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ON FACTOR REFINEMENT IN NUMBER FIELDS 

JOHANNES BUCHMANN AND FRIEDRICH EISENBRAND 

ABSTRACT. Let (9 be an order of an algebraic number field. It was shown 
by Ge that given a factorization of an 0-ideal a into a product of 0-ideals it 
is possible to compute in polynomial time an overorder 0' of 0 and a gcd- 
free refinement of the input factorization; i.e., a factorization of aC' into a 
power product of 0'-ideals such that the bases of that power product are all 
invertible and pairwise coprime and the extensions of the factors of the input 
factorization are products of the bases of the output factorization. In this 
paper we prove that the order (9' is the smallest overorder of 0 in which such 
a gcd-free refinement of the input factorization exists. We also introduce a 
partial ordering on the gcd-free factorizations and prove that the factorization 
which is computed by Ge's algorithm is the smallest gcd-free refinement of the 
input factorization with respect to this partial ordering. 

1. INTRODUCTION 

Let 0 be an order in an algebraic number field K and let a be an 0-ideal. 
Important tasks of algorithmic algebraic number theory are to find the maximal 
order Omax of K and the factorization of the extension ideal aOmax into a product 
of prime ideals of Omax. For both tasks no polynomial time algorithms are known. 
Suppose that a factorization 

k 

(1) a = fJ bie 
i=1 

of a is known. The bi are 0-ideals and the exponents ei are positive integers, 
1 < i < k. The factor refinement algorithm of Ge [Ge93], [Ge94] computes in 
polynomial time a gcd-free refinement a0' = HI1 cf3 of (1), with 0' D 0 and 
with invertible pairwise coprime 0'-ideals cj, such that the 0'-ideals bi0' of the 
input factorization (1) are power products of the 0'-ideals cj for 1 < j < 1 and 
1 < i < k. In this paper we characterize the output of the refinement algorithm as 
the unique minimal element in a certain partial order derived from the input. Our 
result extends a theorem of Bach, Driscoll, and Shallit [BDS93] from Z to arbitrary 
algebraic numbers. 

We formulate the problem and our result more precisely and in a more general 
setting. Let R be a Dedekind domain with field of fractions Q and let K be a finite 
extension of Q. Omax shall denote the integral closure in R in K. An order 0 of 
K is a subring of Omax containing R with field of fractions K. 
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Let a be an 0-ideal and assume that a can be factored as in (1) into a power 
product of 0-ideals bi, 1 < i < k. The factorization (1) will be written as F = 
(O, (bl,el), ..., (bk,ek)). Wecall 0 the order of F. The bases of F are the bi, and 
the ei are the exponents of F for 1 < i < k. We assume that in such a factorization 
all the bases are different from 0 and {O}. We say that two factorizations are 
equal if their orders are equal and the sequences of pairs (basis, exponent) are equal 
after appropriate reordering. We call a factorization F' = (0', (bI, e/), ... , (b/, e)) 
a refinement of F if the following conditions are satisfied. 

1. F' is a factorization of a0', where a = Ilk= b , i.e., 

aO' = fl(bi)et 
i=1 

2. The order 0 of F is contained in the order 0' of F', i.e., 0 C 0'. 
3. The extension of each basis of F in 0' is a product of the bases of F'. This 

means that for 1 < i < k there is a sequence (fjj)1<j<j of non-negative 
integers such that 

bi0' = fJ(b;) 
j=1 

If F is a refinement of F, we write F < F'. The factorization F of a is called 
invertible gcd-free if the bases bi are invertible 0-ideals for 1 < i < k and if they 
are pairwise coprime, i.e., bi + bj = 0 for 1 < i < j < k. Ge [Ge93], [Ge94] proved 
that an invertible gcd-free refinement of F can be computed in polynomial time in 
the case R = 2. 

In this paper we prove that < is a partial ordering on the set of all invertible gcd- 
free factorizations. We show that there is exactly one maximal invertible gcd-free 
factorization of a, namely the prime ideal factorizatiton of aOmax in 0max* We also 
show that a given factorization F of a has exactly one minimal invertible gcd-free 
refinement and that this minimal invertible gcd-free refinement is computed by Ge's 
algorithm. 

2. PRELIMINARIES 

Throughout, let R denote a Dedekind domain with field of fractions Q, K a 
finite algebraic extension of Q, and 0 an order in K. Let a and b denote fractional 
0-ideals. Their sum 

a + b = {c+13: a E a,/3 E b}, 

their product 

ab = a- b = {(%/3C : S c a x b finite}, 
(R ) c- s 

and their quotient 

a: b = {a E K: aga C b} 

are again fractional 0-ideals. If R = Z, those can be computed in polynomial time. 
The fractional ideal a: a is an order 0' of K. It it called the ring of multipliers of 
a. That ring is the largest order 0 in K such that a is a fractional (0-ideal. It is 
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also the smallest order 0 in K such that the extension a(0 is a fractional invertible 
(0-ideal. 

If a is a proper 0-ideal, then by the lying over theorem aOmax is a proper (Omax- 

ideal. The length of an Omax-ideal a shall be the sum of the exponents in the unique 
prime power representation of a. 

