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EXAMPLES OF GENUS TWO CM CURVES 
DEFINED OVER THE RATIONALS 

PAUL VAN WAMELEN 

ABSTRACT. We present the results of a systematic numerical search for genus 
two curves defined over the rationals such that their Jacobians are simple and 
have endomorphism ring equal to the ring of integers of a quartic CM field. 
Including the well-known example y2 = X5-1 we find 19 non-isomorphic such 
curves. We believe that these are the only such curves. 

1. INTRODUCTION 

It is well known that there are only a finite number of elliptic curves defined 
over the rationals with Complex Multiplication. We would like to consider the 
analogous question for genus two curves. In particular we will look for examples 
of genus two curves defined over the rationals such that their Jacobians are simple 
and have endomorphism ring equal to the ring of integers of a quartic CM field. 
We believe that we have found all such examples. Note though that we did not 
consider the case of non-simple Jacobians, nor the case where the endomorphism 
ring is a non-maximal order in a CM field. The curves we found are correct to high 
precision, but we did not prove that they have Complex Multiplication. 

We look for such curves as follows. We start out with a list of quartic CM fields 
ordered by discriminant. Then it is easy to construct a torus with endomorphism 
ring equal to the ring of integers of such a field (see section 2). Now we can make 
these tori into abelian varieties by finding a Riemann form on the torus. In section 
3 we see how to find all distinct Riemann forms. This leads to an explicit algorithm 
for writing down all abelian varieties with endomorphism ring equal to the ring of 
integers in a given CM field. Most of the theory in these two sections can also be 
found in [4] or [11] (see also [12]). 

Now we can use the theory of theta functions to compute (to high precision) 
an equation for a curve with Jacobian equal to a given abelian surface. This is 
explained in section 4. This curve is in a canonical form, and we must finally 
address the question of whether such a curve can be defined over the rationals. 
Mestre's solution to this problem is recalled in section 5. Section 6 contains some 
notes on the implementation of these ideas, and Section 7 briefly discusses the 
results. 
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2. CONSTRUCTING A TORUS 

For the rest of this paper F will be a CM-field with [F Q] 2n. That is, F is 
a totally imaginary quadratic extension of a totally real field F+. Later we will set 
n = 2. By a CM type of F we mean a set b of one half of the embeddings of F into 
C such that no two of them are complex conjugate. Recall that if A is a complex 
torus of dimension n such that F C End(A)Q, then the complex representation of 
End(A)Q is isomorphic to , qi for some CM type (. We say A is of type 

(F, (). 

Theorem 1. 1. If a is a lattice in F and ( is a type, then CTn/1(a) is a complex 
torus of type (F, (). 

2. If A is a complex torus of type (F, (D), then there exists a lattice a in F such 
that A is complex isomorphic to CTn/?(a). 

3. If ( is a simple type and a is a fractional ideal of F, then End(CTn/1(a))- 
OF - 

Proof. 1 and 2 are just i) and ii) of [4, Thm 1.4.1]. For 3 recall that if the type is 
simple the torus is simple ([4, 1.3.5]), and if the torus is simple End(A)Q = F ([4, 
Thm 1.3.3.i]). Now [4, Thm 1.4.1.iii] says that the endomorphism ring is given by 
all a such that aa c a. So if a is a fractional ideal the endomorphism ring is the 
ring of integers. O 

Theorem 2. If a and b are two fractional ideals in F and ( is a simple type, then 
the two tori CTn/1(a) and Cn/1((b) are isomorphic if and only if a and b are in the 
same ideal class. 

Proof. This follows directly from [4, Thm 1.4.2]. D] 

We are interested in the case n = 2. In this case we can easily decide whether a 
given type is simple or not. From the fact that in a CM field complex conjugation 
commutes with any other Galois element we see that the only possibilities for the 
Galois group of a degree 4 CM field are the cyclic group of order 4, the Klein 4-group 
and the dihedral group of order 8. If the Galois group is the Klein 4-group, then 
the field is biquadratic and we see that the type must be lifted from an imaginary 
quadratic subfield and is therefore not simple. In the other two cases the type is 
simple. 

