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NON-PRIMITIVE NUMBER FIELDS OF DEGREE EIGHT 
AND OF SIGNATURE (2,3), (4,2) AND (6, 1) 

WITH SMALL DISCRIMINANT 

SCHEHRAZAD SELMANE 

ABSTRACT. We give the lists of all non-primitive number fields of degree eight 
having two, four and six real places of discriminant less than 6688609, 24363884 
and 92810082, respectively, in absolute value. For each field in the lists, we give 
its discriminant, the discriminant of its subfields, a relative polynomial gener- 
ating the field over one of its subfields and its discriminant, the corresponding 
polynomial over Q, and the Galois group of its Galois closure. 

1. INTRODUCTION 

It is well known that, in degree eight, the minima for discriminants are only 
known for signatures (0,4) [7] and (8,0) [16]. For the other cases only partial 
tables of euclidean fields for the signatures (2, 3) and (4, 2) [11] are available. 

In this work, we give the table of non-primitive number fields of degree 8, of 
signature (2, 3) (resp. (4, 2), (6,1)) and of discriminant majorized, in absolute value, 
by 6688609 (resp. 24363884, 92810082). 

To establish these lists, we have explicitly constructed all non-primitive number 
fields of degree 8, of desired signatures and of discriminant within the previously 
chosen bounds, each field being defined by a polynomial with coefficients chosen 
in a convenient subfield. We have followed the method of explicit construction of 
relative extensions described in [12]. 

This paper is organized into several sections. Section 2 provides the notations 
and mathematical basis for the expression of relative extensions. In Section 3, we 
justify the choice of the bounds, which choice is related to lower bounds for discrim- 
inants with Odlyzko-Poitou-Serre local corrections [18]. The consequences of these 
lower bounds are gathered in a lemma and bring important simplifications in the 
computations. Section 4 is devoted to the description of computations which allow 
us to find by the number-geometric method all the non-primitive extensions of de- 
gree 8, of signatures (2, 3), (4, 2) and (6, 1) and of absolute discriminant smaller than 
the previously chosen bounds. We prove the existence of two non-isomorphic fields 
of discrimninant -5365963 and two non-isomorphic fields of discriminant -6647387. 
These are the only fields in the limits of the given tables which are not characterized 
by their discriminant. Finally, we study the Galois group of the Galois closure of 
each field in the tables. 
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2. NOTATIONS 

If K is a number field of degree n and of signature (r, s), we denote by dK its dis- 
criminant, by ZK its ring of integers and by J(K) the set of distinct 
Q-isomorphisms of K into C. For every ( in K, we denote by _(1), , ((r its 
real conjugates, and by ,(r+l) ,(r+2) = $,r+?) ., ,(n- 1) , () (= (n-1) its complex 
conjugates, and we set Tj(,) = >I 1(i) Ij. 

Let K be a number field of degree n, an extension of degree m of a subfield F 
of degree n'. For a E J(F) we set 

J,(K) = {T E J(K): T/F = C} 

Clearly, 

J(K)= U Jo (K) 
oEJ(F) 

For 0 an integer of K we define 

Tr,,K/F(O) T(). 

TEJa (K) 

If we assume K = F(0), then 0 is a root of a polynomial P(x) E ZF[X], 

P(x) = xm? + aix-nI + +a 

If we denote by P,(x), a C J(F), the polynomial 

P,(x) = xm +? (al)xm- ? + +? (am), 

then the polynomial f(x) = H|,EJ(F) PJ(x) has integer coefficients and is either 
irreducible or a power of an irreducible polynomial. Let 01, .. ., On be the roots of 
f (x) ordered so that 01, ... , Om are the roots of P(x). For each natural number j 
we consider the power sums 

m 

s= sj(0) = i 
i=l1 

Clearly, 

n' n 

ii) I < lioi i (2 < j < m). 
i=l ~~i=l1 

Let 6 be the relative discriminant of K over F, and N the absolute norm in the 
extension F/Q. The discriminants of K and F are then related by 

(1) IdKI = JdFJmN(6), 

and if r denotes the number of complex places of K whose restriction to a place of 
F is real, a result of J. Martinet [13] asserts that 

(2) N(6)- 0 or (-1)77 (mod 4). 

