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TABLES OF MAXIMALLY EQUIDISTRIBUTED 
COMBINED LFSR GENERATORS 

PIERRE L'ECUYER 

ABSTRACT. We give the results of a computer search for maximally equidistri- 
buted combined linear feedback shift register (or Tausworthe) random number 
generators, whose components are trinomials of degrees slightly less than 32 
or 64. These generators are fast and have good statistical properties. 

1. INTRODUCTION 

Linear Feedback Shift Register (LFSR) random number generators, also called 
Tausworthe generators, are based on linear recurrences modulo 2 with primitive 
characteristic polynomials. Efficient implementations are available for the case 
where the characteristic polynomial is a trinomial and satisfies some additional 
conditions. Trinomial-based generators have important statistical defects, but com- 
bining them can yield generators that are relatively fast and robust. Such combi- 
nations have been proposed and analyzed in [4, 9, 10]. In [4], it was explained how 
to find combined generators with the best possible equidistribution properties in 
some sense, within specified classes of combined LFSR generators. Three specific 
combined generators, each with three components and period length near 288, were 
also given. In the present paper, we provide the results of more extensive computer 
searches, for combined generators with larger periods. The need for large periods 
is supported by several arguments given, e.g., in [2, 3, 5]. The generators given 
in [4] are for 32-bit computers. Since 64-bit computers are becoming increasingly 
common, it is important to have good generators designed to fully use the 64-bit 
words. Some of the generators proposed here do it. 

The next section explains how we combine LFSR generators and recalls defini- 
tions and properties. Section 3 gives specific combined generators of different sizes. 
Section 4 provides computer implementations in C. 

2. COMBINED LFSR GENERATORS AND EQUIDISTRIBUTION 

Consider the LFSR recurrence 

(1) Xn = (aXn-1 + *+ akXn-k) mod 2, 
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whose characteristic polynomial is P(z) = zk _ alzk-I --ak. This is a linear 
recurrence in the finite field F2 with two elements, 0 and 1. The recurrence has 
period length p = 2k _ 1 if and only if P is a primitive polynomial, which we now 
assume. Let 

L 

(2) Un Xns+i-12Th 

where the step size s and the word length L are positive integers. If (xO, , Xkl) # 
0, and s is coprime to p, then the sequence (2) is also purely periodic with period p. 
An LFSR (or Tausworthe) random number generator is one that outputs a sequence 

rUn, n > 0} defined by (2). 
Suppose now that we have J LFSR recurrences, the jth one having a primitive 

characteristic polynomial Pj(z) of degree kj, and step size sj relatively prime with 

pi = 2kj - 1. Assume that the Pj (z) are pairwise relatively prime, that the pj are 
also relatively prime, and that these LFSRs use a common L. Let {Xj,n, n > 0} be 
the jth LFSR sequence, and define xn= (Xl,n+. ?+XJ,n) mod 2 and Un as in (2). 
Equivalently, if {Uj,n, n > 0} is the output sequence from the jth LFSR, then Un = 

Uln ... D UJ,n where eD denotes the bitwise exclusive-or in the binary expansion. 
The sequence {xn} is called the combined LFSR sequence and a generator that 
produces this {Un} is called a combined LFSR generator. In fact, {xn} follows 
a recurrence with reducible characteristic polynomial P(z) = PI (z) ... Pi (z) [9]. 
Under our assumptions, the sequences {xn } and {Un4 have period length p = 
(2k1 - 1) x ... x (2kJ - 1). This type of combination is interesting because it 
permits one to conciliate efficient implementation with statistical robustness, by 
choosing the Pj as trinomials for which the recurrence is easy to implement and 
runs fast, while making sure that P(z) has many non-zero coefficients and that the 
combined generator has good equidistribution properties [1, 7, 10]. Of course, this 
is not the only way of constructing generators with good equidistribution; for other 
approaches, see, e.g., [5, 6, 8] and other references given there. 