3. FINDING A RIEMANN FORM 

In the previous section we saw that for a given non-biquadratic quartic CM field 
F, there is a finite number of tori whose endomorphism ring is the ring of integers 
in F. For a torus to be an abelian variety it must admit a Riemann form. So we 
now need to decide which of these tori admit Riemann forms, and also whether 
there could be more than one Riemann form for a given torus. 

Let OF/Q be the different of F and DF/Q its discriminant. Let a bar denote 
complex conjugation. 

Theorem 3. 1. If ( is such that 
(a) F= F+(,), 42 E F+ and Im(oi(()) > 0 for all Xi E 1?, and 
(b) OF/Qaa (&-) for some fractional ideal a of F, 
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then 
n 

(1) E(z, w) Z kj (E) (zjwj - zj wj) 
j=1 

defines a principal polarization of type (F, 1) on CTn/1(a). 
2. If (F, ?1) is a simple type, then all principal polarizations of type (F, ?1) on 

CTn/1(a) are given by such a ,. 

Proof. Clearly E (z, w) -E (w, z) and 

n 

E(iz, w) =-i Z, j(,)%(zwj + zjlj) 
j=1 

is symmetric positive definite. Furthermore we have E(1?(a), 1(D)) = trF/Q((dY3), 

and so E will be integral valued on @(a) if and only if (O, C 0-1 This proves 
that E is a non-degenerate Riemann form on CTn//(a). Note that if {fa}nLI is a 
basis for the ideal a then det(trF/Q(Q0ioj)) = NF/Q((aa)ZF/Q; that is, if condition 
lb holds, then det(E) = 1 and E is a principal polarization. 

For the converse, we see from [4, Thm 1.4.5] that every non-degenerate Riemann 
form E on CTn/1(a) is given by (1) for some ( satisfying condition la. We have seen 
that, as E is integral valued, (a-a C 0, and, as E defines a principal polarization, 
the norms of these two ideals are in fact equal. But then the ideals are equal. D 

From now on (A, () will denote an abelian variety with a principal polarization 
given by ( as in the theorem. 

We now address the question of whether we can find a ( satisfying the conditions 
of the theorem for any Cn/1( a). 

Theorem 4. Let F = F+( -in) with m E OF+. Then we can find a fractional 
ideal a C F and an element b E (9F+ such that OF/Q/(/-n) = a-ab. 

Proof. Using the transitivity of the different, we will first consider the extension 
F/F+ and its different OF/F+. Let l3 be a ramified (over F+) prime of F. Assume 
that it occurs to an odd power, k, in the prime decomposition of 0F/F+/( -in). 

Then it occurs to the power 2k in the prime factorization of 0F/F+?F/F+/(m)- If 
p is the prime of F+ such that POF =2, then recalling that N(OFIF+) = OFIF+, 
we see that p occurs to the odd power k in the prime factorization of DF/F+ /mOF+ . 
This, however, contradicts the fact that the discriminant DF/F+ differs by the square 
of an ideal from mOF+. To see this recall that the discriminant is given by the 
greatest common divisor ideal of all discriminants of bases of F over F+ consisting 
of algebraic integers and it is easy to verify that 

disc(al + bl -in, a2 + b2=-in) = 4(a2bi - aib2)2m. 

So we can now write OF/F+/( n) - f2g where f consists of ramified primes, 
g consists of split primes and [ of inert primes. Notice that as only ramified primes 
divide X, OF/F+/(V-in) = F/F+/( -in). This implies that if l3 is a prime 
in g then q3q3 must divide , and we can write g =0gi for some ideal gl. The 
ideal [ consists of inert primes, so we see that we can write [ [OOF for some 
ideal [o c F+. As the norm map from the ideal class group of F to that of F+ 
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is onto ([14, Theorem 10.1]), there exist an ideal r1 C F and c1 E F+ such that 
= 414jcj. So we have 

OF/F+/( -) =fg [ifgIBicI 

Again using the fact that the norm map on class groups is onto, we can find an 
ideal DI and an element d1 E F+ such that F+/QOF = D1D1di. Setting a = fg 1-DI 
and b = c1dl, we get 

OF/Q/(V -) =: OF/F+OF+/Q/('-) = a-ab. 

