..,n}, 

where Xi,n, i 1, ..., n, are the interior nodes of the quadrature formula (2). It can 
be easily seen that Eril,n+q+q/-l is a space of dimension r. Thus, there exists a 
set of polynomials { 'o, ..., Trr- l} C Er_ i,n+q+qi - I such that 

(16) 'Ti(t) = tn+k+i + Ri(t) i = 0, ..., r- 1, 

with Ri belonging to 1Pn+k-1 and 

(17) Eril,n+q+q-l = span {Po,..., *T'r-I}. 

For the rest of this paper, it is convenient to consider the measure 

(18) da = (1 - t)q'(1 + t)qdu, 

and the corresponding (monic) orthogonal polynomials 

(19) i() = i(; du) 

We will also need the following quadrature formula: 

A n A 
(20) Qn,kf Ai,nf(Xi,n) 

i=l1 

with 
A 

where Xi,n, i n 1,...,n, are the nodes of the quadrature formulae (2) and Ai,n, 
i 1, ..., rn, are the corresponding weights. It is easily seen that 

A 

(21) Qn,k(f) = Qn,k((l - t)q'(1 ? t)qf) 
A A 

Consequently, Qn k is a (2n - r -1, rn, du) positive quadrature formula. Hence, from 
Theorem 3.1, the polynomial that generates the quadrature formula (20) and (2) 
must have a symmetric tridiagonal matrix representation. 

We are now ready to formulate our main theorem of this section, one that plays 
an important role in the subsequent development 

Theorem 3.2. Suppose q, q', r and the functions {Pto,-, T, Ir-} are given respec- 
tively as in (14) and (16). Suppose further that xI,n, ..,Xn,n are n points on the 
interval (-1, 1), such that Xi,n =& Xj,n for all i =& j. Then the n nodes xI,n, ..., Xn,n 
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are the interior nodes of the quadrature formula (2) if and only if they are ze- 
ros of a quasi-orthogonal polynomial qn,, of degree n and order r with respect to 

a = (1 - t)q (1 + t)qdu, such that 

(22) f!1Ti(t)du 0, i 0, ..., r-1. 

Proof. Necessity. Assume that the nodes Xin, i= 1, ..., n, are those of the quadra- 
ture formula (2). We define 

n 

qn(t) = fJ(t -xin) 
i=1 

Now let p be an arbitrary polynomial of degree < n - r - 1; then the polynomial 

f (t) = (1 - t)q (1 + t)qqn(t)p(t) 

is a polynomial of degree < 2n + k - 1 such that Qn,k(f) = 0. Thus, since Qn,k 
integrates exactly all polynomials of degree up to 2n + k - 1, we have for all p E 

1Pn-r-I 
1 

qnM)P (t) (1 _t)q'(1 + ty du Qn,k((l _t)q'(1 + t)qqn (t)P(t)), 

0. 

This means that qn is orthogonal to all polynomials of 1Pn-r-l with respect to 

du du(1-t)' (1 ? t)qdu. Therefore, qn is a quasi-orthogonal polynomial of degree 
A 

n and order r with respect to da. 
For the second result, note that, since r < n, then for all i = 0, ..., r - 1, 'Pi is a 

polynomial of degree < 2n + k - 1. Then the exactness of Qn,k on lP2n+k-1 gives 

f 'ITi(t)du = Qn,k(Ti)i i = O, ...,I r - 1, 
= -i = 0,..., r-)1. 

Thus, the necessity of the condition is proved. 
Sufficiency. Assume that (22) holds and there exist r real constants, P1,... ,Pr, 

A A A 
such that the polynomial qn,r =Tn ? P17rn-1 ? + PrWn-r has n distinct zeros 

XIn... Xn,n on (-1,1). 

For a given function f on (-1, 1), we denote by n+k-1(f; .), {hi,n, lj,n} respec- 
tively the (n + k - 1)th degree Lagrange interpolating polynomial and the Lagrange 
basis with respect to the data 

{ f(Xi,n) i 1 =l,..n; Cj (f) I j =l,...,k}. 

Then, we have 
n k 

7:n+k_ I ( f; t) =E f (Xi,n) hi,n (t) + E Cj (f )lj,n(t) ) 

i=1 j=1 
Since n+k-I(f; t) = f(t) for all f E 1Pn+k-1, we obtain the following quadrature 
formula: 
(23) 

n k 
] f(t) du - Ai,nf(Xin) +? wj,nCj(f) + Rn,k(f)v Rn,k(Pn+k-1) = 0, 

i=l j=1 
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where 

Ai,n =X hi,n(t) du, 'Uj, n lj / 7 I,(t)du7. 

Now, let P be an arbitrary polynomial of 'P2n+k-l We define the polynomials 
4I?m(t) = (1 -t)> (1 + t)qt"qn,,rq(t), m = 0, ..., n- r - 1. It can be easily proved that 

{ti, i =O, ..., n +k-1; xFj, j-0, ... I r - 1; 4bm, m = 0, ..., n -,r- 1}, 

form a basis for 'P2n+?k-l Then P can be represented uniquely in the form 
n-r-1 r-1 

(24) P(t)= E am4In(t) + E b3Pj(t) + R(t), 
rmnO =O 

where R is a polynomial of 1Pn+k-1. From this, it follows that 

I n-r-I I r-1 I I 

P (t) d = E a,nJ / m (t) du+ Zbj '/ j (t) du+j R(t) du. 

For all m = 0, ..., n-r + 1 and j = 0, ..., r-1, we have by hypothesis 

j bm(t) du = 0 and J 'I(t) du = 0. 

Therefore, by (23) we have 

1 n k 

f P(t) du A R(t) du Ai,nR(xi,n) + Z w3,n Cj (R). 

