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ABSTRACT. The census provides a basic collection of noncompact hyperbolic 
3-manifolds of finite volume. It contains descriptions of all hyperbolic 3- 
manifolds obtained by gluing the faces of at most seven ideal tetrahedra. 
Additionally, various geometric and topological invariants are calculated for 
these manifolds. The findings are summarized and a listing of all manifolds 
appears in the microfiche supplement. 

1. INTRODUCTION 

The classification of 3-dimensional manifolds has been one of the fundamental 
problems confronting topologists for the last century. In 1982, William Thurston 
announced his Geometrization Conjecture. Roughly, this conjecture says that all 
3-manifolds can be decomposed in a canonical way into geometric pieces. These 
geometric pieces are all of the form X/F for some Riemannian manifold X, and 
some discrete torsion-free subgroup F of isometries of X. Thurston showed that 
there were only eight such X necessary (see [T1] and [T2] for more details). Of 
these eight geometries, seven are well understood. In fact the manifolds admitting 
such geometric structures have been completely classified (see [S]). The unresolved 
case is the class of hyperbolic manifolds, i.e., those manifolds homeomorphic to 
H3/r for F a discrete torsion-free subgroup of isometries. It turns out that in 
some sense "most" 3-manifolds are hyperbolic, similar to what occurs in the 2- 
dimensional case (see chapter 5 of [T1]). Thus, there is a great amount of interest 
in the investigation of the structures of hyperbolic 3-manifolds with the hope of 
discovering some underlying organization which could lead to a classification. 

It has been shown [My] that every compact 3-manifold contains a simple closed 
curve whose complement admits a noncompact hyperbolic structure of finite vol- 
ume. Furthermore, every noncompact hyperbolic 3-manifold of finite volume can 
be decomposed into a finite collection of ideal hyperbolic tetrahedra (see [EP]). 
Therefore, a natural place to start is to enumerate all the possible hyperbolic 3- 
manifolds obtainable from gluing a small number of ideal tetrahedra together. Note 
that given n ideal tetrahedra, for each set of face pairings there are 62n possible 
gluings. Even for n = 6 there are 97 inequivalent sets of face pairings. Thus, it is 
impractical even for small n to check all possible gluings. One must find effective 
ways of eliminating the large numbers of gluings which could not possibly yield 
hyperbolic manifolds for combinatorial or topological reasons or which have been 
obtained previously. This process was started in [HW]. Section 4 describes how 
the enumeration was carried out. 

Received by the editor May 26, 1996. 
1991 Mathematics Subject Classification. Primary 57-04; Secondary 57M50. 

( 1999 American Mathematical Society 

321 



322 P. J. CALLAHAN, M. V. HILDEBRAND, AND J. R. WEEKS 

After the list of all gluings which could possibly yield hyperbolic manifolds had 
been made, it was then processed by a collection of special purpose computer pro- 
grams, many of which were based on SnapPea (see [W1]). These programs de- 
termined which gluings in fact admitted hyperbolic structures, removed duplicates 
from the list, and calculated the various invariants described below. For other kinds 
of computer generated censuses of 3-manifolds see [E], [L], and [MF]. 

The census provides a large collection of hyperbolic 3-manifolds which can be 
investigated for typical and atypical properties. The census is also used as a test- 
ing ground for hyperbolic 3-manifolds. By enumerating all the possible gluings we 
get a wide variety of examples: knot and link complements, orientable and non- 
orientable, singly cusped and multicusped, arithmetic and nonarithmetic manifolds. 
Of course, by restricting the census to only those manifolds obtained from gluing 
small numbers of tetrahedra, we are in some sense looking at a special case. On 
the other hand many questions like "What is the smallest or simplest hyperbolic 
3-manifold with a certain property?" would naturally have candidates among the 
census manifolds. Furthermore, by considering the census as a whole we could gain 
some idea of the variety and distribution of the set of all hyperbolic 3-manifolds. 
Perhaps, even among these small examples, one could glimpse the underlying struc- 
ture or at least propose provisional classification schemes. 

2. SUMMARY OF RESULTS 

There are 6075 noncompact hyperbolic 3-manifolds which can be obtained from 
gluing 7 or fewer tetrahedra together. Of these 4815 are orientable and 1260 are 
nonorientable. More information is summarized in the following tables which are 
organized by the number of tetrahedra and the cusp type (see section 3 for conven- 
tions for describing cusp type). 