We recall that a relative discriminant is the product of an integer ideal 8o of F by 
the set of infinite places ramified in K/F: 6 = 608oc ... oc ,. 
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3. LOWER BOUNDS FOR DISCRIMINANTS 

The tables of lower bounds for discriminants [5] indicate that the absolute value 
of the discriminant of a number field of degree 8 and of signature (2, 3) (resp. (4, 2), 
(6,1)) is larger than 3404641 (resp. 11666965, 42098660). This lower bound, which 
is obtained in the absence of all hypotheses on the decomposition of prime ideals in 
the extension K/Q, can be improved by taking into account the local corrections 
corresponding to small prime numbers [18]. Assuming that the prime number p is 
divisible by a prime ideal of K of norm pff, we find the following lower bounds for 
each fixed signature. 

Lower bounds 

p f (2,3) (4,2) (6,1) 
2 1 11725962 42765015 162569966 
2 2 6688609 24363884 92810082 
3 1 8336752 30393069 115852707 
3 2 4160401 14972957 52529001 
5 1 5726300 20829049 79259702 
7 1 4682933 16957023 64309248 

In order to find all the number fields K of degree 8, of signature (2,3) (resp. 
(4,2), (6,1)) and of absolute discriminant dK such that IdKI < M, we choose 
M = 6688609 (resp. 24363884, 92810082). This choice is justified by the fact that 
we can apply the following lemma to these fields. 

Lemma 1. Let K be a number field of degree 8 over Q, of signature (2, 3) (resp. 
(4, 2), (6,1)) with IdKI < M. Let 0 be an integer of K of absolute norm a. If 
a = 2x3Yc, c prime with 2 and with 3, then x = 0 or x > 3, and y = O or y > 2. 

This lemma is an immediate consequence of the lower bounds given above. 

4. DESCRIPTION OF THE COMPUTATIONS 

From now on, K denotes a non-primitive number field of degree 8, of signature 
(r, s) =(2, 3) (resp. (4, 2), (6,1)) and of discriminant dKsuch that dKI <M. The 
field K being non-primitive, it contains either a quartic subfield or a quadratic 
subfield. As we are concerned with the construction of lists of the non-primitive 
fields with IdKI < M, we must consider all the quartic subfields F (resp. quadratic 
subfields ?) whose signature (r', s') is compatible with that of K, that is to say, 
s > 2s' (resp. s > 4s') and whose discriminant satisfies ldFl M1/2 (resp. IdeI < 
MI/4). 

a) Quadratic extensions of quartic subfields. Each relative quadratic ex- 
tension of a quartic field may be defined by a polynomial of second degree with 
coefficients in the subfield. In this section we develop a method of computation 
which allows us to construct explicitly all the relative polynomials 

P(X) = X2+ bx +CE ZF[X] 

of which one of the roots 0 defines an octic field K of signature (r, s) such that 
K = F(0). The basic tool of this method is a generalization of the Hunter-Pohst 
theorem given by J. Martinet in [12]. 
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Theorem 1. There exists an integer 0 E K, 0 0 F, such that K = F(0) and 
8 

(3) 10(i) 12 < _ ? 
ITr,,K/F(0) 12 + B 

i=l crCEJ(F) 

where B (M/41dF )1/4. This inequality is also valid for all elements of K of the 
form 0 + a or -0, where a is any integer of F. 

To construct all polynomials P(x) of which one root 0 generates one of the desired 
fields K over F, we will work in the field F. We assume that the discriminant dF 
and an integral basis B {wi= 1,w2,w3,w4} of F are known. 

The knowledge of the ordinary and the strict class numbers of F as well as the 
use of certain simplifications and techniques gathered in the following lemma allow 
us to exclude several quartic fields. 

Lemma 2. For IdKI < M and N(80) > 1 we have 

(i) Max{7,3404641 dF -21} < N(8o) < 6688609ldF 1-2 (resp. 
Max{5,11666965 dF -2} < N(8o) < 24363884ldF -2, 
Max{7,42098660 dF -2} < N(80) < 92810082ldF -2). 

(ii) If N(60) = 5u with (u, 5) = 1, then IdK >5726300 (resp. 20829049, 79259702). 
(iii) If N(60) = 7u with (u, 7) = 1, then I dK >4682933 (resp. 16957023, 64309248). 
(iv) N(60) 7& 3u with (u, 3) = 1. 
(v) If 8o =H6 - ge, then ei = 1 for N(pi) -1 (mod 2). 