From (24), however, we obtain for all i = 1, ..., n and j = 1, ..., k 

P(X7 ,n )= R(xi,n ) v C3 (P) = Cj (R); 
hence we have the following quadrature formula 

(25) 
1 n k 

] P(t) du = ZA?2,nP(Xi,n) + Zwj,nCj(P) + Rn,k(P), Rn,k(P2n+k-1) 0, 
i=1 j=1 

which shows that (25) is a quadrature formula of the form (2). Therefore, by the 
uniqueness of the quadrature formula (2), the nodes X,n, i = 1, ..., n, are indeed 
those of (2). This completes the proof of Theorem 3.2. D 

Remark 3.1. Theorem 3.2 characterizes all quadrature formulae (2). Moreover, it 
assures that the interior nodes of (2), which are also those of (20), are zeros of 

the unique quasi-orthogonal polynomial qn,7 Arn ? PAWn1 
A 

+ Prw___ which 
must satisfy the orthogonality relations (22) (via the formulae (22); recall that the 
polynomials Ti are of the form 'i = qn,rQi with Q, belonging to 1Pq+q'i), and 
such that qn,r has all its zeros located in the open interval (-1,1). Note also that 
the procedure described in Theorem 3.2 requires the evaluation of p1,... , p-. The 
latter coefficients are a solution of a nonlinear system of r equations in r unknowns. 
In addition, as we have previously pointed out, the underlying polynomial qn,r must 
have a symmetric tridiagonal matrix representation. Hence, we can use the existing 
routine [18] for determining the weights and nodes in (2). These observations play 
a central role in the construction of (2). 
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Now, we restrict our discussion by showing how quasi-orthogonal polynomials of 
degree n and order r = 1, 2, 3 or 4 can be expressed as characteristic polynomials 
of symmetric tridiagonal matrices. This is the content of the following theorem. 

Theorem 3.3. Let qn,4 be a quasi-orthogonal polynomial of the form 

qn,4 = 7rn + P17rn-1 + ?+ P47rn-4. 

Then q7,,4 has a symmetric tridiagonal matrix representation of the form 

(26) qn,4(t) - det(tIn - Jn) 