Orientable: 
cusp typel# tetrahedra 1 2 3 4 5 6 7 total 
1 - 2 9 52 223 913 3388 4587 
2 - - - 4 11 48 162 225 
3 --- - - 1 2 3 
total - 2 9 56 234 962 3552 4815 

Nonorientable: 
cusp typel# tetrahedra 1 2 3 4 5 6 7 total 
1 1 1 5 14 52 171 617 861 
2 - 1 2 9 23 68 208 311 
3 --- - - 3 6 9 
4 --- - - 1 - 1 
0,1 - - - 1 1 4 19 25 
0,2 --- - - 1 - 1 
1,1 - - - 1 2 8 31 42 
2,1 --- 1 - 3 6 10 
total 1 2 7 26 78 259 887 1260 
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3. NOMENCLATURE 

It is worthwhile to establish a standardized nomenclature for the manifolds in the 
census so that they may be referred to with ease. We use a system analogous to that 
used in the knot and link tables. We sort all the hyperbolic 3-manifolds obtainable 
by gluing N tetrahedra (but which cannot be made with fewer tetrahedra) in order 
of increasing volume. We then separate the orientable and nonorientable manifolds 
and organize them by cusp type. For orientable manifolds we use the notation MTn 
for the nth orientable manifold made from T tetrahedra on the list with k cusps. 
As with the link tables, if the manifold has only one cusp we suppress the "k" in 
the notation. For example the manifold M21 corresponds to the smallest orientable 
hyperbolic 3-manifold obtained by gluing two ideal tetrahedra and having one cusp. 
M21 happens to be homeomorphic to the complement of the figure eight knot and 
shares its volume with the so-called "figure eight knot sister" denoted M22. One of 
the smallest known hyperbolic links is the Whitehead link which can be decomposed 
into four ideal tetrahedra. It shows up in the census as M42. 

The nomenclature for nonorientable manifolds is only slightly more complicated 
due to the fact that they can have both orientable and nonorientable cusps (the 
cross sections are tori and Klein bottles, respectively). The basic symbol is the same 
as for the orientable manifolds, except we use an "N" to indicate nonorientable 
instead of an "M" for manifold. The symbol NTn stands for the nth nonorientable 
hyperbolic 3-manifold made from T tetrahedra on the list with cusp type "c", 
where "c" is the string "k, t" and k is the number of Klein bottle cusps and t 
is the number of torus cusps. We also use the convention that we drop the ",0" 
if there are no orientable cusps and drop the "1,0" if there is exactly one Klein 
bottle cusp. For example the smallest noncompact hyperbolic 3-manifold (see [A]) 
is the Gieseking manifold which is obtained by identifying the faces of a single ideal 
tetrahedron. The Gieseking manifold has exactly one cusp which is nonorientable, 
hence it is described as Ni1. The link 62 double covers a nonorientable manifold 
with two nonorientable cusps, this manifold is described as N21. One of the smallest 
known nonorientable manifolds with an orientable cusp also happens to have two 
nonorientable cusps. It appears in the census as N4 21 and happens to be the 
unique 3-cusped manifold which can be made with four or fewer tetrahedra (see 
[AS]). 

4. REHYDRATING THE CENSUS MANIFOLDS 

Each manifold in the census is obtained from gluing together at most 7 tetra- 
hedra. Since Mostow's Rigidity Theorem implies that there is a unique hyperbolic 
structure, it suffices to provide the combinatorial gluing pattern, i.e., a set of tetra- 
hedra with labelings to indicate identifications. This gluing pattern is encoded in 
a string of letters called the "dehydrated manifold". The basic ideas behind this 
encoding are due to Thurston. We will describe below how the gluing instructions 
can be recovered by "rehydrating". Once the manifold is rehydrated, the actual 
hyperbolic structure, i.e., the shapes of the ideal tetrahedra can be found by solving 
the holonomy equations as described in [T1]. 

We first describe the general procedure and then give the details for two exam- 
ples. The rehydrating procedure may be more easily assimilated by following one 
of the examples given below while reading through the general description. 



324 P. J. CALLAHAN, M. V. HILDEBRAND, AND J. R. WEEKS 

Each dehydrated manifold consists of a string of letters. The first letter tells how 
many tetrahedra are in the manifold, offset from "a": "b" means 1 tetrahedron, 
"c" means 2, "h" means 7 tetrahedra, etc. Given N tetrahedra, 2N face pairings 
are necessary. We will number these face pairings 1 through 2N. We will recover 
the face pairing descriptions sequentially. 

Label a tetrahedron "0" and label its vertices "0" through "3". Label the faces 
"0" through "3" by naming each face after the vertex opposite it. Now, since there 
are N tetrahedra, N - 1 of the 2N face pairings will involve a "new" tetrahedron, 
i.e., a tetrahedron which has not been used yet. The information about when new 
tetrahedra are added is encoded in the next 2[(N + 3)/4] characters (where [X] is 
the greatest integer less than or equal to X). These characters are read by taking 
pairs XY and translating as a number 16X + Y which will be between 0 and 255. 
The X and Y are the just the number of the alphabet offset from "a", i.e., "a"=O, 
"b"=1, etc. The numerical value of the pair XY is then written in binary. This 
binary number read right to left gives the information for the first 8 face pairings: 
"0" means glue to an old tetrahedron, "1" means glue a new tetrahedron. If N > 4, 
then the next pair of characters is interpreted in the same way to describe the face 
pairings numbered 9 though 16. 