(vi) N(8o) is odd for the signatures (2, 3) and (6, 1). 

Proof. The assertions (i)-(iv) come from lower bounds for discriminants with local 
corrections and from formulas (1) and (2) for (i). The extension K/F is of relative 
degree 2; the ramification of a prime ideal p in the extension K/F is either wild 
or tame according to whether N(p) is even or odd. If N(p) -1 (mod 2), then the 
ramification is tame; hence ei = 1 and assertion (v) holds. To show assertion (vi), 
we notice that if N(p) = 2' (1 < i < 3) then the extension K/Q contains either an 
ideal of norm 2 or an ideal of norm 4; this case is excluded according to the lower 
bounds for discriminants with local corrections. Finally, if 2 remains inert in F/Q, 
since the ramification in K/F is wild, we should have N(0o) - 281, which leads to 
ldFl < 161 (resp. IdFl < 602). However, there exist no fields of signature (4,0) or 
(2.1) (resp. (4, 0)) with discriminant IdFl smaller than 275 (resp. 725) [9, 10]. D 

Construction of relative polynomials. The second part of Theorem 1 shows 
that the coefficient b of P(x) may be chosen of the form 

b = lwlw+ * * * + 1 4W4 with yi E {0,1} for i = 1, ... ,4. 

We notice that for a fixed value of b, the value of T2(0) is majorized by a real 
constant which only depends on the chosen value of b. On the other hand, if the 
root 0 of P(x) is a generator of the extension K/F, 0 + ay is also a generator of 
K/F for all ay in ZF; additionally (3) remains valid if we replace 0 by 0 + -Y, since 
TrK/F(O + -y) -b + 2y :=-3. If we represent /3 by means of the basis B of F 
in the form /3 E41 /3iwi, then T2 (/3) becomes a positive definite quadratic form 
q(v) = vAvt in the coefficients i3,. .. ,/34 (v (l, . .. ,/34)),where A = (mij) and 

4 

mij w =1 w (1 < ij < 4) 

k=1 
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There exists at least one choice of ay such that T2(f3) will be minimum. We obtain 
the possible 3, first using the algorithm A [17] to decompose the matrix A into a 
sum of squares by the Cholesky method, then using the algorithm B [17] to compute 
all the solutions 3 subject to q(v) < E (E := T2(b)). Among the 3 values, we only 
keep those which verify 3 b (mod 2ZF). We will later denote by b the value of d3 

for which T2(f3) is minimum, and we set C =T2(b) + B. 
Once a convenient value of b is determined, we determine the possible values 

of c from the second relative symmetric function s2 yiwi and from the 
inequalities 

4 

S 12 < T2(0)2 < C2. 

i=l1 

The possible values of the integer s2 are obtained by letting Yi, . . , Y4 run through 
the integer values for which q(yl,..., Y4) ? C2 and such that s2 b2 (mod 2ZF). 
For each value of s2 obtained in this way, we evaluate in ZF the integer b2 - s2. 
If all the coordinates of the latter are even, we then obtain a value of c; namely, 
c = (b2 - s2)/2. 

We start by verifying whether P(x) can define a field of the desired signature. 
This question is solved by simply examining the sign of the discriminant A = b-2 4c 
of each real conjugate of P(x). We considerably reduced the number of polynomials 
P(x) to be considered by using the inequality 

4 

EI(i) I < 2B, 

which follows from inequality (3) and from the equality 

101 + 0212 + 10, - 02 2 = 2(0?2 +02 1) 

where 01, 02 are complex numbers. 
We compute L = IN(A)I; if L is squarefree, the relative discriminant 6 has a 

norm L and the computation of L permits the elimination of all polynomials with 
L > M/d2. The computation of the roots of the four conjugate polynomials is only 
necessary for r = 4 and r' = 2 to test the irreducibility of the polynomial P. For 
r = 4 and r' = 4, the polynomials which are squares of irreducible fourth degree 
polynomials are eliminated. 

For the computation of the discriminant of K, we have first determined the 
relative discriminant 6, by using a theorem on ramification in Kummer extensions, 
then deduced the value dK (-1)sdFN(6). Let us now mention two examples of 
computation of 6 and dK. 