with 

ao V"-- 

/32 

Jn = ^\/3n - 2- b2 

n-2 b2 n-2 - a2 /3n-1 -b 

N\//3n--b Cen-I- n - b1 i i - a, 

if and only if 

(27) P4 < /3n-3/3n-2, 

(27) ~~~~~~bi < /3n-l, 

and 

bl P2 -b2 -a2(ai -Cen-I + Cn-2)) 
a, = -a2, 

fp3 - b2(Cn-3 
- 

C-1) - b2pI 
a2 = 

~~~/3n-2-b2 

b2 = P4 
/3n-3' 

Proof. Expanding the determinant det(t1]- Jn*) by its last rows, we have 

det(tn - Jn*) = (t - a1 + al)((t -an-2 + a2)7rn-2(t) 
-(/3n-2 - b2)7rn-3(t)) -(/3n-1 - bl)7rn-2(t) 

(t -an-1 + ai)((rn-1(t) + a27rn-2(t) 
+b2 7rn_3(t))- (/3n-1 - bl)7rn-2(t) 

= 7rn(t) + (a, + a2)w7n-l(t) 

+(b1 + b2 + a2(al - an-l + an-2))7rn-2(t) 

+((a, -an-I + an-3)b2 + a2,3n-2)7rn-3(t) 

+b2,3n-37rn- 4(t), 

where we have used the three-term relation. Since qn,4 det(tIn - Jn), one readily 
obtains 

a, + a2 = P1, 
bi + b2 + a2(ai- Cn-I + Cn-2) P2, 
(a1 - CenI1 + Cen-3)b2 + a2/3n-2 = P32 

b2,3n-3- P4. 

Solving these equations, the desired result follows. D 
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The main results of the previous theorem were given for the particular case 
r < 4. Of course, it could have been carried over to r > 5, but the problem is 
mainly computational. A more general form of this result has already appeared in 
[44, Theorem 4.1]. 

For the particular case r = 1 (P2 = P3 = p4 = 0), Theorem 3.3 states that every 
quasi-orthogonal polynomial qm,i = -rn + P1Wm,-1 admits a unique representation 
(26) with 

(28) a1 =p1, a2=b1 =b2 = 0 

This result appears in [41]. For r = 2, the only quasi-orthogonal polynomials 
qn,2 = 7rn + P17rn-I + P27rn-2 which have a representation (26) with 

a1 = pl, b1 = P2, a2 = b2 = ? 

are those that satisfy P2 < /3n-I This characterization was proven in [31]. For 
r = 3, the class of the quasi-orthogonal polynomials, which admits the matrix 
representation (26) under the restrictions (27) with p4 = 0, was stated in [43] in 
terms of the entries corresponding to the orthonormal polynomials. Here, using 
the monic orthogonal polynomials as the starting point, we have easily established 
an explicit representation for r < 4. 

If we apply Theorem 3.1 and Theorem 3.3, we arrive at the following theorem. 
The cases r = 1,2 and 3 were developed in [43] and [44]. For convenience, we 
restated the results in terms of the recursion coefficients for the monic orthogonal 
polynomials. 

Theorem 3.4. Let r = 1, 2,3 or 4. Assume that the quasi-orthogonal polynomial 
qn,z is given in the form 

qn,r = 7rn + P17rn-I + - + Pr7rn-r. 

Then the (2n - r - 1, n, du) quadrature formula generated by qn,, is positive if and 
only if the inequalities (27) are satisfied. 

As remarked previously for quadrature formulae, it is important to have all 
nodes in the support of the measure. In our situation, by virtue of Theorem 3.2, 
this is equivalent to asking when the zeros of the quasi-orthogonal polynomials 
are located in (-1,1) . One of the main difficulties in solving (22) is how to select 
the coefficients {Pk}k1 as a solution of (22) in such a way that the corresponding 
quasi-orthogonal polynomial has all its zeros in (-1, 1) . We refer the interested 
reader to the discussion of that point in [43] or [12]. The following theorem will be 
useful in the development of ?4. 

Theorem 3.5. Let qn,2 be a quasi-orthogonal polynomial of degree n, and order 2, 
of the form 

qn,2 = 7rn + P17rn-I + P27rn-2 

Suppose that P2 < !3n-; then qn,2 has all its zeros in (-1,1) if and only if 

(-_l)nqn,2(-1) > 0 and qn,2(1) > 0. 
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4. CONSTRUCTION OF THE QUADRATURES 

In this section, we first turn our attention to the numerical problem of com- 
puting a class of quadrature formulae of type (2). We will illustrate, by means 
of a simple example, how our characterization of (2) can be used to evaluate the 
free nodes as the eigenvalues of a symmetric tridiagonal matrix. We also establish 
that the "interior" weights are proportional to the squares of the first components 
of the orthonormal eigenvectors. In addition, we determine the boundary weights 
explicitly. Then, in the last subsection, we will compare a new class of quadrature 
formulae and the classical generalized Gauss-Lobatto formulae. 

4.1. Gauss-Lobatto-Birkhoff type quadrature formulae. Throughout this 
subsection, for the sake of simplicity, we assume that da(t) = du(-t) is an even 
measure and the support of du is symmetric with respect to the origin on the in- 
terval [-1, 1]. This restriction is only done for convenience of presentation. It will 
be apparent how the statement of theorems must be modified to encompass more 
general positive measures. 

To focus our discussion, we concentrate here only on the problem of determining 
the nodes and weights of (2), which uses pure Neumann boundary conditions, that 
is, a quadrature formula of the form 

J f(t) du = QGLB(f) + R(f), 

where 
n 

(29) QGLB(f) wO,nf (-1) + wi,nf(xi,n) + Wn+l,nf (1), 
i=l 

such that MDE(QGLB) 2nr+i1. Note that (29) has the same number of evaluations 
of integrand and has the same MDE as the classical Gauss-Lobatto quadrature 
formula [16], which uses -1, 1 and n points in (-1,1). 

In order to show how (29) can be obtained numerically, we adopt the follow- 

ing notation. Let {7rn(.) = f{n(; d n)} be the unique sequence of (monic) 

orthogonal polynomials with respect to 

d := (1 t2)2 

and let 
A A () 
ak =ak((7) < k < n -1 
A A A 
/3k =A/3 : 1 < k < nr-2, 

be the recurrence coefficients for the orthogonal polynomials {7rn( a 012 

Note that, in this particular case, we have (using the notations introduced in the 