To describe a face pairing we must indicate one face of one tetrahedron and 
one face of another tetrahedron and tell how these two faces are identified. To do 
this we form a queue of "open" faces. We start with face 0 of tetrahedron 0 and 
determine where it is glued. Then we move to face 1 of tetrahedron 0 (unless it has 
already been glued, in which case we move on to face 2). After we have dealt with 
face 3 of tetrahedron 0, we move on to face 0 of tetrahedron 1 (or whichever face is 
still open, in order). To move along the queue we need to know where the indicated 
face is glued and how the face is glued. First, to determine which tetrahedron the 
face is glued to depends on whether this particular face pairing involves a new or 
old tetrahedron as determined above. Exactly N - 1 will involve new tetrahedra. 

If the gluing involves a new tetrahedron, then we give this new tetrahedron the 
smallest number which has not been used. Then we glue this to the open face we 
are considering via the identity map, e.g., if we are working with face 1, then we 
label the glued face of the new tetrahedron 1 and we label the vertices 0, 2, and 3 
to match up with the corresponding vertices of the old tetrahedron. Then we label 
the remaining faces of the new tetrahedron from their opposite vertices. Thus, the 
new tetrahedron gets an induced labeling and becomes one of the old tetrahedra. 

If the gluing involves an old tetrahedron, then we need to know to which face 
and to which tetrahedron the current face is glued. Since there will be exactly 
N + 1 gluings which involve old tetrahedra, the last N + 1 characters in the string 
encode how the face is glued. The second from last N + 1 characters encode 
to the tetrahedron to which the face is being glued. Reading from left to right 
these characters will be the letter representing a number offset from "a", i.e., "a" 
means "glue to tetrahedron 0", "b" means "glue to tetrahedron 1", etc. Once the 
tetrahedron is known, it suffices to give a description of the face gluing. These can 
be denoted by a permutation on the symbols "0" through "3". If we write ABCD 
as the permutation which sends 3 to A, 2 to B, 1 to C, and 0 to D, then we can 
sort the 24 permutations in numerical order and associate them with the letters 
"a" through "x". For example: "a" would be the permutation 0123, "b" = 0132, 
"c" = 0213, ..., and "x" = 3210. 
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The permutation encodes the gluing by indicating which face will be glued to 
the current face under consideration; if this face is X then the permutation sends 
X to the number of the face of the old tetrahedron to which it is being glued. The 
remaining three numbers in the permutation tell which vertices are glued together. 
For example, if we are currently working with face 2, and the permutation is "b" = 
0132, then face 2 is glued to face 1, and the vertices 3, 1, and 0 of face 2 are glued 
to the vertices 0, 3, and 2 of face 1, respectively. Recall that all faces and vertices 
of old tetrahedra have already been given labels. 

Example: The Gieseking manifold: Ni1. The dehydrated description of the 
Gieseking manifold is "baaaade". So to rehydrate its gluing pattern we look first 
at the first character: "b". This means that there is only one tetrahedron being 
glued together, N = 1. The next 2[(1+3)/4] = 2 characters: "aa" tells which of 
the 2N face pairings involve new tetrahedra. Here "aa" = 0*16 + 0 = 0 which 
in binary is 00000000. So none of the face pairings involve new tetrahedra (which 
must be the case since there is only one tetrahedron!). Now we begin the face pairs 
in sequential order. Beginning with face 0 of tetrahedra 0, this pairing involves an 
old tetrahedron, so we look at the first character in the substring consisting of the 
second from last set of N + 1 characters: "a" which means we glue to tetrahedron 
0. Now we look at the first character in the substring consisting of the last N + 1 
characters: "d". This represents the permutation 0231, so face 0 is glued to face 1, 
and the vertices 3,2,1 of face 0 are glued to the vertices 0,2,3 of face 1, respectively. 
Now we go on to the next face pairing (which happens to be the last in this case). 
We just did face 0 of tetrahedron 0, thus we move to face 1 of tetrahedron 0. Since 
this face has already been glued, we move to face 2, which is still open. This face 
is glued to tetrahedron 0, so to determine which face it will be glued to and how it 
will be glued we look at the next character in the substring consisting of the last 
N + 1 characters. This happens to be the last character: "e" which represents the 
permutation 0312. This means that face 2 is glued to face 3, and the vertices 3,1,0 
of face 2 are glued to the vertices 0,1,2 of face 3, respectively. 