* Let K = F(0) and F Q(p), where 0 is a root of 

P(X) = X2 + (-1 + P2 _ P3)X + (_P + P2) 

and p is a root of 

g(X) = X4-2x3 2 x - 1. 

We have dF = dg =-475, dp _ 3p - 3p2 + P3 (mod g(p)) and N(dp) =-19. 
Then g(x) _ (x + 12)(x + 6)(x + 9)2 (mod 19) and dp = P(P + 6)(p + 10) 
(mod 19). It follows that the relative discriminant 6 is equal to poo1, where P 
is the prime ideal (19, p + 6) of F over 19 and dK = _(_ 475)219 = -4286875. 
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* Let K = F(O) and F = Q(p) where 0 is a root of P(x) and p a root of g(x): 

P(X) = X2 + (_p _ p2 + P3) and g(x) =x 4-x3-1. 

We have dF= dg =-283, dp 4(p + p2 _ p3) and N(dp) = 256. Then 
2ZF = , with N(g) = 24 and v,(dp) = 2. Notice also that 

P(X) (X + P3 + 1)2 (mod g) 

We can obtain an (x + p3 + 1)-development of the polynomial P(x) as 

P(X) (X + P3 + 1)2 + (-2P3-2)(x + P3 + 1) + (4P3 + 2). 

All the coefficients are divisible by p and have a valuation equal to 1, proving 
that the polynomial is an Eisenstein polynomial and p is fully ramified in 
K/F. Then 6 = P2 and dK = (-283)2256 = 20502784. 

To decide if two equal discriminants correspond to the same field up to an iso- 
morphism, we determine whether the relative ideal discriminants are conjugates. 
We obtain the following results. 

Proposition 1. Within the limits of Table 1, there exist, for the signature (2,3), 
two nonisomorphic fields of discriminant -5365963 and two nonisomorphic fields 
of discriminant -6647387. All other fields in Table 1 are characterized by their 
discriminant. 

A second proof of this proposition can be given by decomposing a suitable prime 
number in each of the two fields with the same discriminant. 

Denoting by KI, K2 the two fields with the same discriminant in the order in 
which they appear in the table, and by fl, f2 the respective polynomials defining 
these fields, we obtain the following decompositions, where dK is fixed: 

* dK = -5365963: 

f (X) =x8?+ 3x7 X6-X5 + 4x4 + 4x3 + x2 + x- 1, 13ZK1 = 8 1g1 6, 

f2(X) =X8- 4X7 + 8x6 - 13X5 + 15x4 - 13X3 + 8X2 - 4x + 1, 13ZK2= P2 P3P13; 

* dK =-6647387: 

f (X) =x8-4X7 + 5x6 - 4X5 + 4x4- x3 -X -1, 11ZK2 P1IPP3 P3 

f2(X) =x8- 2X6 + x5 + 5x4 - 7X3 + 3X + x - 1, 11ZK1 =P2P6- 

We indicate, in the list below, the polynomials defining the quartic fields used 
in the computations. These polynomials are obtained by applying the POLRED 
algorithm [4] to the polynomials given in the tables of Godwin [9, 10]. We note 
that the computational time when using these polynomials is very low as compared 
with the computational time when using polynomials taken directly from Godwin's 
tables. 

x4 -x3 - 1 -283 X4 - X3 + 2x - 1 -275 X4 - X3 - 3X2 + x + 1 725 
x - x3 + X2 + x - 331 x4 - X2 _ 1 -400 X4 - X3 - 4X2 + 4x + 1 1125 
x - x3 + x2 -_ X- 1 -563 X4 - 2x3 + X2 + 2x - 1 -448 x4 - 6X2 + 4 1600 
x4 -x3 - 2x + 1 -643 X4 - 2x3 + 2X2 - x - 1 -475 X4 - 7X2 + 11 4400 
x - 2X3 + 3X2 _ 1 -976 

Among the k conjugate extensions found we only give one conjugate field for 
each subfield. 
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b) Quartic extensions of quadratic fields. Let K be an octic number field, 
an extension of degree 4 of a quadratic subfield ? = Q( 0). Theorem 2.8 of [12] 
asserts that there exists an integer element 0 E K, 0 f ?, such that 