previous section; see (14)) k = q = ql = 2, and r = 2. Then it follows from (15) 
that 

E1 ,n+3 = span{Un+3, Vn+3 }v 

where un+3 and vn+3 are two polynomials of exact degree n + 3, which satisfy the 
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interpolation conditions 

Un+3 (Xi,n) = u /+3(-1) = U/ +3(1) ?)z= O,. ,n 
Vn+3 (Xi,n) = vU+3(-1) = VU+3(1) 0 i, 

Hence, it can be easily observed that polynomials 

(30) Unt3( (1 t + / qn,2(1) )(1 + t)2 q,2(t) 
qn,2(1) ? qn, 2( 

and 

(31) Vn+3 (t) = 1+ t + qn, 2 
)+q(1 ( t)2 qn, 2(t), (31) v~?3(t)~(1?t? 

qn,2(-1) +q,(1 

where qn,2(t) H= ln=1 (t - Xi,n) form a basis for El,n+3. 
Assumptions (4) and (5) are trivially true. Consequently, Theorem 2.1 assures us 

of the existence of a unique quadrature formula of the form (29), with respect to du 
on the interval [-1, 1]. This quadrature formula integrates exactly all polynomials 
of degree at most 2n + 1 and such that all the nodes Xl,n, ..., Xn,n lie in the open 
interval (-1,1) and all the corresponding weights are positive. We also know, from 
Theorem 3.2, that the interior nodes of (29) are zeros of a certain quasi-orthogonal 
polynomial of degree n and order 2. Therefore qn,2 takes also the form 

A A A AA 

fl(t -Xi,n) 7rn + anrn- ? bnrjn-2 
i=1 

But, by virtue of symmetry, qn,2 must be even or odd for n even or odd, respectively. 
Hence 

(32) ~~~~~A A A 

(32) qhn,2 = 7rn + bnwn-2- 

Again from Theorem 3.2, the polynomials Un+3 and vn+3 defined in (30) and (31) 
must satisfy the following orthogonality relations: 

J Un+3(t)du Vn+3(t)du 0. 

Note that vn+3 has also the following representation: 

Vn 3(t) (1+ t + / 
qn,2 (1) )( - t)2 q, 2(t). 

A 

Hence, by virtue of symmetry, the coefficient bn defined in (32) must be a solution 
of 

(33) f1 (-t) (1 + t)2qn,2(t)du qn,2(1) 

(f ? + t)2qn,2(t)du qn 2(1) + qn,2(1)' 

A 

or equivalently, bn is a solution of a quadratic equation 

(34) ap2 +bp+c = O 

Then, with the help of a simple computation, we show that the solutio n of (34) 
with the smallest modulus ensures that the polynomial 

A A A 

(35) qn,2 = 
7Tn + sn7rn-2 

has n distinct real zeros all located in (-1,1). 
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Now by Theorem 3.3, the polynomial qn,2 admits the following matrix represen- 
tation: 

qn,2(x) det(xIn -Jn*(a"))v 

where 

A A 

A Ag - 

A 

(36) J (). 1n-2 EE 
A A ~A A 

n-2 Cen-2 !3n-1 - Sn 

A A A 
0 !3n-1 - n Cen-I 

Thus, the interior nodes of the quadrature formula QGLB are the eigenvalues of 

Jn* (A). 
We now consider the quadrature formula based on the zeros of qn,2 and of the 

form 
1 n 

(37) (1 - t2)2f (t)du = Z(1j-_ 2)2- 

Since (29) integrates every polynomial of degree 2n + 1 or less exactly, then (37) is 
valid for all polynomials of degree < 2n - 3. Now as a direct consequence of [43, 
Theorem 6.1], the weights (1- w are given by 

(38) (1-X2 )2W,, 
An for all i = 1, ..., n, 'n n 

Kn* (x,n i xi,n 

where 
n-I 

K$n(x, y) =An S Wrk(X)7Tk(y) + 7n(X)Kn(Y) 
k=0 

A A 
(;A withAn = 1-Sn/ ! 3 and {'k(.) = ik(.; )1 being the set of orthonormal 

A 
polynomials with respect to da. 

We now suppose that the eigenvectors of Jn*(do) are calculated so that 

Jn* (du) Vi = X i, n Vi, i = 1, . .., n, 

with VTVj = 1 and V7 = (vj,j ..., Vn,i). Then, as in the ordinary Gauss quadrature 
A 

formula, it follows from (38) that the Christoffel numbers Wi,n are expressible in 
terms of the first components vj,j of Vi by 

2 A 

Wi,n p s in t h3oe(du i theoremn. 

We summarize this construction process in the following theorem. 
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Theorem 4.1. Let Jn(&), Sn and qn,2 be defined as in (36) and (35). Then, for 
each integer n > 2 there exists a unique system of n weights wO,n ... , Wn+l,n sUch 
that for any polynomial f in 1P2n+F1 we have 

n 

f (t) du = wO,nf'(-1) + S Wi,nff(X,n) + Wn+l,nf'(1), 

-1oi=l 

where Xi,n, i n1, ..., n, are the n distinct real eigenvalues of Ja(&), 

_f1 q,t)2 d 

4qn,2 (1)q$n,2(1) 

and 
= 2 

with vl,i being the first components of the normalized eigenvectors of Jn(&) corre- 
sponding to the eigenvalues xi,n. The weights wi,n, i 1, ..., n + 1, are all positive 
and the nodes x,,n, i = 1 ,...,I n, are all in (-1, 1) . 

Proof. By virtue of the symmetry and the uniqueness of the quadrature formula 
(29) we have Wn+l,n = -WOn. It remains to prove (39), and the positivity of Wn+l,n 
Since the quadrature formula is exact for any polynomial of degree not exceeding 
2n + 1, we easily obtain (39), and the positivity of Wn+l 1n follows immediately from 
the fact that 

-1l )qn,l (-l) = -qn 1 (1)qn,1 (1), 

and 

1 
qn,l(I) > 0, q''1(1) = qnJ (1) EI > O. O- 

This quadrature formula enjoys perfect symmetry; indeed we can prove easily 
that 

Xn+l_?,,n + X?,,n = 0, wn+l--,n = W2,n, i - 1, ..., 

There are several important corollaries of Theorem 4.1, which will have applications 
in spectral approximations. The most important one relates to the Legendre weight 
function w(t) = 1 on [-1, 1]; the corresponding quadrature rule will be referred 
to as the Gauss-Lobatto-Legendre-Birkhoff type quadrature formula (GLLB). Since 
the following theorem is a direct consequence of the previous one, we restate the 
results without giving their proofs. 

Theorem 4.2. Let Jn be the nth order tridiagonal matrix defined by a0k on the 
main diagonal and /3k on the sidediagonals, where 

ak =?, k =O...,In -10 

13k ~ k(k?+4) k=1 . 
(2k + 3)(2k + 5)' 

and 

_-12n (3 + n) (-1 + 3n + n2)+(3+n) (1+2nm2) 
(1 ? 2n) (-3 + 2n r 

2n2) 