This completes the description, which can be summarized in the following table: 

Active face: glue to: via face map: 
1 tet 0 face 0 tet 0 face 1 321 to 023 
2 tet 0 face 2 tet 0 face 3 310 to 012 

Example: A seven tetrahedra example: M72162. The dehydrated description 
of M7 62 is "hbpabbcfggfegfkadihgo". The first character "h" tells us that N 
7. The next 2[(7 + 3)/4] = 4 characters tell us which face pairings involve new 
tetrahedra: these characters "bpab" are taken in pairs. The first pair "bp" gives 
1*16 + 15 = 31 which in binary is 00011111, which means the first five face pairings 
involve new tetrahedra. The next two characters "ab" give 0*16 + 1 = 1, which 
in binary is 00000001. This means that the ninth face pairing involves a new 
tetrahedron. Note that this tells us that six of the face pairings involve a new 
tetrahedron, which is correct, since there must always be exactly N-1 such pairings 
in a given gluing pattern. To facilitate things, we will call the substring consisting 
of the next N + 1 characters "bcfggfeg" the W string (for which tetrahedron will 
be glued) and the substring consisting of the last N + 1 characters "fkadihgo" the 
H string (for how the tetrahedra are glued). 
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We start with face 0 of tetrahedron 0. It involves a new tetrahedron which we 
call tetrahedron 1. We glue these together by the identity map on face 0. Now we 
go on to face 1 of tetrahedron 0. This also involves a new tetrahedron which we call 
tetrahedron 2 which is glued to face 1. Thus we label the glued face of tetrahedron 
2 as 1 and label the vertices of the face to match those of face 1 of tetrahedron 0. 
This induces a labeling on the rest of the faces and vertices of tetrahedron 2. 

We continue on: face 2 of tetrahedron 0 gets a new tetrahedron which we call 3. 
Face 3 of tetrahedron 0 gets a new tetrahedron which we call 4. Now we move on to 
face 0 of tetrahedron 1, which has already been glued (to face 0 of tetrahedron 0). 
Thus we go on to face 1 of tetrahedron 1, which is still open, and we give it a new 
tetrahedron which we call 5. We are now on the sixth face pairing. It is the first 
one which does not involve a new tetrahedron. Thus we look to the first character 
of W which is "b", which means "glue to tetrahedron 1". The first character of H 
is "f", which represents the permutation 0321. Since the face we are considering 
is face 2 of tetrahedron 1, the permutation tells us that 2 is sent to 3. Thus we 
glue face 2 to face 3 of tetrahedron 1 and the vertices 3,1,0 of face 2 are glued to 
the vertices 0,2,1 of face 3, respectively. We continue in this fashion until we have 
completed all 14 face pairings. The results are summarized below. 

Active face: glue to: via face map: 
1 tet 0 face 0 tet 1 face 0 id 
2 tet 0 face 1 tet 2 face 1 id 
3 tet 0 face 2 tet 3 face 2 id 
4 tet 0 face 3 tet 4 face 3 id 
5 tet 1 face 1 tet 5 face 1 id 
6 tet 1 face 2 tet 1 face 3 310 to 021 
7 tet 2 face 0 tet 2 face 2 321 to 130 
8 tet 2 face 3 tet 5 face 0 210 to 123 
9 tet 3 face 0 tet 6 face 0 id 
10 tet 3 face 1 tet 6 face 3 320 to 021 
11 tet 3 face 3 tet 6 face 1 210 to 203 
12 tet 4 face 0 tet 5 face 2 321 to 103 
13 tet 4 face 1 tet 4 face 2 320 to 103 
14 tet 5 face 3 tet 6 face 2 210 to 103 

5. DESCRIPTION OF ENUMERATION PROCESS 

The basic outline of the census was described in [HW], but further work has 
incorporated some additional refinements. As described in [HW], the first step 
was to enumerate all nonisomorphic connected graphs on n vertices, where each 
vertex has degree 4 and n is the number of tetrahedra. The graphs correspond 
to pairings of the faces of the tetrahedra. Each vertex of the graph corresponds 
to a tetrahedron, and each edge of the graph corresponds to a pair of faces glued 
together. For n being 1 through 7, the number of such graphs is 1, 2, 4, 10, 28, 
97, and 359, respectively. For each pair of faces, there are potentially six different 
ways to glue the pair. Three of these ways correspond to orientable gluings while 
the rest correspond to nonorientable gluings. A recursive routine does this, but the 
recursion stops when certain Euler characteristic or edge class criteria (described 
in [HW]) cannot be met. For instance, if a complete edge class contains one or two 
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edges or three edges with distinct tetrahedra surrounding the edge class, then the 
manifold will be either nonhyperbolic or will have been obtained previously. 