8 
E 40(i) 12 < (c 2 + /13)2 8 + B, 

where B = (4M/3dp)1/6 and Tru,K/I(0) = (oil + i3, 2)/2 is an integer of ?. 
The field ?(0) is a non-trivial extension of ? and thus an intermediate field 

between ? and K. Since the study of the fields K containing a subfield of degree 
4 over Q has already been made in Section 4.a, we can stipulate without loss of 
generality that 0 is a primitive element of K/Q. Let f (x) E Z[x] be the minimal 
polynomial of the integer 0 over Q. Then f (x) decomposes in Zp [x] into a product 
of two conjugate irreducible polynomials 

P(x) =x4 +alx3+---+a4 and P'(x) = x4+ua(al)x3+..+uc(a4). 

Notice that each integer -y in ? can be written as -y = (ae + ,3A0)/2 with ae-13 
(mod 2) for D- 1 (mod 4) and ae even for D- 2 or 3 (mod 4). We denote this 
integer by the couple (ca, /). 

The fact that the inequality (4) remains valid if we replace 0 by -0 or 0 + A 
for an arbitrary A E Zp and the fact that P and P' define the same field (up to 
conjugacy) allow us to choose (ci,, i3) from the set 

{(0, 0), (1, 1), (2,O), (2,2), (3,1), (4,O), (4, 2)} for D _1 (mod 4) 

and from 

{(0,0O), (O, 1), (0,2), (2, O), (2,I1), (2, 2), (4, O), (4, 1), (4, 2)} forO=_2 or 3 (mod 4). 

For each of these pairs, we start by computing an upper bound for T2(0) by (4). 
We then compute the upper bounds for Tj (0) with j = -1,3,4 using Theorem 4 
of [15]. Finally, we evaluate the other coefficients by induction with the help of 
Newton's formulas. The values of sj = (aj + ,Qj /)/2 must satisfy not only the 
inequalities 

sj + Iua(sj)I = max{ Ia, /3j I < Tj}(0) (2 < j < 4) 

but also the congruences 

j-1 

si -5aisj-i (mod jZ_) (2 < j < 4). 

In spite of the fact that we have obtained all the polynomials of interest to us, 
we can further shorten the list of these polynomials. Indeed, the inequality 

IN(a4)1 < (T2(0)/8)4, 

which follows from the inequality between arithmetic and geometric means, and 
the fact that the values taken by N(a4) must be compatible with the conclusions 
of Lemma 1, makes it possible to reduce considerably the number of polynomials. 
The inequality 

leI + l(e)l < 4B, 
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where e = 3a' - 8a2, which follows from the inequality (4) and from 

k 2 k 2 k 

(k-1) ( Oi) -2k o joj + S,1 = k5E1,1 2, 
l<i<j<k i=1 i=1 

where 01,... ,k are complex numbers, allows the elimination of several values of 
a2. Furthermore, for the signature (6,1), since one of the relative polynomials must 
have only real roots, its coefficients must satisfy Newton's inequalities. So either 
we have 

3a2 - 8a2 > O, 4a2-9ala3 > 0, 3a2-8a2a4 > O, 

or the conjugates in ? of these numbers are all positive or null. 
Once all the coefficients of P(x) are obtained, we start by ensuring that we have 

Iu(a3)a4 + a3u(a4)I < N(a4)T_i(0). 

We verify that P has only integer coefficients when p, = 0. We compute the 
relative discriminant dp of the relative polynomial from the formula 

27dp = 4(a 2- 3ala3 + 12a4)3 

- (2a3 - 72a2a4 + 27a2a4- 9ala2a3 + 27a3)2. 

We then make sure that the sign of N(dp) coincides with that of (-1)r1. If N(dp) is 
squarefree, then we must have IN(dp)I < M/dc. We notice that for r = 6, denoting 
by P the relative polynomial of positive relative discriminant, we have 

4 5 11?+0,2 =4+t2sl+s2. 
i= 1 

The use of the inequality between arithmetic and geometric means yields 

IP(:F1) = [(4 + 2s, + S2)/4]2, 

giving an important reduction of the number of polynomials to consider. 
Some simplifications can also be made for a1 = 0; for /, or for a1 = 0 and a3 = 0. 