This shows that for a simple CM field F, if we take a, b and m as in the theorem 
and set ( = ( -/mb)-1 and choose b in such a way that lm(ob(()) > 0 for all 
Xi c- e, then ( defines a principal polarization of type b on C'/I(a-'). So we have 
at least one principally polarized abelian variety whose endomorphism ring equals 
OF - 

Next we want to address the question of how many non-isomorphic abelian va- 
rieties with complex multiplication by OF we can construct. 

Theorem 5. Two principally polarized simple abelian varieties (CTn//(a), ,1) and 
(CTn/1(b), 42) of the same type are isomorphic if and only if we can find an element 
-y E F such that 

1. 'ya= b and 
2. &1 ='Y52. 

Proof. This follows directly from Theorem 2 and [4, Section 3.5.2]. See also [12, 
Theorem 3.19]. O 

Corollary 1. Two polarizations on CTn/1(a) of the same simple type given by (l 
and 42 give isomorphic abelian varieties if and only if ,i u=uT2 for some unit 
u E OF. 

We have now shown enough to see that the following is a valid algorithm for 
finding all principally polarized abelian varieties with CM by the ring of integers of 
a given simple CM field. 

Algorithm 1. To find all non-isomorphic principally polarized abelian varieties 
with CM by OF: 

1. Find all ideal classes 2l such that 2%2% is the ideal class of the codifferent IDQ. 
2. Find a set of coset representatives of the units in OF+ modulo norms of units 

of OF* 

3. For each ideal class found in 1 pick an ideal a and find a generator b of 
OF/Qaa. 

4. For each ideal class in step 3, if there exists a unit u in OF such that ub =-ub, 
set ,o = (ub)-1 and go to the next step. 

5. For each unit u+ found in 2, choose a type b such that if = u+Ho then 
lm(oj(()) > 0 for each q5i E D. 

6. , now defines a principal polarization of type b on C(n/I(a), and we can 
compute the corresponding element T of the Siegel upper half-space )n. 
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Proof. By Theorem 1 and Theorem 2 we see that any torus with CM by the ring 
of integers of F is given by CTh/1(a) for one a from each ideal class A. By Theorem 
3 only a torus coming from an ideal class A such that AS is the ideal class of the 
codifferent can admit a Riemann form. This is not a sufficient condition, but if 
some a E A gives a torus admitting a Riemann form, then by Theorem 5 any a E A 

will (and they will give isomorphic polarized abelian varieties). 
Step 4 now checks the sufficient condition of Theorem 3 for the ideal a. Notice 

that (for now, in the case of a degree 4 field) we can decide whether such a unit 
exists by a finite procedure. Indeed, let uo be a primitive root of unity in F and 
u1 a fundamental unit. Find k and h such that b/b = uo and ui/ul = u0, and set 
u = U1dud2. Then finding u such that ub =-ub is the same as finding d1 and d2 
such that 

2d1 + hd2- m - k mod 2m, 

where 2m is the number of roots of unity in F. The same idea will clearly also 
work for larger CM fields. Theorem 4 just says that we will be able to find such a 
unit for some ideal class A. 

The unit found in step 4 is clearly only unique up to a unit in F+. On the other 
hand Corollary 1 says that we need not change ( by the norm of a unit from F. 
This shows that step 5 will produce all the principal polarizations on all tori with 
CM by the ring of integers in F. D 

Note that this algorithm might find a single polarized abelian variety more than 
once. Indeed, it is not clear when two polarized abelian varieties of different types 
are isomorphic. In particular, if we change ( by a unit that is not totally positive, 
we still get a principal polarization, but with a different type. We only consider the 
following case. Here, besides a bar, p also denotes complex conjugation. 