An additional technique used in the 7-tetrahedra census is to examine partial 
cusps. Part way through the gluings, triangular cross-sections of the ideal vertices 
of the tetrahedra form "partial cusps" which are surfaces with boundaries. The 
code checks what would happen if the boundaries of the partial cusps were capped 
off by disks. If the Euler characteristic of any surface resulting from such capping is 
negative, then no matter how the remaining face pairs are glued, the final manifold is 
sure to have an end whose cross section is a surface of negative Euler characteristic. 
In that case, the manifold cannot possibly be hyperbolic. At first, each partial cusp 
is a triangle corresponding to an ideal vertex of a tetrahedron. Each time we specify 
the gluings of the tetrahedral faces (including how the vertices along the faces are 
identified), we glue three pairs of edges in the partial cusps. The gluings of these 
edges may change the Euler characteristic and number of boundary components 
of the partial cusp. The program keeps track of these values as well as edges and 
vertices along the boundary components of each partial cusp. These edges and 
vertices of the boundary components of the partial cusp correspond to unglued 
faces and edges, respectively, of the tetrahedra. 

The program examines various cases to determine the change in Euler charac- 
teristic and number of boundary components of a partial cusp. The procedure used 
to examine these cases is described as follows. 

1. If the edges in a pair lie on the same boundary component and the edges are 
the only two edges in the boundary component, then remove the boundary 
component, subtract 1 from the number of boundary components, and add 
either 0 or 1 to the Euler characteristic of the cusp. The number added 
depends on how the vertices of the boundary components are identified. 

2. If the two edges lie on the same boundary component are adjacent and are 
not the only edges on the boundary component, then subtract 0 or 1 from the 
Euler characteristic and leave the number of boundary components alone. The 
number subtracted depends on how the vertices of the boundary components 
are identified. 

3. If the two edges lie on the same boundary component and are not adjacent, 
then the gluing may split the boundary component into two components. If 
so, then add 1 to the number of boundary components but subtract 1 from 
the Euler characteristic. Otherwise, subtract 1 from the Euler characteristic 
of the cusp but leave the number of boundary components alone. 

4. If the two edges lie on different boundary components, then merge the cusps 
if the components are on different cusps. To find the Euler characteristic and 
the number of boundary components of a merged partial cusp, add the Euler 
characteristics of the old cusps and add the number of boundary components 
of the old cusps. If both boundary components have length 1, subtract 2 from 
the number of boundary components and leave the Euler characteristic alone. 
Otherwise, merge components and subtract 1 from the Euler characteristic 
and the number of boundary components. 
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FIGURE 1 

Note that the sum of the Euler characteristic plus the number of boundary 
components never increases at any step. In the last case, this fact can be seen by 
noting that this sum is never more than 2. Thus if this sum is negative at any step 
before the manifold is finished, we may conclude that the cusp will not be a torus 
or Klein bottle and that the manifold will not be hyperbolic. 

Gluings obtained from this process include all the desired hyperbolic 3-manifolds. 
A gluing may appear a number of times and may not be a hyperbolic 3-manifold. 
A terse description which uniquely identifies the gluing helps eliminate the du- 
plication, and SnapPea checks to see which manifolds are hyperbolic. SnapPea 
also calculates and compares canonical triagulations to remove distinct gluings of 
isometric manifolds (see [W2] for details). 

With programs of this size, bugs naturally creep in. A number of methods were 
used to test for bugs. Some were described in [HW]. Further checks included 
tracing through the partial cusp check at the start and then checking by hand. The 
partial cusp check was also used on a few graphs in the 6-tetrahedra case, and the 
results agreed with runs for these graphs without this check. Furthermore before we 
implemented the partial cusp check, we were able to run the census for orientable 
manifolds obtained from 7 tetrahedra. All tetrahedral gluings which were identified 
as potentially hyperbolic reappeared when the partial cusp check was added. At 
the end of a run for each graph, the computer would output a message indicating 
completion. Thus if the program was no longer running a graph but had not 
produced this message, we knew that the run had been aborted (perhaps due to a 
computer failing or being restarted) and that the results could be incomplete unless 
this graph was run again. 

To search only for orientable manifolds, one gives an arbitrary handedness to 
the first tetrahedron. At each face pairing, if the handedness of both tetrahedra 
is known, then there are only three ways to glue the pair and keep the manifold 
orientable. If the handedness of one tetrahedron in the face pairing is known, 
then there are six possible ways to glue the faces, but this choice determines the 
handedness of the other tetrahedra. Furthermore, if tetrahedra are glued as in 
Figure 1, one may, by symmetry, preset the orientation of tetrahedra A, B, and C. 
In the left portion, the handedness of C can be changed by interchanging the 2 faces 
glued with B; this changes the handedness of B. The handedness of B can also be 
changed by interchanging the faces glued onto A. This will change the handedness 
of A, but the handedness of A can also be changed by interchanging the faces glued 
to each other. A similar argument applies to A through C in the right portion 
provided that tetrahedron D is not the first tetrahedron. Presetting the orientation 
was used to speed up the census of orientable manifolds obtained from 7 tetrahedra. 

A potential future project for someone attempting to extend the census is to see 
if one can better exploit symmetries within each graph. Often the same gluings 
appear a number of times in census runs already performed. 