Let Tt be the set (in the sense of a multiset) of t-dimensional vectors of successive 
output values, from all possible initial states: 

Tt = {un = (Un) ...,Un+t-1) I n > O, (XO, ,Xk-1) E {O) 1} } 

Dividing the interval [0, 1) into 2t equal segments determines a partition of the unit 
hypercube [0, i)t into 2" cubic cells of equal size, called a (t, ?) -equidissection in 
base 2, and the set Tt is said to be (t, ?)-equidistributed if each cell contains the 
same number of points of Tt. The latter is possible only if f < L and t? < k. If Tt 
is (t, ? *)-equidistributed for 0 < t < k, where ?t = min(L, Lk/tj), then the (output) 
sequence is called maximally equidistributed (ME). An ME sequence for which all 
non-empty cells contain exactly one point, for t > 1 and ?t < ? < L (i.e., when there 
are more cells than points), is called collision-free (CF). ME-CF sequences enjoy 
nice equidistribution properties; their point sets are very evenly distributed in all 
dimensions, in terms of equidissections. Verifying whether a sequence is ME or ME- 
CF amounts to computing the rank of a binary matrix that expresses the relevant 
bits of Un in terms of (X1,0,... , X1,ki-1)) ... , (XJ,0, ... ) XJ,ki-l), for different values 
of t, as explained in [4]. 

The above definitions of ME and ME-CF are based on the f most significant 
bits of each Un, so when t is large, we look only at a few most significant bits. 
What about the least significant bits? For the LFSR generators considered here, 
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it turns out that any successive f bits in each u, have the same equidistribution 
properties as the most significant ones. More specifically, let r be an integer such 
that 0 < r < L - , and define 

L-r 

v2 = 2rU, mod 1 X Xr+ns+i122. 

i=l1 

Then, for any box C of the (t, f)-equidissection, 

{Vn = (Vn... , Vn+t-1) E C I n > 0, (xO, . , Xk-1) E {0, l}k} 

= {un = (Un) . . ., Un+t-1) E C I n > O, (Xr) * , Xr+k-1) E {O, l1} } 

Therefore, the sequence {vn} has exactly the same (t, f)-equidistribution properties 
as {un } 

3. SOME MAXIMALLY EQUIDISTRIBUTED COLLISION-FREE GENERATORS 

We now give ME-CF combined LFSR generators with word-lengths L = 32 
and 64, whose components have recurrences with primitive trinomials of the form 

Pj(z) = Zk_Zq - 1 with 0 < 2qj < kj, and with step size sj satisfying 0 < sj < 

k3 - qj < kj < L and gcd(sj, 2k3 _1) = 1. Components that satisfy these conditions 
are implemented easily using the algorithm described in [4]. When they satisfy the 
additional condition that 

(3) L - kj < rj - sj 

for all j, then the initialization procedure in [4, p. 205] is not necessary. All the 
parameter sets given in the forthcoming tables satisfy this additional condition. 

For L = 32, three specific ME-CF generators with J = 3 were given in [4], and it 
was reported that there are 4744 ME-CF generators with J = 4, ki = 31, k2= 29, 
k3= 28, and k4 25, among the 3.28 million that satisfy all our conditions except 
for (3). Since that paper was published, several people have asked the author for 
specific instances of such generators. Table 1 gives a partial list. These combined 
generators have period lengths (231 - 1)(229 -1)(228 - 1)(225 - 1) 2113 and their 
characteristic polynomials have degree 113. The 62 generators in Table 1 satisfy 
(3). They all have (ql, q2, q3, q4) = (6,2,13,3), so they have the same characteristic 
polynomial P(z), which has 58 coefficients equal to zero and 55 coefficients equal 
to 1. 

The following tables give selected results of random searches for ME-CF gener- 
ators with L = 64, and with J = 3, 4, and 5 components. Here, k = k, + . + kj 
is the degree of the product polynomial associated with the combination, N1 is the 
number of coefficients that are 1 in that polynomial, and lg p = lcm(ki, .. . , kj) is 
(approximately) the logarithm in base 2 of the period length of the generator. 