Proposition 1. Let Cg9/1(a) with polarization given by ( be the canonically princi- 
pally polarized Jacobian of a curve defined over a real numberfield. Then C9/p1(a) 
with polarization given by -( gives the same polarized abelian variety. 

Proof. The essential ingredient is [4, Proposition 3.5.4]. We use the notation there. 
First we show that if (A, C) is of type (K, 1, a, () with respect to 0 then (AP, CP) 
is of type (K, p?l, a, -() with respect to 0x . Here Ox (z) = 0(z). Except for the 
polarization, this follows directly from the definitions. For the polarization, recall 
that by [4, Proposition 3.5.4] the Riemann form Ep on C9/p1?(a) that corresponds 
to EQI?(o(), 1(r3)n) = trF/Q(f /3) on C9/1( a) satisfies 

Ep (p@(Do), p@(D p)) - -E (@(Do), @(p ~)) 
=trF/Q((-()dg3) 

This shows that (AP, CP) has the Riemann form given by -(. Note that this first 
part of the proposition is also a special case of [4, Theorem 7.3.1]. 

If A is the Jacobian of a curve C defined over a real number field, then A is 
defined over the same number field and therefore A is isomorphic to AP. Recall 
that the canonical polarization of a Jacobian is defined by the theta divisor, which 
is {E91 Pi - (g - 1)O Pi in C} for some fixed 0 E C rational over the real number 
field. Complex conjugation clearly fixes this divisor, and so (A, C) equals (AP, CP). 

E] 
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4. CONSTRUCTING A CURVE WITH A GIVEN JACOBIAN 

In this section we want to find a genus two curve that has its Jacobian equal to 
one of the abelian varieties we found in the previous section. 

The principally polarized abelian varieties we constructed in the previous section 
are 2 dimensional and simple. This means that the abelian surface is not isogenous 
(and in particular not isomorphic) to the product of two elliptic curves. This in turn 
means that the abelian surface is the Jacobian of a non-singular genus two curve 
(see [5, Corollary 11.8.2 a)]). Any non-singular genus two curve is hyperelliptic and 
can be put into Rosenhain normal form 

y = 
X(X - )(- A)(X- A2)(X- A3)- 

This of course is rather abstract, but there is an explicit method for computing a 
Rosenhain normal form for a given element of the Siegel upper half-space. This 
is done with the use of theta functions and Thomae's identities. We will just give 
the relevant formulas, but the interested reader can consult [8], [13]. The higher 
dimensional theta function with characteristic is defined as follows. 

For column vectors c', c" E 2g , z E Cg and Tr E b, the classical multi-variable 
theta function is 

0[tc;YtcI](tz, T) = exp(wit(m + c')T(m + c') + 2wi (m + c')(z + c")). 
mEZ9 

Thomae's identities relate the A's in the Rosenhain normal form to theta func- 
tions evaluated at z = 0. There is some freedom in the choice of characteristics, 
but one possibility is the following. Set 

,di = 0([010; 1/2,0], [0,0]1,T) 
V2 = 0([01 0; 1/2, 1/2], [0, 0], ), 

V3 = 0([0, 1/2; 1/2, 0], [0, 0], '), 
V4 = 0a([1/2,0;0,0], [0,0]vr), 

V5 = 0a([1/2, 0; 0, 1/2], [0, 0] ,T), 

N6 = 0O([1/2, 1/2; 0, 0], [0, 0], ')], 
where T is an element of Siegel upper-half space found above. Then 

-01 32 3 2 
13 - -___ 

06 4 6 5 04 5 

Of course this curve is probably not defined over the rationals. Furthermore we can 
only compute numerical approximations to the A's. If the curve can be defined over 
the rationals, the A's will be algebraic numbers, and we might be able to recognize 
the numeric approximations as such. In that case we might then be able to find 
a linear transformation that results in a curve defined over the rationals. In some 
of the simpler cases this method works, but in general we need more sophisticated 
machinery. 