A CENSUS OF CUSPED HYPERBOLIC 3-MANIFOLDS 329 

6. DESCRIPTION OF THE TABLES 

The 6075 manifolds of the census are organized into several tables. The manifolds 
made from four or fewer tetrahedra are in the appendixes. The manifolds made 
from five, six, or seven tetrahedra are in tables included on a microfiche supplement. 

Each manifold is listed by name (see section 3 for nomenclature conventions). 
Various invariants are listed in the table. These are described below. 

i. Volume: The primary invariant of hyperbolic 3-manifolds is the volume. The 
volume is defined with respect to the Riemannian metric of constant curvature -1. 
The remarkable thing is that by the Mostow Rigidity Theorem (see [T1]) volume 
is in fact a topological invariant. 

ii. Chern-Simons: Meyerhoff extended the usual Chern-Simons invariant to 
include noncompact hyperbolic 3-manifolds (see [M]). It is well defined modulo 
1/2. The Chern-Simons invariant changes sign when the orientation of the manifold 
changes. Hence, an amphichiral manifold must have a Chern-Simons invariant equal 
to 0 or 1/4 modulo 1/2 (see [M] for more information). The Chern-Simons invariant 
is defined only for orientable manifolds, so this column is not included in the tables 
of nonorientable manifolds. 

iii. Homology: This is the first homology group of the manifold with integer 
coefficients, i.e., H1 (M). The symbol "Z/n" denotes the finite cyclic group of order 
n. Note that the rank of H1 (M) must be at least equal to the number of cusps. 

iv. Symmetry: This is the group of isometries of the manifold. The symbol 
"Z/n" denotes the finite cyclic group of order n. The symbol "Dn" denotes the 
dihedral group of order 2n. If a manifold has a symmetry group which is not a 
product of cyclic and dihedral groups then only the order of the group is given. 

v. SG: This gives the length (to two decimal places) of the shortest closed 
geodesic in M. 

vi. C: This describes the chirality or handedness of M. If M does not admit 
an orientation reversing isometry, then M is called chiral and is denoted in the 
table as "c". If M does admit an orientation reversing isometry, then M is called 
amphichiral and is denoted in the table as "a". This column is not included in the 
tables of nonorientable manifolds. 

vii. OC: The original census in [HW] grouped all the manifolds obtained from 
five or fewer tetrahedra together and sorted them by volume. The manifolds were 
labeled in order of increasing volume by "mXXX" with XXX ranging from 000 to 
414. This column gives the number XXX of the given manifold if it is obtainable 
from no more than five tetrahedra. For the other manifolds, there were separate 
numbering schemes depending on the number of tetrahedra and the orientability of 
the manifold. For manifolds obtainable from six or seven tetrahedra, this column 
gives the number from the appropriate numbering scheme. 

viii. Dehydrated: This gives the dehydrated description of the manifold. Section 
4 describes how to reconstruct the manifold from a given string of letters. 
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APPENDIX A: ORIENTABLE CENSUS MANIFOLDS WITH AT MOST 4 TETRAHEDRA 

Name Volume Cherns-Simons Homology Symmetry SG C OC Dehydrated 
M21 2.0298832128 0.0000000000 Z D4 1.09 a 4 cabbbbaei 
M22 2.0298832128 0.2500000000 Z/5+Z Z/2+Z/4 0.86 a 3 cabbbbapt 

M31 2.5689706009 0.1141366530 Z/5+Z D2 0.65 c 6 dadacccfkfo 
M32 2.5689706009 0.1358633470 Z/3+Z D2 0.65 c 7 dadbcccqqok 
M33 2.6667447834 0.0208333333 Z/2+Z D2 0.63 c 9 dadbcccaafo 
M34 2.6667447834 0.2291666667 Z/6+Z D2 0.63 c 10 dadbcccaajs 
M35 2.7818339124 0.1918367664 Z Z/2 0.51 c 11 dadacccfofr 
M37 2.8281220883 0.2365374666 Z Z/2 0.58 c 16 dadacccfokn 
M36 2.8281220883 0.1532041333 Z D2 0.56 c 15 dafbcccllks 
M38 2.8281220883 0.0967958667 Z/7+Z D2 0.56 c 17 dafbbccltkn 
M39 2.9441064867 0.1477812075 Z Z/2 0.43 c 19 dagacccfwkn 