To solve the question of signature of the field we have used Sturm's theorem only for 
the relative polynomials with positive discriminants. We have later computed the 
roots, on the one hand to estimate E8_= 10,12 (which we compare with the bound 
on T2(0) given by geometric methods, allowing the elimination of a great number 
of polynomials) and on the other hand to test the irreducibility of the polynomial 
P(x) in Zp [x]. The test consists of determining whether there exist divisors of 
degree 1 or 2 of P(x) in Z [x]. For r = 6 (resp. 2) we have 8 (resp. 0) possibilities 
for the factors of degree 1 and 6 (resp. 2) possibilities for the factors of degree 2. 
For r = 4 we have 4 (resp. 2) tests if dp < 0 and no (resp. 6) tests if dp > 0 
for the factors of degree 1 (resp. 2). If P is irreducible in Ze [x], then the same is 
true for f(x) in Z[x], and we have K = Q(0) and [K: ?] = 4. We only need to 
compute the discriminant dK to see if K lies within the limits of the search. When 
N(dp) is squarefree, we immediately get dK = d4N(dp); otherwise we compute the 
discriminant of the field K by means of the Zassenhaus "ROUND 2" algorithm in 
a version due to D. Ford, implemented in GP PARI [2]. As we obtained, in general, 
more than one polynomial for a given discriminant, we have used the POLRED 
algorithm [4] to decide whether or not the polynomials define the same field up to 
isomorphism. 
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TABLE 2 

dK DC al a2 a3 a4 dp N(dp) 

(r, s) = (2,3) 
-4286875 5 (-1, -1) (-3,1) (2,0) (3, -1) (-3097,1387) -6859 
-4461875 5 (-1, -1) (2,0) (3, -1) (1, -1) (343, -171) -7139 
-4616192 8 (-2,0) (2,1) (-2,0) (2,0) (-162,62) -1127 
-4960000 5 (-2, -2) (4,2) (-2, -2) (1,1) (-224, 128) -7936 
-5369375 5 (2,0) (-3, 1) (-1, 1) (3, -1) (194, -120) -8591 
-5756875 5 (-1, -1) (-1, 1) (0,0) (1, -1) (91, -95) -9211 
-5781875 5 (-1, -1) (2,0) (-1, -1) (2,0) (79, -93) -9251 

-5856875 5 (-1, -1) (-3, 1) (-1, 1) (2,0) (19,87) -9371 

(r,s) (4,2) 
15243125 5 (-1, -1) (-2,0) (2,0) (3, -1) (1999, -883) 24389 
16643125 5 (-1, -1) (-1,1) (-1,1) (-2,0) (-369,77) 26629 
17238125 5 (-1, -1) (-2,0) (1,1) (-1, 1) (-1393,605) 27581 
17318125 5 (-2, -2) (-2,0) (5,3) (-1, -1) (7219,3225) 27709 
19268125 5 (-4,0) (-1,1) (1, -1) (3, -1) (-1089,461) 30829 
19360000 5 (0,0) (-3,1) (0,0) (2,0) (368,48) 30976 
20268125 5 (-2, -2) (-1,1) (1,1) (-1, -1) (-3029, -1345) 32429 
20493125 5 (-1, -1) (1,1) (1, -1) (1, -1) (-409,85) 32789 
20993125 5 (0,0) (-3,1) (1,1) (1, -1) (-369,19) 33589 
21550625 5 (-1, -1) (0,0) (-2,2) (-3,1) (-4862,2168) 34481 
22974464 8 (-4, -1) (4,1) (-2, -1) (2,1) (-262, -76) 5609 
23040000 5 (-4, 0) (2,0) (6.2) (1,1) (-9024, -4032) 36864 
23040000 8 (-2, -2) (6,1) (-2, 2) (2,0) (-450, -150) 5625 

23643125 5 (-3, -1) (0,0) (3,1) (-3, -1) (-3521, -1565) 37829 

(r,s) = (6,1) 
-68856875 5 (-2,0) (-5, -1) (1,1) (3,1) (771,455) -110171 
-73061875 5 (-4,0) (-3, -1) (5,1) (1,1) (1747,839) -116899 
-74671875 5 (-3, -1) (-1,1) (-2,2) (-3,1) (-5085,2295) -119475 
-74906875 5 (-1, -1) (-2, 2) (-2,0) (1, -1) (379, -353) -119851 
-84356875 5 (0,0) (-3, -1) (1, -1) (-1,1) (-961,541) -134971 

-86606875 5 (-1, -1) (-1, -1) (1,1) (-4,2) (-21469,9607) -138571 

The number fields of degree 8, of signature (2, 3) (resp. (4, 2), (6,1)) and of 
discriminant IdKI smaller than 6688609 (resp. 24363884, 92810082) containing a 
quadratic subfield found in this way are listed in Table 2. 