5. WHEN IS A GENUS TWO CURVE DEFINED OVER THE RATIONALS 

An elliptic curve is defined over the rationals if and only if its j invariant is 
rational. We might ask whether a similar thing happens for genus two curves. 
Indeed this turns out to be the case, but the picture is somewhat more complicated. 
Igusa defined three absolute invariants il, i2 and i3 for genus two curves analogous 
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to the j invariant for elliptic curves. They have the property that if these invariants 
agree for two curves, the curves must be isomorphic over C. Unfortunately it is not 
true that if these invariants are rational the curve can be defined over the rationals. 
Recently Mestre showed how to decide whether a curve with given Igusa invariants 
can be defined over the rationals. 

The Igusa invariants are defined for a hyperelliptic curve 

y2 = f(X), 

where f(x) is a sextic with roots ai, i = 1, 2,..., 6, and leading term a6. We 
first define the so-called integral invariants. To simplify notation we write (ij) for 

OYk,- ak3. The integral invariants are 

12 = a2 E(12)2 (34)2 (56)2 
15 

14 = a6 Z(12)2 (23)2 (31)2 (45)2 (56)2 (64)21 
10 

16 = a6 E(12)2 (23)2 (31)2 (45)2 (56)2 (64)2 (14)2 (25)2 (36)2, 
60 

l1o = a 0fJ(ij)2. 
i<j 

where the subscript on the sums gives the number of possible combinations to sum 
over. The (absolute) Igusa invariants are now defined by 

il = I5 /11o 

i2 = 1214/110, 

i3 = 12216/110- 

In case the hyperelliptic curve is given in the form y2 = f(x) where f(x) is a 
quintic, we can think of it as a sextic with one root at infinity. Then, for purposes 
of computing the Igusa invariants, we follow the convention that in the definition 
of the integral invariants any term of the form ai - oo equals 1. 

As already mentioned, these invariants agree for two curves if and only if the two 
curves are isomorphic [3, Corollary on p. 632]. Note that the integral invariants are 
symmetric functions of the roots and these invariants can therefore be expressed 
as rational functions of the coefficients of f(x). In particular we see that the Igusa 
invariants are rational if the curve can be defined over the rationals. Unfortunately 
the converse is not true. By using the Igusa invariants and Proposition 1 we can 
reject some T E [ as not belonging to curves defined over the rationals. Indeed if 
T and r' correspond to the same torus but with polarizations given by ( and -(, 
then if their Igusa invariants are not equal the proposition says that they cannot 
come from a curve defined over the rationals. Of course in general we need better 
methods. 

Mestre [7] gave a method for deciding whether a curve with given Igusa invariants 
can be defined over a particular field. 

Mestre constructs a conic L and a cubic M in p2 with coefficients in terms of 
il, i2 and i3- 

For v E P2 the conic L is defined by 

tvLv = 0, 
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where L is given by 

x+ 6y 6x2 + 2y 2z 
6x2 + 2y 2z 9x3 + 4xy + 6y2 

2z 9X3 + 4xy + 6y2 6x2y + 2y2 + 3xz 

and 
8 20i2 + i 

cc = - 
225 i1 

16 -600i3 + il + 80i2 
y = il Y 3375 ii 

Z = 25364 5 (-10800000il - 9i2 - 7OOi2i1 

+3600i3il + 12400i2 - 48000i2i3). 