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Then, for each integer n > 2, there exists a unique system of n + 2 weights 
wo,,n . ... , wn+l,n such that for any polynomial f in 7P2n+l we have 

14n 

(40) f (t) dt = WO,nf/(-1) + E W2,nf(X7,n) + Wn+l,nf/(1), 

where xq,ln i 1, ...,n, are the n distinct real eigenvalues of Jn. Moreover the 
weights of the boundary terms are given by 

WO,n -Wn+rl,n 

24(-n (9+7rn +n2) + (2?+n) An) 

n (1 +n) (2+n)(3 (3+n) (-4+n+3n2 +n3) + n (1 +n) An) 
with 

A\n =\+/3n (3 +n) (-1 +3 n +n2), 

and 
16v12 

(41) 16v i,n (41) ~~~~,n 15(1 - X2 )2 '=1,............. ,n 

with v1,j, being the first components of the normalized eigenvectors of Jn corre- 
sponding to the eigenvalues x,,n. The weights w,7n, i 1, ..., n + 1, are all positive, 
and the nodes xi,n, i = 1, ..., n, are all in (-1,1) . 

This theorem follows from the fact that the coefficient Sn of the quasi-orthogonal 
polynomial (35) can be determined explicitly and obtained from the known relations 
of the Jacobi orthogonal polynomials and the following formula [2, Formula 4, p. 
263]. 

X ?p1 : () i ()d 2 2P?iF(p + 1)F(/3 + n + 1)F(a - p + n) 

for p < ae, where 

wao ,(t) = (1-_t) c,(1 + t),3 (a, 13 >-1), 

pn(c)13) being the Jacobi polynomial with parameters ae, 13 and F the gamma function. 
We leave the details to the reader. 

The construction of quadrature formulae of type (40), in the Legendre or Cheby- 
shev case with the Fourier-Robin boundary conditions, presents no extra difficulties; 
a detailed discussion on such quadrature formulae can be found in [14]. The latter 
are obtained by constructing analogs of Theorem 4.1 and have been implemented. 

We mention also that quadrature formulae which integrate all polynomials of 
P2n+3 and are of the form 

(42) 
rl 2n 

f(t) dt = WOn(f (-1) + f(1)) + Wi,nf(xi,n) + W?+i,n(f"(-1) + f"(1)) 
-1 ~~~~~~~~~~~i=l1 

can be obtained by the method of the present paper. Finally, the characterizations 
presented in this paper have been applied to the computation of a new family of 
quadrature formulae (2) that use end conditions common in applications. Space 
limitations prevent us from presenting more examples here. A detailed technical 
report on our numerical experiments can also be found in [14]. 
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We end this section with some applications of our previous results. 

4.2. Comparative numerical results. As expressed by Christoffel (cf. [16, p. 
86]), the use of preassigned nodes in quadrature formulae, chosen judiciously at 
locations where the integrand function is predominant, should be advantageous. In 
order to demonstrate that the use of preassigned nodes can indeed be helpful, we 
compare different quadrature formnulae developed in this section and the classical 
generalized Gauss-Lobatto formulae that use the same number of evaluations of 
the integrand and have the same MDE. For illustration, we choose some specific 
functions that peak at a point in [-1, 1] with a severity that can be controlled by 
a parameter: 

I1(&)) 1 = 
+2(wx+ t)2d 

- V(arctan(V2- (1 + w)) - arctan(V'- (-1 + w))), w > 0, 

wt 7 dt 2wcosh t w 12(w) ewtsin(1t)dt= 2 > 0? J e ~2 -4w2 ? 
7r2' 

13(w) t +t2 2 4w ewK 4w2) w0 -13 (W) = J e (-3-2t t2)dt - w + _ 
9 ) > w? 

Example 4.1. First we compare the approximations of 11 obtained by using the 
new numerical quadrature formula GRB 

r1 
n 

(43) f (t) dt = WoGRB f /(1)+ EWGRB f (XGRB ) 
-1n i=l 

and the classical Gauss-Radau GR formula 
p1 n 

] f(t) dt= wo,nf (-1) i E w i,f(xz)n 

The quadrature formula (43) is explicitly constructed in [14]. For w wm 

1+3/2M, m = 1, ..., 11, we determine the smallest value of n such that the difference 
between the numerically and analytically obtained integrals is less than 10-15. The 
results are 

m 1 2 3 4 5 6 7 8 9 10 11 
(44) GRB 19 18 23 19 19 23 19 19 22 19 19 

GR 18 22 22 22 23 22 17 23 30 23 23 

Carefully examining these results, we observe that both quadrature formulae con- 
verge rapidly, with GRB having an edge over GR. This example also demonstrates 
the superiority of the new quadrature formula over GR when w approaches 1. No- 
tice that the integrand f,,(t) =12 (w?t)2 exhibits a peak at t = -w. 

Example 4.2. In the second example, we take the function f,,(t) ew sin(Qrt), 
and we observe that if w = 0 then fo((?l) = 0. We therefore compare the results 
furnished by the quadrature formula GLLB given in Theorem 4.2, 

p1 n 
] f(t) dt WGLLBf/(_1) + E wGLLBf (XGLLB) + w LB f(1), O,n ~~i,n in1+ 

, 
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with those of the classical Gauss-Lobatto quadrature formula GL, 
1 ~~~~~~n 

] (t) dt wf(-1) wGLf (xL) + WG,Lfn 

Again, for each of these quadrature formulae, we determine the smallest value of n 
such that the difference between the numerically and analytically obtained integrals 
is less than 10-15. We tabulate the results for w = wm = m/5, m = 1, ..., 11: 

m 1 2 3 4 5 6 7 8 9 10 11 
(45) GLLB 8 8 9 9 9 9 11 18 18 18 20 

GL 9 9 9 15 15 15 19 19 19 26 18 

As we can see from the last table, the results of the proposed method are, in general, 
more accurate and stable than the results obtained by using the Gauss-Lobatto 
quadrature formula. 

Example 4.3. In the following test we compare the new quadrature formula GLB1 
1 ~~~~~~n 

(46) ] f(t) dt =wo,nf(-1) + w?,,nf(x7,7n) + wn+l,nf'(1) 

with the classical Gauss-Lobatto quadrature formula. The quadrature formula (46) 
is explicitly discussed in [14]. We take the test function f, (t) = ewt (-3 -2 t + t2), 
which satisfies f (- 1) = 0 and fJ (1) = -4w ew . In our next table we give the 