CONCLUSION 

Theorem 2. There exist up to isomorphism exactly 18 (resp. 21, 6) non-primitive 
number fields of degree 8 and of signature (2,3) (resp. (4,2), (6.1)) and of discrimi- 
nant smaller than 6688609 (resp. 24363884, 92810082) in absolute value. Except for 
the fields given in Proposition 1, all the other fields in the tables are characterized 
by their discriminant. 

Computation of Galois groups. To compute the Galois group of each polyno- 
mial represented in Table 3, we have used the method proposed in [1]. Through this 
method we can obtain the Galois group as a strong generating set, whose elements 
are permutations on all roots of the given polynomial. The notation for the group 
names is similar to that of Butler and McKay [3]. Groups preceded by "+" are 
groups of even permutations. 
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TABLE 3 

(r, s) (2,3) 

-4286875 = -54 193 -475 x8 - 3X7 + 4x6 _3x5 + 3x4-6x3 + 6x2 -4x + 1 49 T6 

-4461875 =-54 112 59 -275 X8-X7-2X6 + 2x4 + 2x3-x2 -x-1 1 T30 * 
-4616192 =-212 7223 -448 x8-2X7-X6 + 4x5-2X4-2X3 + 2x2 _ 1 1 T35 
-4711123 = -43.3312 -331 x8 - - x5 + 2x3 + x - 1 1 T23 * 

-4725251 = -59.2832 -283 x8 - 4X6 - 2X5 + 7x4 + 5x3 - 3X2 - 4x - 1 1 T23 

-4960000 = -28 5431 -400 x8 - 4X7 + 7x6 _ 1OX5 + 8x4 -4X3 + 2x- 1 1 T35 
-5149367 = -47.3312 -331 x8 + 3x7 + 6x6 + 9x5 + 9x4 + 9x3 + 6x2 + 3x + 1 1 T23 
-5365963 = -67.2832 -283 x8 + 3x7 + x6- 5 + 4x4 + 4x3 + x2 ? - 1 1 T23 * 

-5365963 = -67.2832 -283 x8 - 4X7 + 8x6 _ 13X5 + 15x4 - 13X3 + 8x 2- 4x + 1 1 T23 * 

-5369375 =-54 112 71 -275 x8 + 2x7-2X6 - 4X5 + 3x4 4+ 2x3 - 3x2 x + 1 1 T30 * 
-5756875 =-54 61.151 5 x8-x7-2X6 + 3x5-3X3 + 2x2 - 1 1 T47 * 

-5781875 =-54 11.292 725 x8-x7 + x6-2X5 + x4-2X3 + 2-_x + 1 1 T35 
-5856875 = -54 9371 5 x8 - x7 - 4X6 + 3x5 + 6x4 -2X3 - 4X2 _ x + 1 1 T47 
-6022411 = -19.5632 -563 x8 -7 - 5X6 + 3x5 + 9x4 -3 - 4X2 - 2x - 1 121 T23 
-6464099 = -59.3312 -331 x8 - 7- 2X6 + 4x5 - 2x4 + 3x3 - 3X2 - 1 1 T23 
-6647387 =-83.2832 -283 x8 -4X7 + 5x6 4X5 + 4x 4-x3-x2-1 1 T23 
-6647387 = -83.2832 -283 x8 - 2X6 + x5 + 5x4 - 7X3 + 3x2 + x-1 1 T23 

-6668032 = -28 7.612 -976 x8 - 3X6 + 2x4 + 2x3 - 2x - 1 1 T23 

(r, s) = (4,2) 