In Table 2, the first 4 generators have full period length 

p = (2k 
- )(2k2 - 

1)(2k3 
- 1) 2 

The remaining 6 do not have full period because the kj are not co-prime. Note 
that for all generators in this table, N1 is rather small in comparison with k; that 
is, the characteristic polynomials have many more zeros than ones. 
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TABLE 1. ME-CF generators with L = 32 and J 4. 
S= 82 83 S4 Si S2 83 S4 

1 18 2 7 13 32 4 16 8 3 
2 13 3 4 9 33 22 17 4 6 
3 24 3 11 12 34 21 17 4 13 
4 10 4 2 6 35 20 17 7 8 
5 16 4 2 12 36 19 17 11 6 
6 11 5 4 3 37 4 17 11 7 
7 17 5 4 6 38 12 17 11 15 
8 12 5 11 9 39 15 18 4 9 
9 23 5 11 12 40 17 18 4 15 

10 23 6 7 8 41 12 18 7 4 
11 14 8 2 9 42 15 18 8 11 
12 22 8 7 4 43 6 18 11 13 
13 21 8 11 4 44 8 19 2 9 
14 10 9 8 2 45 13 19 4 2 
15 22 9 11 9 46 5 19 8 3 
16 3 10 4 15 47 6 19 8 11 
17 24 10 7 8 48 24 19 11 5 
18 21 10 8 4 49 6 20 2 10 
19 12 10 8 15 50 13 20 4 10 
20 17 10 11 6 51 24 21 2 7 
21 3 11 4 12 52 14 21 8 13 
22 9 11 4 13 53 10 22 8 13 
23 9 11 7 4 54 7 22 8 14 
24 11 12 4 10 55 15 23 8 5 
25 20 12 7 15 56 9 23 11 4 
26 17 12 11 11 57 20 24 4 8 
27 21 13 4 14 58 16 24 4 14 
28 11 14 8 7 59 20 24 4 14 
29 6 14 8 13 60 23 24 7 3 
30 20 15 7 13 61 14 24 8 10 
31 12 16 2 10 62 16 24 11 12 

TABLE 2. ME-CF generators with L = 64 and J 3. 

k1 k2 k3 ql q2 q3 Si S2 s3 k lgp N1 
1 63 58 55 5 19 24 24 13 7 176 176 17 
2 63 55 52 1 24 3 27 22 14 170 170 27 
3 63 55 47 5 24 5 22 18 21 165 165 21 
4 63 55 47 31 24 21 17 21 5 165 165 21 
5 63 58 57 31 19 22 20 26 13 178 175 27 
6 63 58 57 31 19 22 26 14 15 178 175 27 
7 63 58 57 31 19 22 20 11 16 178 175 27 
8 63 58 57 31 19 22 29 26 20 178 175 27 
9 63 58 57 31 19 22 11 25 27 178 175 27 

10 63 57 55 5 22 24 51 18 19 175 172 27 

TABLE 3. Full-period ME-CF generators with L= 64, J 4, 
k = 223, and N1 = 49. 

Si 82 s3 S4 Si S2 s3 S4 

1 18 28 7 8 5 18 22 16 6 
2 26 20 11 7 6 30 28 17 9 
3 19 25 12 9 7 17 28 18 6 
4 18 31 13 6 8 12 8 22 9 
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TABLE 4. ME-CF generators with L = 64, J = 4, k = 233, lg p 
230, and N1 = 59. 

81 82 83 84 S1 82 83 84 

1 18 10 23 11 47 43 16 31 18 
2 26 10 13 11 48 38 23 37 18 
3 48 17 30 11 49 46 25 39 18 
4 27 20 9 11 50 47 4 26 19 
5 46 22 9 11 51 33 7 27 19 
6 23 29 24 11 52 18 11 17 19 
7 25 29 13 11 53 43 11 37 19 
8 34 29 9 11 54 5 14 13 19 
9 50 7 38 12 55 53 20 27 19 