numerical results of the smallest value of n for which the error is less than 10-15 
for w = wm = 1/2m-4, m- 9: 

m 1 2 3 4 5 6 7 8 9 
(47) GLB1 5 5 10 10 18 3 6 12 24 

GL 15 26 15 26 51 3 6 11 23 

We can clearly see the superiority of the new quadrature formula. 

These examples illustrate the good convergence behavior of our approach. 
A natural question arises at this point concerning the quadrature error of (2). 

There are many quadratures that use the same number of evaluations of the inte- 
grand and have the same MDE. Then, how should one compare them? We refer to 
Bojanov and Nikolov [6] for other very interesting comparative general results. 

5. APPLICATIONS TO LUMPED MASS SPECTRAL APPROXIMATIONS 

OF SECOND-ORDER PROBLEMS 

Several different spectral approximations have been suggested for second-order 
elliptic problems, and some of them have been implemented in industrial codes. The 
underlying idea in these methods is to approximate the unknown function by an 
interpolation polynomial at some preassigned (collocation) nodes. This procedure 
yields a system of ordinary differential equations to be solved. Most papers concern- 
ing these methods are based on collocation points that are identified with the nodes 
of generalized Gauss-Lobatto quadrature formulae (see [9], [37], [15], [4], among 
others). In certain calculations it is useful to use a set of collocation points which 
includes certain boundary nodes, such as the generalized Gauss-Lobatto points. 
This is particularly true for spectral methods, where the role of boundary condi- 
tions is even more crucial owing to their global nature. The greatest difficulty lies 
in finding an appropriate set of collocation points. 
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In this last section, we present a new class of spectral approximations applied 
to second-order elliptic problems with different boundary conditions. The major 
difference between the proposed and the existing methods is the treatment of the 
boundary conditions. We will select the most accurate quadrature formula, which 
takes the boundary conditions into account and gives exactly a diagonal mass ma- 
trix. This property is important because our schemes can be used to introduce 
explicit schemes for time-dependent problems. This is the so-called lumping pro- 
cess. We refer the reader to [10], [37] and [24] for a review of these methods. The 
results reported here are only the first step in the implementation of these new 
methods. 

In order to motivate the approach of imposing boundary conditions in the 
quadratures and to explain what can be achieved by this technique, we now apply 
the results of the foregoing sections to three important problems in the field of 
spectral approximations. First, we are interested in spectral discretization of the 
Helmholtz equation. The governing equation is 

{ -Au +Tu=f on Q=Ad, 
au/an = O in aQ, 

where A = (-1,1), d= 1 or 2, r > 0, f is the given data and a/an is the normal 
derivative operator. 

5.1. One-dimensional case. The elaboration of the numerical algorithm for solv- 
ing the above problem in two dimensions starts with the use of a one-dimensional 
case. It is for this reason that we consider the following one-dimensional case first: 

(48) { u'(-1>u'( 0 = f on Q =A: 

Several techniques are available for computing a spectral approximate solution to 
(48). An excellent survey of the main classes of these methods can be found in [15]. 

Throughout this subsection, we assume that the collocation points xj, = 
1, ..., N - 1, are the interior nodes of the quadrature formula (40) (see Theorem 
4.2): 

1 N-1 

(49) g(t) dt = wog'(-1) + E Wjg(Xj) + WN+1g (1), 
j=1 

which is exact over 1P2N-1. A subspace of 1PN, important to our presentation, is 
defined by 

XlN = V E 1PN; V (- 1) = O, V'(1) = O}. 

We recall that the standard pseudo spectral Legendre-Galerkin method is: 

(50) Find UN in Xl such that VVN E XN, 

dx dVN +T'(UN,VN) = (fI VN)I 

where (UN, VN) = f11UNVNdX is the standard L2-inner product on (-1,1). In 
order to formulate our discrete problem, we first define the discrete bilinear form 
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(N, 
)?LLB: for any functions u and v with continuous derivatives on [-1,1], we set 

N-1 

(u, V)N = W X wUu(xj)V(xj) + wo(uv)'(-1) + WN+I(UV)'(1). 
j=1 

We always assume that the function f E C' (A). We now evaluate the inner product 
appearing in the Legendre-Galerkin method by the quadrature formula (40) to 
obtain the discrete problem as: 

(51) FinduN in XI such that V VN E XN, 

dUN dUN GLLB 
+T(UN,VN)G = (f,VN)N 

Kdx 'dX )N ?TU,N) L~K,N4L 

Note that if UN and VN belong to XN, then because of (49) the definition of 
)GLLB reduces to 

(UN, VN)N Z=1 WjUN(Xj)VN(Xj), 

dUN dVN)GLLB =EN1 duNTxd dVNxj). 
Kx du dx <LL -dx dx 

also note that if UN and VN belong to Xh, then we have 

dUN dVN GLLB _ (dUN dVN 
dx ' dx)N - 

dx 'dx J 

Thus, the bilinear form (.,.)GLLB is a discrete scalar product in XN. Moreover, 
the problem (51) is equivalent to the following variational problem: 

Find UN in Xl such that V VN E Xl 

(dUN dVN N-1 

dx dx) -F T ~3WjUN(Xj)VN(Xj) (dx ' dx)+ E jN(j)N( ) 
N-1 

- 
E Wjf(Xj)VN(Xj) + wof (-1)VN(-1) + WN+1f (1) VN(1). 
j=1 

The actual procedure of solving the above problem depends on the choice of 
basis functions of XN. To this end, we take as a basis for Xl the set {k}k N-1 

of nodal basis functions corresponding to the degree of freedom {Xm}jN1, that is 
given by 

Ok E X4 such that qk(Xm) { if kin, 

Therefore, by a dimension argument, we have 