Defining the cubic is somewhat more involved. First set 

-12 

120' 

b I22+ 20I4 
135000 

C -123-801214+ 60016 

121500000 
d -9I25- 700I23I4 + 12400I2I 42+ 3600I22I6 - 480001416- 1080000011o 

49207500000000 
These are the Clebsch invariants. For v e P2 set 

xi a6P4Vl,, Xi~~~1 

X2 Ij50i1v2 
2153555' 

2603205 20 a24v3 

X3 =i4 

Then Mestre's cubic is defined to be 

M(v) = - aijkXiXjXk = 0, 

1<i,j,k<3 

where the aijk are given by 

a1ll, 8(a2c-6bc + 9d), 
a112 - 4(2b3+ 4abc + 12C2 + 3ad), 

a,13 - 4(ab3 + 4a2bc + 4b2C + 6aC2 + 3bd), 

a122 - a,13, 

a123 - 2(2b4 + 4ab2C + 4a2C2 + 4bC2 + 3abd + 12cd), 

a133 2(ab4 + 4a2b2C + 6b3e + C 26abC2 + 8c3 + 3b2d + 2acd), 

a222 4(3b4 + 6ab2C + 8a2C2 + 2bC2 - 3cd), 

a223 2(-2b 3e - 4abC2 - 4C3 + 9b2d + 8acd), 

a233 2(b5 + 2ab3c + 8a2 bC2 + 2b2C2 -bcd + 9d2), 

a333 -2b4c - 4ab2e2 - 16a2c3- 4bC3 + 9b3d + 12abcd + 20C2d. 9 3d 
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It can be checked that the cubic can be given entirely in terms of the Igusa invari- 
ants. Our definition of Mestre's cubic is a multiple of Mestre's definition, but as 
we only care about the zeros it doesn't matter. 

Mestre showed that a genus 2 curve with Igusa invariants il, i2 and i3 is defined 
over the number field F if and only if the conic L has a F-rational point in P2 . By 
the Hasse-Minkowski theorem (see [9]) it is easy to decide whether a conic has a 
rational point. 

In fact, if the conic has a rational point we can find an explicit curve defined 
over the rationals with the given Igusa invariants. That is because Mestre showed 
that the Weierstrass points of such a curve are given by the points of intersection 
of the conic L and the cubic M. This means we can do the following. If there is a 
rational point on the conic there are infinitely many, and we can parametrize them 
by v1 = fl (t), V2 = f2(t) and V3 = f3(t) where the fi are quadratic polynomials 
with rational coefficients. If we substitute this into the cubic M we get a polynomial 
f(t) of degree 6. Then y2 = f(t) is a rational equation for the curve. 

6. NOTES ON IMPLEMENTATION 

The algorithm for finding elements of the Siegel upper half-space was imple- 
mented in the Pari-GP package. In particular the package allows one to find 
the ring of integers in a number field and to compute in such a ring, including 
finding prime ideal decompositions, units, Galois elements, etc. There are also 
tables of number fields available (anonymous ftp: megrez.math.u-bordeaux.fr 
/pub/numberfields/). The table of quartic CM fields we used was extracted from 
these tables. 

To compute the Igusa invariants corresponding to a given element of the Siegel 
upper half-space, we used both Mathematica and Pari-GP. The computation of 
theta function values can be done by summing their defining series. As the terms 
are exponential, the series converges very quickly. Unfortunately, in some cases this 
was still not practical many of the T in the Siegel upper half-space had very small 
imaginary part, so even though the convergence is fast we still would have needed 
to sum a prohibitively large number of terms. To overcome this problem we first 
applied a symplectic matrix to the -f's in order to maximize the imaginary part. 
This can be done analogously to the well-known method of moving an element of 
the complex upper half-space into the fundamental domain. We simply applied a 
generator from [1, Theorem 1] for SP2(Z) that increases the imaginary part of -r. 
Then we moved - back into the center strip and Minkowski-reduced -r. We repeated 
this procedure until none of the generators increased the imaginary part of -r. 

The Igusa invariants were computed accurate to approximately 300 decimal 
places. If they were not complex we tried to recognize them as rational num- 
bers by computing their continued fraction expansions and stopping as soon as at 
least the first 90% of the digits of the fraction agreed with those of the real number. 
If the corresponding rational had less than 125 digits in the numerator we assumed 
that the real number was rational. In fact the largest rational Igusa invariant we 
found had only 59 digits in the numerator. 