10 15 8 19 12 56 24 25 25 19 
11 44 22 16 12 57 30 25 27 19 
12 6 23 29 12 58 34 29 41 19 
13 16 5 22 13 59 18 5 36 20 
14 11 10 25 13 60 15 11 18 20 
15 18 11 40 13 61 52 11 34 20 
16 19 16 30 13 62 5 22 10 20 
17 45 23 24 13 63 9 22 10 20 
18 17 7 9 14 64 16 23 38 20 
19 52 11 20 14 65 17 23 26 20 
20 52 22 30 14 66 40 23 37 20 
21 25 23 26 14 67 46 23 5 20 
22 27 7 19 15 68 6 28 27 20 
23 25 11 13 15 69 25 28 33 20 
24 6 26 31 15 70 5 32 26 20 
25 19 28 25 15 71 13 7 37 21 
26 38 28 37 15 72 26 8 41 21 
27 53 28 18 15 73 37 10 43 21 
28 50 29 32 15 74 38 10 11 21 
29 17 32 41 15 75 30 13 39 21 
30 39 8 12 16 76 38 16 43 21 
31 53 13 33 16 77 9 17 32 21 
32 12 5 13 17 78 34 25 17 21 
33 16 5 11 17 79 38 26 41 21 
34 25 7 32 17 80 8 28 31 21 
35 54 10 36 17 81 19 29 12 21 
36 45 11 29 17 82 37 32 27 21 
37 30 20 18 17 83 27 8 5 22 
38 39 20 43 17 84 8 10 29 22 
39 19 22 22 17 85 41 10 25 22 
40 50 23 25 17 86 50 13 4 22 
41 11 26 19 17 87 55 13 37 22 
42 19 26 11 17 88 50 17 36 22 
43 13 29 40 17 89 39 26 29 22 
44 46 32 29 17 90 55 26 23 22 
45 20 4 31 18 91 13 28 16 22 
46 5 10 33 18 92 51 32 10 22 
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TABLE 5. ME-CF generators with L = 64, J = 4, k = 238, lg p 
220, and N1 = 71. 

ql q2 q3 q4 Si S2 S3 S4 

1 31 1 19 22 30 23 17 18 
2 31 1 19 22 13 23 26 5 
3 31 1 19 22 17 38 23 24 
4 31 1 19 22 26 47 17 19 
5 31 11 19 22 26 34 20 17 
6 31 11 19 22 29 38 28 18 

TABLE 6. ME-CF generators with L = 64, J = 5, k = 258, lgp 
258, and N1 = 103. 

Si S2 S3 S4 S5 Si S2 S3 S4 S5 

1 10 5 29 23 8 13 26 5 31 14 13 
2 12 5 11 16 15 14 36 5 32 16 8 
3 17 5 16 6 7 15 36 5 32 21 8 
4 17 5 19 16 14 16 39 5 19 6 8 
5 18 5 37 7 3 17 43 5 14 20 15 
6 19 5 31 15 13 18 44 5 14 15 15 
7 20 5 11 13 6 19 44 5 29 6 13 
8 22 5 17 10 11 20 44 5 34 25 9 
9 23 5 37 13 7 21 45 5 16 21 8 

10 24 5 7 16 8 22 51 5 28 3 12 
11 26 5 22 4 9 23 53 5 26 16 8 
12 26 5 26 13 12 24 54 5 28 13 3 

TABLE 7. ME-CF generators with L = 64, J 5, k = 274, lgp 
271, and N = 119. 

Si S2 S3 S4 S5 Si S2 S3 S4 S5 

1 9 34 5 26 18 11 22 40 5 4 18 
2 9 32 5 31 6 12 22 19 5 14 19 
3 9 25 5 37 22 13 22 41 5 16 6 
4 10 24 5 7 12 14 22 16 5 32 4 
5 12 17 5 14 8 15 26 9 5 11 14 
6 12 40 5 16 22 16 26 19 5 29 3 
7 12 26 5 34 23 17 44 20 5 8 6 
8 17 27 5 13 9 18 44 31 5 22 14 
9 17 8 5 37 19 19 53 8 5 23 17 

10 20 41 5 14 6 20 53 12 5 31 18 

Table 3 gives 8 full-period ME-CF generators with L = 64, J = 4, (kl, k2, k3, k4) 
(63,58,55,47), and (ql, q2, q3, q4) = (31,19,24,21). Their period length is ap- 

proximately 2223 and their characteristic polynomial P(z) (they all have the same) 
has 49 coefficients (out of 223) equal to 1. Table 4 gives a partial list of ME-CF 
generators with (k1, k2, k3, k4) = (63,58,57,55) and (ql, q2, q3, q4) = (1, 19, 7,24), so 
k = 233 and lg p = 230, whereas Table 5 gives ME-CF generators with (kl, k2, k3, k4) 
= (63,60,58,57), which gives k = 238 and lg p = 220. In all cases, the number of 
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ones in the characteristic polynomial of the combined generator is significantly less 
than k/2, but still reasonably high. 