M41 2.9891202829 0.2131068668 Z/7+Z D2 0.42 c 22 ebfbcdddaaalu 
M42 2.9891202829 0.0368931332 Z/3+Z D2 0.42 c 23 ebfbcdddaaadm 
M43 3.0593380578 0.0780932475 Z Z/2 0.40 c 26 eanbbdddabfon 
M44 3.1213347730 0.1588461787 Z Z/2 0.32 c 27 ebjbadddafbsg 
M45 3.1485098264 0.2121909004 Z/5+Z D2 0.32 c 29 eaoacdddfkhaq 
M46 3.1485098264 0.0378090996 Z/7+Z D2 0.32 c 30 eaoaccddfknan 
M47 3.1639632289 0.1559770167 Z D2 0.33 c 32 ealadcddflnxm 
M48 3.1639632289 0.0940229833 Z/9+Z D2 0.33 c 33 ealaccddfrnxf 
M49 3.1663333212 0.1092749687 Z Z/2 0.56 c 34 ebfbcdddhhheu 
M410 3.1772932786 0.0342702910 Z D2 0.79 c 38 eahddccdacf oc 
M411 3.1772932786 0.2157297090 Z/3+Z D2 0.61 c 36 ealaccddfknxf 
M412 3.1772932786 0.0490630423 Z/4+Z D2 0.30 c 35 eaoacdddnkhaq 
M413 3.1772932786 0.2009369577 Z/8+Z D2 0.30 c 37 eaoaccddnknan 
M414 3.2529080485 0.1824397261 Z/5+Z Z/2 0.27 c 43 ebkabdddfakng 
M415 3.2756765600 0.0973831836 Z Z/2 0.24 c 44 ebjabdddbawkn 
M416 3.2758716439 0.2206814602 Z/2+Z D2 0.25 c 45 eaoacdddnkiae 
M417 3.2758716439 0.0293185398 Z/10+Z D2 0.25 c 46 eaoaccddnkoab 
M418 3.3082415547 0.2482281792 Z Z/2 0.24 c 52 ebkabdddfhgbf 
M419 3.3317442316 0.0551535349 Z D2 0.22 c 53 eaoacdddfkiae 
M420 3.3317442316 0.1948464651 Z/11+Z D2 0.22 c 54 eaoaccddfkoab 
M421 3.3371917200 0.1650511625 Z Z/2 0.20 c 55 ebkabdddfhgvb 
M422 3.3620932044 0.1493345594 Z Z/2 0.20 c 60 ebkabdddfhfob 
M423 3.3805053992 0.2332493881 Z Z/2 0.18 c 64 ebkabdddfhvof 
M424 3.4029912512 0.0515271394 Z Z/2 0.42 c 69 ebjbadddafksg 
M425 3.4029912512 0.2181938061 Z Z/2 0.42 c 70 ebjbadddaf sgk 
M426 3.4644088173 0.2208204219 Z Z/2 0.56 c 81 ebdbccddqqfab 
M427 3.4742477613 0.1617537304 Z Z/2 0.36 c 82 eaoaccddnknab 
M428 3.5142520584 0.1760270094 Z Z/2 0.34 c 100 eaoaccddfknab 
M429 3.5899014608 0.2404266499 Z Z/2 0.49 c 116 ealaccddffrab 
M430 3.6038850434 0.0726930451 Z Z/2 0.54 c 117 ebdbccddqqfhg 
M431 3.6086890618 0.1139831647 Z Z/2 0.29 c 118 ebkabdddfhvbf 
M432 3.6086890618 0.2193501686 Z Z/2 0.29 c 119 ebkabdddfhfvb 
M433 3.6638623767 0.2500000000 Z/2+Z/4+Z Z/2+Z/4 0.88 a 135 ebdbcdddaahhx 
M434 3.6638623767 0.0000000000 Z/2+Z/2+Z D4 0.88 a 136 ebdbcdddaahqa 
M435 3.6638623767 0.1250000000 Z/8+Z D2 0.53 c 130 eahbdccdhffff 
M436 3.6638623767 0.1250000000 Z Z/2 0.51 c 137 eanbcdddhnbsk 
M437 3.6756456059 0.1005707624 Z/2+Z Z/2 0.44 c 141 ealaccddffrak 
M438 3.7146852120 0.1179041465 Z Z/2 0.44 c 142 ebdbccddqqfak 
M439 3.7506106744 0.2175697433 Z Z/2 0.48 c 145 eaoaccddnknxf 
M440 3.7588449482 0.1436621612 Z/2+Z D2 0.84 c 148 eahbdcddlofnv 
M441 3.7588449482 0.1063378388 Z/6+Z D2 0.84 c 149 eahbdcddlffnk 
M442 3.7588449482 0.1853288278 Z/2+Z Z/2 0.54 c 147 ealbcdcdlgwgn 
M443 3.7588449482 0.2313378388 Z/2+Z Z/2 0.45 c 146 ebdbccddaasqf 
M444 3.7848914166 0.0323143238 Z Z/2 0.51 c 154 ebdaccddkonho 
M445 3.8216875862 0.1914927999 Z/3+Z D2 0.88 c 160 eanbdcddakkfo 
M446 3.8216875862 0.0585072001 Z/7+Z D2 0.44 c 159 eaoaccddfknxf 
M447 3.8578647343 0.0789781054 Z Z/2 0.45 c 170 ealaccddfrnhg 
M448 3.9254753156 0.1918472789 Z Z/2 0.43 c 178 eaoaccddfkohf 
M449 3.9259173429 0.2358653467 Z Z/2 0.40 c 180 ecgaccddfwkhf 
M450 3.9542298167 0.1536981285 Z Z/2 0.40 c 185 eaoaccddfkohg 
M451 4.0597664256 0.0000000000 Z/5+Z |G| = 16 1.09 a 206 ebdbcdddaqhpt 
M452 4.0597664256 0.2500000000 Z/3+Z/3+Z |G| = 16 1.09 a 207 ebdbcdddaqhie 