To test whether a curve with rational Igusa invariants can be defined over the 
rationals (and then to find such a curve) we need to find points on Mestre's conic. 
This is easy in theory but in practice it can lead to hard problems, in particular 
the need to factor some large integers. Fortunately, for our examples the largest 
factorizations were right at the limit of what can be done in reasonable time. 
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All the curves that had rational Igusa invariants turned out to be definable over 
the rationals. 

Once the point on the conic was found, it is an easy matter to substitute into 
Mestre's cubic to find a rational equation for the curve. Unfortunately the equation 
for the curve can be huge. The worst case for our examples gave a sextic with 
coefficients with more that 5000 digits. To reduce these equations to a reasonable 
size we used the following algorithm. First try to remove all powers of 30 from 
the discriminant. If f(x) (x - a)6 mod p for some prime p, then p30 divides the 
discriminant. In all our examples the converse was also true. It is easy to check that 
if f(x) _ (x - a)6 mod p then f(px + a)/p6 has discriminant with the power of p 
reduced by 30 (and still has integral coefficients). In this way we were able to reduce 
all powers of primes to less than 30. After the discriminant is reduced we try to 
apply a rational linear fractional transformation to f (x) in order to decrease the size 
of the coefficients. It was enough to repeatedly apply a translation f (x) -> f (x ? 1) 
or an inversion combined with a translation f (x) _ f (1/(x ? 1))(x ? 1)6 to reduce 
the size of the coefficients. 

As explained above, we searched only quartic CM fields that were either cyclic 
or dihedral. We searched for all cyclic quartic CM fields up to discriminant 106; 
there are 54 such fields. Note that the largest discriminant of a cyclic quartic 
CM field with class number 1 or 2 is 240737 ([10],[2]). We searched all dihedral 
quartic CM fields up to discriminant 79525 (307 fields) and those with 6 or less 
different polarized abelian varieties up to discriminant 830816 (147 more fields). 
At this point the computation just to check the number of polarizations became 
too lengthy, so we further restricted consideration to fields with class number at 
most 4. Nearly all fields with at most 6 polarizations up to this point satisfied this 
condition anyway. Under this further restriction we went up to discriminant 106 
(14 more fields). Note that by [6] the largest discriminant of a dihedral quartic CM 
field with class number 1 is 756605. 

7. THE RESULTS 

The results are contained in Table 1. Of these Spallek [12] has also found curves 
(with the same Igusa invariants as ours) corresponding to the fields Q( -2 + V2) 
and QW-5+ V5). 

A few things are worth pointing out. 
1. Note that all the fields in the table have class number either 1 or 2. 
2. The fields in the table are all cyclic. 
3. There exist exactly 7 class number 1 quartic cyclic CM fields (see [10]). We 

find one and only one curve with CM by each of these fields. (Note that there 
are lots of dihedral CM fields with class number 1, but as noted none of them 
gave a curve defined over the rationals). 

4. There exist exactly 8 class number 2 quartic cyclic CM fields (see [2]). We 
find exactly two (non-isomorphic) curves with CM by each of these fields 
except the two fields Q(v-6 + 2XV) and Q(VF- -119 + 28 17), for which we 
find no curve. For each of these fields we got two sets of Igusa invariants. 
We were able to recognize them as non-rational elements of a quadratic field 
(accurate to about 600 places). In the first case the one set of invariants was 
the conjugates in Q(vX-) of the other set. The same happened for the other 
pair of invariants, but in Q(V17). 
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ADDED IN PROOF 

After this paper was accepted, Bjorn Poonen pointed out to me that it is a 
theorem that a genus 2 curve with CM by a quartic CM field with a dihedral 
Galois group of order 8 cannot be defined over the rationals. See Proposition 5.17 
in G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions 
(Publications of the Mathematical Society of Japan, 11, Kann Memorial Lectures, 
1), Princeton University Press, Princeton, NJ, 1994. MR 95e:11048 
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