Table 6 lists 24 full-period ME-CF generators with 

L = 64, J 5, (k1, k2, k3,k4,k5)= (63,55,52,47,41), 

(ql,q2,q3,q4,q5)= (1,24,3,5,3), k = 258, p 2258, N1 = 103. 
ME-CF generators with 

L = 64, J 5, (ki, k2,k3, k4, k5)= (63,57,55,52,47), 

(ql, q2j q3j q4j q5) =(1, 7,24,3,5), k = 274, p 2271, N, = 119, 
are given in Table 7. As J increases, N1 tends to approach k/2. With J = 6 or 7, 
one can probably obtain N1 k/2. However, as more components are added while 
making sure that lgp is close to k, one eventually comes up using polynomials P. 
of relatively small degree k3. Increasing J further then becomes less profitable. 

One could also use polynomials Pj of larger degrees; e.g., use values of kj near 
128, having in mind (hypothetical) computers with 128-bit words. Still larger values 
of J would then be required in order to obtain N1 near k/2. 

4. IMPLEMENTATIONS 

The procedure lfsrll3 in Figure 1 gives an implementation, in the language 
C, of the first ME-CF generator in Table 1, with p 2113. It uses the algorithm 
QuickTaus in Section 2.2 of [4], for each component of the combination. Before 
calling lf srll3 for the first time, the variables zl, z2, z3, and z4 must be initialized 
to any (random) integers larger than 1, 7, 15, and 127, respectively. In other words, 
the k. most significant bits of zj must be nonzero, for each j. (Note: this restriction 
also applies to the computer code given in [4], but was mistakenly not mentioned 
in that paper.) Ideally, the vector of initial seeds (z., . ., z;) would be drawn from 
a uniform distribution over the set of admissible values. 

Figure 2 implements the first ME-CF generator in Table 6, whose period length 
is p 2258. The type "unsigned long long" refers to a 64-bit unsigned integer, 
available on 64-bit computers. 

On a SUN UltraSparc 1, to generate 10 million (107) random numbers and add 
them up to print the sum, it took approximately 2.5 seconds with lf srll3, 3.1 
seconds with lf sr258, and 0.2 seconds with the procedure dummy in Figure 1. For 
these speed comparisons, we used the cc compiler with the -fast option. We added 
the numbers and printed the sum to make sure that the optimizing compiler was 
not outsmarting us by skipping instructions after observing that the result was not 
used. 
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unsigned long zl, z2, z3, z4; 

double lfsr113 () 
{ /* Generates numbers between 0 and 1. */ 
unsigned long b; 
b = (((zl << 6) - zl) >> 13); 
zl = (((zl & 4294967294) << 18) - b); 
b = (((z2 << 2) - z2) >> 27); 
z2 = (((z2 & 4294967288) << 2) - b); 
b = (((z3 << 13) - z3) >> 21); 
z3 = (((z3 & 4294967280) << 7) - b); 
b = (((z4 << 3) - z4) >> 12); 
z4 = (((z4 & 4294967168) << 13) - b); 
return ((zl - z2 - z3 - z4) * 2.3283064365387e-10); 
} 

double dummy 0 
{ 
return 0.5 
} 

FIGURE 1. A 32-bit combined LFSR generator with 4 components. 

unsigned long long zl, z2, z3, z4, z5; 

double lfsr258 () 
{ /* Generates numbers between 0 and 1. */ 
unsigned long long b; 
b = (((zl << 1) - zl) >> 53); 
zl = (((zl & 18446744073709551614) << 10) - b); 
b = (((z2 << 24) - z2) >> 50); 
z2 = (((z2 & 18446744073709551104) << 5) - b); 
b = (((z3 << 3) - z3) >> 23); 
z3 = (((z3 & 18446744073709547520) << 29) 

- 
b); 

b = (((z4 << 5) - z4) >> 24); 
z4 = (((z4 & 18446744073709420544) << 23) - b); 
b = (((z5 << 3) 

- 
z5) >> 33); 

z5 = (((z5 & 18446744073701163008) << 8) 
- 

b); 
return ((zl - z2 - z3 - z4 - z5) * 5.4210108624275221e-20); 
} 

FIGURE 2. A 64-bit combined LFSR generator with 5 components. 
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