Xl = spant{0k, k 1,...,N- 1}, 

and that {qk, k 1, ..., N - 1} is an orthogonal basis with respect to the discrete 
scalar product (.,.)GLLB. Let us denote 

bk = (f, Nk)NL = wof'(-1)qk(-1) + Wkf(Xk) + WN+1f ((1)k(1)i 

b = (bi, ..., bN-1)Tj 
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ak,j d A = (akj 1,...,N-1; 
j=i,...,N-1 

' dx'Id 

(52) mk, {Wk if k-=n, M = (mkTj)k=1, ,N-1; j=1,...,N-1 

Then the discrete problem is equivalent to the following matrix equation: 

(A+TM)U = b. 

Note that the mass matrix M is diagonal, and for all VN in Xl such that 

V =(VN(Xl), ***, VN(XN-l)) # 0, 

we have 
/ ~~N-1 

VT(A+TM)V (dVN dVN + E WjV2(Xj) > 0; 
dx ' dx /N= 

therefore the symmetric matrix A+TM is positive definite and the discrete problem 
has a unique solution. 

5.2. Two-dimensional case. Here (u, v) f uvdxdy is the scalar product in 
L2(Q). For i,j = 1,...,N - 1, let us now denote xij = (xi,xj), wij = wiwj, 
qij (x, y) = )i (x)q3i (y) and 

XN V E QN(), O = on 9Q} f 

where QN (Q) is the space of polynomials that are of degree less than or equal to 
N with respect to each variable. It is obvious that 

XN2 = span { ij, i,j N 1,.,-1}. 

The quadrature formula for the two-dimensional case is constructed as the tensor- 
product extension of the one-dimensional case (40). From the results for the one- 
dimensional case it is easily seen that this product quadrature formula is exact for 
polynomials of Q2N-1 (Q) . For computational reasons, it is necessary to introduce an 
additional bilinear form defined on C1(Q) xC1(Q) by (., .)GNLLB. It is constructed 
by replacing the integrals in the scalar product (.,.) with respect to each variable 
by using the quadrature formula (40). Thus, each integral over the domain Q, in 
the variational form 

{find UN in XN such that VVN E XN 
(VUN, VVN) + T (UN, VN) = (f, VN), 

is then evaluated in the following way: 

(VUN, VVN) (VUN,VVN)N,2LB = WijUN (xij)VN(Xij), 

(UN, VN) (UN, VN ) N, 2 E- = jN=i Wij UN (Xij) VN (Xij) 

(f, VN) (f, VN)IN B 

We can now pose the discrete problem as 

(53) {Find UN in XN such that VVN E XN, 

l(VUN,VVN )GLLB + T (UN, VN)GLLB ( VN)GLL 
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Let us denote 
N-1 

UNN(X y) U E kj Okj(X, Y), fkj - (fI qkj) NL2 
k,j=l 

and 

U = (Ukj)kj=1,...,N-1, b = (fkj)k,j=1,...N-1i, 

akjlm = (Vq$kj, VI3)1m)GLLB, A =(akjlm)kjIm1m.N-1 I 

Tikjm 
Wkj if (k,{j) ( lr,m), M = (mkjlm)kj,1Im=1...N-i mkjlm 0 otherwise, 

Note that the mass matrix M is diagonal. 
Taking VN(x,y) = q3lm(x,y) in (53) for l,m = 1,..,N- 1, we find that (53) is 

equivalent to the set of algebraic equations which can be expressed in a matrix form 
as 

(54) (A+TM)U = b, 

where A+TM is a symmetric positive definite matrix. 

5.3. General problems. Our approach can be applied to much more complex 
boundary conditions, to obtain the lumping of the mass matrix results from the 
appropriate quadrature formulae. For the sake of simplicity, we briefly describe 
this method to efficiently solve the following mixed problem with Dirichlet and 
Neumann boundary conditions: 

-/Au+u=f inQ=A2, 

(55)~~~~~ u-=0 on Fi,D, i = 1, 2, 
au 
=) 0 onFiN, i =1, 2, 

where 

FiD ={(x,y) eQ;y=-} 
F2,D = {(x, y) E Q; x =-1}, 
F2N {(x, y) E Q; y =1}, 
F2,N {(x, y) E Q; x1}. 

We follow the procedure described in the pure Neumann problem, but this time we 
evaluate in the variational form all the integrals with respect to each variable by 
using the quadrature formula 

1 N-1 

] g(t) dt = wog(-1) + Wig(xi) + w,+jg'(1), 
-1 ~~~~~~~i=l1 

which is exact over 'P2N-1, to obtain a set of linear algebraic equations with lumped 
mass matrix. 

Now, we turn to the specific numerical examples. In order to test our results, 
we have carried out numerical experiments, and some of these are illustrated by 
computer graphics in the following subsection. 
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/ ~~~~0.51 

-1 -0.5 0.5 1 

FIGURE 1. The computed and the exact solution of problem (56) 

5.4. Implementation and numerical results. We have written FORTRAN 
implementations of our algorithms, using double precision arithmetic, and have 
applied these programs to the numerical solution of the Helmholtz equation in 
Q = Ad, d -1,2, with various boundary conditions. 

We now give the descriptions of the experiments and the tables of numerical 
results. 

ONE-DIMENSIONAL TESTS 

Example 5.1. We begin with the simple 1-dimensional test problem 

(56) { u'(-1>)u(1) O on (-1,1), 

First we take f such that the exact solution is 1 +cos irx. Then, we compare our ap- 
proximation MI (based on GLLB quadrature formula) with the traditional method 
of approximation M2 (obtained by using the classical Gauss-Lobatto-Legendre 
quadrature formula) and the collocation M3 method (based on the interior nodes of 
(40)). For various N the table below contains the maximum errors at the interior 
nodes of the MI, M2 and M3. 

N Ml M2 M3 
4 0.917D-02 0.247D+00 0.627D+00 
5 0.196D-02 0.582D-01 0.125D+00 
6 0.250D-03 0.236D-01 0.567D-01 
7 0.322D-04 0.236D-02 0.539D-02 

(57) 8 0.540D-05 0.102D-02 0.250D-02 
9 0.432D-06 0.600D-04 0.141D-03 
10 0.887D-07 0.270D-04 0.667D-04 
11 0.409D-08 0. 104D-05 0.253D-05 
12 0.1 1OD-08 0.482D-06 0. 120D-05 
13 0.204D-10 0.132D-07 0.328D-07 
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We see that the errors worsen progressively, with the errors in MI being considerably 
better than in M2 and M3. We also see that the errors in M2 are close to those in 
M3. 

For this test problem the numerical results are very promising. Using 40 grid 