15243125 = 54 293 725 x8 + 7 - 3X6 3X5 + 3x4 + 6x3 -2X2 -3x + 1 7 T17 

15297613 = 37.6432 -643 x8 - 2X7 + x4 + 5x3 - - 4x - 1 1 T23 * 

16324589 = 149.3312 -331 x8 -2X7 - 3X6 + 5x5 + 5x4-6x3 -x2 + 3x- 1 1 T23 
16643125 = 54 26629 5 x 8-x 7-2X6 + 2x 5-x3 + x + 1 1 T47 
17238125 = 54 27581 5 x 8-x7 3X6 + 2x5 + 2x4 + 2x3 -3x-1 1 T47 
17318125 = 54 112 229 -275 x8 -7 3X6 + 5x5 + 3x4 -llx3 + 8x-1 23 T35 
18340381 = 229.2832 -283 x8 - 4X6 + x5 + 5x4 -3 - 4X2 + 1 1 T23 
18660737 = 233.2832 -283 x8 - 3X6 - 4X5 + 5x4 + 4x - 3x + 1 16 T23 
19268125 = 54 30829 5 x8-4X7 + 3x6 + 3x5-4X3-X + 1 1 T47 
19360000 = 2854 112 4400 x8 - 3X6 + 3x4 - 3x2 + 1 1 +T18 
20262517 = 11.23.2832 -283 x8 - 4x7 + 5x6 - 4x5 + 5x4 + x3 - 7X2 + x + 1 9 T23 
20268125 = 54 32429 5 x8 - 2X7 - 5X6 + 7x5 + 2x 4- 7X3 + 2x2 + 2x -1 1 T47 
20493125 = 54 32789 5 x8-x7 + 3x5-3X4 + 2x2 - 2x-1 1 T47 
20502784 = 28 2832 -283 x8 - x6 + 4x4 - 4X2 + 1 1 +T39 
20993125 = 54 33589 5 x8 - 3X6 + x5 + 2x4 -4X3 + 3x- 1 1 T47 
21543941 = 269.2832 -283 x8 + x7 - 6X6 - 5X5 + lox4 + lox3 - 4X2 - 5Sx - 1 1 T23 

21550625 = 54 292 41 725 x 8-x 7-x 6-2X5 + 3x4 + 4x3 - 4X2 - 2x + 1 1 T35 
22974464 = 212 71.79 8 x8 -4X7 + 6x6 -6X5 + 4x4 -x2 + 2x- 1 1 T47 
23040000 = 212 54 32 1600 x8-2X7-X6 + 4x5 + 5x4-8X3 - 5X2 + 6x-1 89 +T1, 
23643125 = 54 11.19.181 5 x8 - 3X7 + x6 + 3x5-5X4 + 2x3 + x2-2x + 1 1 T47 

24212981 = 13.17.3312 -331 x8 - x7 + 2x6 + x5 - 7x4 + 5x3 + 3x2 _ 4x + 1 1 T23 

(r, s) = (6,1) 

-68856875 = 54 292 131 725 x8-2X7 - 4X6 + 6x5 + 7x4-3X3-6x2-x + 1 1 T35 
-73061875 =54 292 139 725 x8 + 4x7 + x6 - 11X5 - 8X4 + 7x3 + 6x2 _ 1 1 T35 
-74671875 =34 5659 1125 x 8-x 7-66 + 3x5 + 9x 4-4X3 - 4X2 + 2x + 1 1 T27 
-74906875 = 54 119851 5 x8 _ 7 - 3X6 + 45-2X4 -X3 + 5x2 _x -1 1 T47 
-84356875 =5 4 71.1901 5 x8 - 3X6 + x5 - 4X3 + 3x2 + 2x - 1 1 T47 
-86606875 = 54 138571 5 x8 - x7 - 3X6 + 2x5 -x4 + 6x3 + 3x2 - 7x-1 1 T47 

We finally notice that the norm of the relative index is equal to 1 for all the 
fields given in Tables 1 and 2. The final results are given in Table 3, where we find 
(from left to right): the field discriminant and its decomposition; the discriminant 
of the fixed subfield; the polynomial defining the extension K/Q, corresponding to 
the relative polynomial given in the previous tables; its index; and the Galois group 
of the Galois closure of the extension K/Q. 

An asterisk (*) denotes the Euclidean fields discovered by A. Leutbecher [11]. 
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