M42 3.6638623767 0.1250000000 Z+Z D4 1.06 c 129 eahbcdddhsssj 
M42 3.6638623767 0.0416666667 Z+Z D4 0.96 c 125 eahbcdddljjrv 
M42 4.0597664256 0.0833333333 Z+Z D6 0.86 c 202 ebdbbdddemlqp 
M44 4.0597664256 0.0000000000 Z+Z D4 0.86 a 203 ebdbcdddddddx 
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APPENDIX B: NONORIENTABLE CENSUS MANIFOLDS 

WITH AT MOST 4 TETRAHEDRA 

Name Volume Homology Symmetry SG OC Dehydrated 
Ni1 1.0149416064 Z Z/2 1.09 0 baaaade 

N21 1.8319311884 Z/2 + Z Z/2 0.88 1 cabbbbabw 

N2 2 2.0298832128 Z/2 + Z Z/2 0.86 2 cabbbbcdw 

N31 2.4069095931 Z/3 + Z Z/2 0.67 5 dafbcccaadl 
N32 2.6193420504 Z Z/2 0.60 8 dadcbccdjkd 
N33 2.7868045564 Z Z/2 0.73 12 dadbcccbbcv 
N34 2.8465105456 Z Z/2 1.28 18 dadbcccccdm 
N35 3.0448248192 Z/2 + Z/2 + Z Z/6 1.09 25 dadbcccaqhx 

N3 2 2.7868045564 Z/4 + Z Z/2 0.50 13 dadbbcccsbb 
N32 2.9539817021 Z/2 + Z Z/2 0.42 20 dagacccfekl 

N41 2.7868045564 Z/4 + Z Z/2 0.50 14 ebdbcdddaaafj 
N42 2.9563855471 Z/3 + Z Z/2 0.41 21 eahbdddcrnenf 
N43 3.1545451962 Z Z/2 0.31 31 eaoacdddnkgaf 
N44 3.1956957274 Z/2 + Z Z/2 0.28 41 eaoacdddfkgaf 
N45 3.4853372924 Z Z/2 0.82 91 ealbdcddkfrfh 
N46 3.6638623767 Z/2 + Z Z/2 0.96 133 eahbdcddnxxxk 
N47 3.6638623767 Z/4 + Z Z/2 0.88 132 ebdbcdddaabbx 
N48 3.6638623767 Z Z/2 0.69 138 ealbcdddkhdwh 
N49 3.7775073841 Z/2 + Z Z/2 0.75 153 ebdbcdddaajfa 
N41o 3.7775073841 Z/6 + Z Z/2 0.75 152 ebdbcdddaahkc 
N411 3.7940901118 Z Z/2 0.79 156 eanadcddlnbtq 
N412 3.8182598148 Z/2 + Z Z/2 0.76 158 eahbdcddlafnu 
N413 3.8963450465 Z Z/2 0.68 177 ealbcdddpndoq 
N414 3.9696478012 Z Z/2 0.89 187 eahdccddakfhq 

N4 2 3.1268546407 Z/2 + Z Z/2 0.32 28 ebjbadddafbpd 
N42 3.2822525639 Z/2 + Z Z/2 0.24 48 ebkabdddfadnp 
N43 3.3372473279 Z/2 + Z Z/2 0.20 56 ebkabdddfhgmi 
N44 3.3817493792 Z/4 + Z Z/2 0.17 65 ebkabdddfhiom 
N4 2 3.6638623767 Z/4 + Z D2 1.53 126 ebdbcdddccvca 
N42 3.6638623767 Z/2 + Z/2 + Z D2 1.06 134 eahbcdddhhhhx 
N47 3.6638623767 Z/8 + Z D2 1.06 127 ebdbcdddaccax 
N42 4.0597664256 Z/2 + Z Z/2 1.66 204 eahbcdcdidxid 
N42 4.0597664256 Z/2 + Z Z/2 0.86 205 ebdbcdddcemre 

N4?'1 3.6638623767 Z + Z D2 0.88 131 ebdbcdddbbbbx 

N41'1 3.6638623767 Z + Z D2 1.32 128 eahbcdddjsssh 

N42l' 3.6638623767 Z/2 + Z + Z D4 1.76 124 eahbcdddjxxxj 
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