points, the numerical results are very accurate. Figure 1 shows the computed (0) 
and exact ( ) solution. The reader can easily see the good agreement between 
computed and exact solution. 

TWO-DIMENSIONAL TESTS 

Example 5.2. As our second example, we take the following problem: 

r -A\u+u=f on Q=20 

(58) a_u 0 in aQ, 
On 

This time, we choose the function f such that this PDE has an exact solution 

(1 + cos(7rx))(1 + cos(iry)). 

Next, using (54), the errors in the Loo are given in (59), and also included in Figure 
2, the numerical solution calculated with a 12 x 12 grid. 

(59) N 16 36 81 144 
Loo 0.183E-001 0.502E-003 0.864E-008 0.221E-009 

I .", 

/ 
.11, 

i 

Z, 

1. 

e Ir 
IN f 

e 

FIGURE 2. Computed solution of problem (58) 
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FIGURE 3. Computed solution of problem (60) 

Our last problem involves mixed boundary conditions. The governing equation 
is 

-Au+u=f in Q=A2, 

(60) u = 0 on 
Fi,D, 

i = 1,2, 

u0 on fi,N, i = 1, 2, 

where Q as well as the initial data are the same as (55). Here, we choose f such 
that this PDE has the globally smooth solution 

u(x, y) = (1 + x)(1 + y) exp(-(x + y)/2). 

In (61), we present the maximal error at nodal points for different values of the 
polynomial degree, N. The graph of the numerical solution can be found in Figure 
3 for the case of a 12 x 12 grid. 

(61) N| 9 36 | 81 144 
Loo 6.334E-005 7.392E-007 6.341E-008 9.880E-009 

We conclude with some comments about the quadrature formulae studied here. 
In this paper, we have shown how to modify the Jacobi matrix to obtain a new 

class of Gaussian type quadrature formulae with prescribed evaluation of bound- 
ary values or derivatives. Our algorithm may be regarded as an extension of the 
classical procedure of Golub and Welsch [19] to a class of quadrature formulae with 
more general boundary conditions. This property makes the described quadrature 
formulae attractive for applications. 
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The results of this paper can be improved upon and extended in several direc- 
tions: 

(1) The method can be extended to the construction of quadrature formulae of 
the form 

m n 
(62) f (x) dx = Za2j f(2ji)(0) + Z Wi,m,nf(Xi,m,n), 

i=O i=l 

which are exact for all polynomials in 'P2n+2jm+l. Existence and uniqueness of 
such quadrature formulae were discussed in [8]. Note that our method can also 
be adapted to obtain analytically, in closed form, the boundary weights a2ji. The 
interior nodes of (62) can be (and have been) computed as eigenvalues of a real 
symmetric tridiagonal matrix. 

(2) The analysis leading to these new quadrature formulae can be extended to 
more general domains, for example, to semi-infinite intervals with adapted bound- 
ary conditions. 

(3) The lumped mass spectral approximations have also been extended to more 
complicated situations, especially to fourth-order problems with more general 
boundary conditions. For example, if these latter are of the form u la9 = A/2U Ias 
= 0, the idea is to use an approximate inner product to compute the mass matrix, 
which is based on the quadrature formula given in (42). We propose to study the 
theoretical and practical aspects of these problems in a future publication. 

(4) In terms of a new application, we plan to extend the new algorithms to solve 
time-dependent problems. 

The technique used in this paper can certainly be exploited in many other ways 
than those described here; for example, it is also useful in lumped mass finite- 
element approximation, see, for instance, [9], [24] and [37]. Finally, we hope that 
the spectral numerical results presented here will be followed up with a theoretical 
analysis. 

All the computations described in this paper were carried out on an IBM PC in 
double precision. 

APPENDIX: NODES AND WEIGHTS OF QUADRATURE FORMULAE 

We first show the distribution of the nodes of (40) in the interval [-1, 1] for 
N = 2,...,30. The interlacing property and the clustering of the nodes toward the 
boundary are evident. 

LJJ 
7Z30 0 U 

0 

20 ____________7 

___________ 

44O 1 

0~~~~~~~ 
0 q~ a e a E- .r j 

5~~~~~~~ . . _ 

*JJ p Xr_a f a a-{ii 
H naw-" -"- - - - "-"- - S f p 
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In the tables below, for N = 4(4)16, we give numerical values of the nodes and 
weights of (40) (see Theorem 4.2). 

To simplify the notation for the fixed nodes xo = ?1, the coefficient given in the 
tables corresponding to x(1) is the coefficient of the term f'(xo) in the quadrature 
formulae (40). 

NODES WEIGHTS 

+.8072338280399708 .4180212114502938 
+.2989538511730904 .5819787885497067 
?1.0000000000000(1) ?.0044631139675894 

NODES WEIGHTS 

?9354789239302744 .1424703771338546 
?.7499239529233238 .2287501679453112 
?.4849763315134522 .2964314298438723 
?.1677019293183719 .3323480250769603 
?1.0000000000000(1) ?.0004702253796003 

NODES WEIGHTS 

?.9680534976681153 .0708606969555733 
?i8741932840716901 .1177154070361564 
?.7341128563648486 .1612389331750644 
?.5545691902610785 .1962365549042368 
?.3451615188175675 .2206900606571945 
?.1171581182645735 .2332583472717737 

1. 0000000000000(1) ?i0001135029242778 

NODES WEIGHTS 

?9809891485386056 .0422432376141590 
?i9246624238272384 .0711146068550227 
?8391511126392154 .0994830443709286 
?.7267347202244511 .1247514431315587 
?.5909799518874961 .1460302015586128 
?.4362384493353694 .1626218477174605 
?.2674795173048050 .1739893971920475 
?.0901252424115148 .1797662215602099 
?1.0000000000000(1) ?0000399476589447 
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