3. THE REFINEMENT ALGORITHM 

We present an algorithm for computing an invertible gcd-free refinement of a 
factorization of an ideal. It is very similar to the algorithm of Ge [Ge93], [Ge94]. 
The idea is that the algorithm computes better and better refinements F' of the 
input factorization F. In each round the algorithm checks whether the factorization 
F' is already invertible gcd-free. Suppose that the algorithm finds a pair (bW, b) of 
bases of F' such that i 7 j and c = b' + b' is different from the order 0' of F'. If 
c is an invertible O'-ideal, then the algorithm divides the bases b' and b' by c and 
inserts the new basis c. If c is not invertible, then the algorithm replaces the order 
0' by the ring of multipliers of c. It also replaces the bases bi by their extensions 
in the new 0'. Then the division by c' and the insertion of c are carried out. 

In the algorithm we denote by ring-ofimult(a) the ring of multipliers of an 0- 
ideal a. 

Algorithm 3.1. 

Factor refinement for ideals in number fields 

INPUT: A factorization F = (0, (b1, el), . . ., (bk, ek)) of an 0-ideal a. 
OUTPUT: An invertible gcd-free refinement F' = (O', (bk, el), ... , (b, e')) of F. 

(1) (9, Ek= ring-of-mult (bi) 
(2) for (i = 1,i < k,i+ +) do 
(3) b' = bj0' 
(4) od 
(5) 1 = k 
(6) while (There exists i, j E {1, . . . ,1} with i 74 j and c = b' + b' 74 0') do 

(7) if (c: c 74 0') then 
(8) 0/'=c:c 
(9) for (i = 1,i < l,i++) do 

(10) b/ = biO' 
(11) od 
(12) fi 
(13) Delete (b/,e/), (b, e/) in F' 
(14) Insert (b/ (0/': c), e/), (c,e/ + e), (b/ (0': c),e/) in F' 
(15) Delete all pairs (b/, e') with b/ = 0' in F' 
(16) Update 1 
(17) od 
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Theorem 3.2. Algorithm 3.1 terminates with the correct result after at most 
length(aOmax) refinements steps. 

Proof. It is easy to verify that any factorization F' which is computed in Algorithm 
3.1 is a refinement of F. Also, upon termination of Algorithm 3.1, the factorization 
F' is invertible gcd-free. Hence, it suffices to prove that the algorithm terminates. 
This will be done now. 

In Algorithm 3.1 set 

i=l1 

Then we have 

length(aOmax) = length II 
t(Jmax) - 

Hence 

S < length(aOmax). 

Analysis like the one in [Ge93] shows that in each refinement step the positive 
integer S is increased by at least 1. Therefore, the number of refinement steps is 
bounded by length(aOmax). ? 

4. THE OUTPUT OF REFINEMENT ALGORITHM 

In this section we characterize the output of refinement Algorithm 3.1. We first 
prove that the relation < defined in the introduction is a partial ordering on the 
set of all invertible gcd-free factorizations of a. 

The proof of the following lemma can be found in [ZS58, p. 177]. 

Lemma 4.1. Let b1, b2, c be ideals of a comnmnutative ring with unit R with b1 + c = 

b2 + C = R. Then b1b2 + c= R. 

Corollary 4.2. Let (bl1, , bk) be a finite sequence of pairwise coprime ideals of 
a commutative ring with unity R and let (ei)1<i<k and (fi)l<i<k be sequences of 
non-negative integers. Then 

k k k 

lii e + ] - boi = I| bmin{et f%} 
il i=l i=l 

Proof. It follows by induction from Lemma 4.1 that 

k k 

J be,%-min{e_,f%} + fJ f%min{e%,j} - f 
i=l i=l 

If this equation is multiplied by Ik=l blMin{e%,f%} we obtain the desired result. E 

Corollary 4.3. Let R be an integral domain. If a is a power product of pairwise 
coprime invertible ideals b1, ... , bk of R, which are all strictly contained in R, then 
the exponents in that power product represention are uniquely determined. 
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Proof. Suppose we have two different factorizations of a 
k k 

fJ be - 171 [oft 

i=l i=l 

into pairwise coprime invertible R-ideals bl,... , bik which are all different from R. 
Assume without loss of generality that ei > fl. Then we have 

k k 

)e-l-fl I| [e-, | ot 
i=2 i=2 

If one adds the ideal b1 to the product on the left, then the result is b1. Adding b1 
to the product on the right yields R, which is a contradiction. D 

Theorem 4.4. The relation < is reflexive and transitive and a partial ordering on 
the set of invertible gcd-free factorizations. 

Proof. Reflexivity and transitivity are trivial. 
For symmetry let F and F' be invertible gcd-free factorizations, not necessarily 

of the same ideal. Assume that F < F' and F' < F. We have to prove that F = F'. 
Clearly the orders of F and F' are equal. Also, F and F' are factorizations of the 
same ideal a. We show that F and F' have the same bases. Since F is invertible 
gcd-free the bases of F are pairwise distinct. The same is true for F'. Let B be the 
set of bases F and let B' be the set of bases of F'. It suffices to prove that B' C B. 
Let b' E B'. Then b' contains an element b1 of B since otherwise we can write a 
as a power product of the ideals in B' - b' which contradicts Corollary 4.3. 

Also b' has a representation 

[/ 1 be(b) 

bCEB 

with e(b) > 0 for b c B. Let b c B with e(b) > 0. Then 

b, C b' C be(b). 

Since the elements of B are pairwise coprime this implies that b = b1 and Corollary 
4.3 shows that e(b) = 1. Hence b' = b. Finally, the equality of the exponents follows 
from another application of Corollary 4.3. E 

The following statement is easy to verify. 

Theorem 4.5. Among the invertible gcd-free factorizations of a there is a uniquely 
determined maximal one with respect to <. It is the prime ideal factorization of 
aOmax . 

We will now show that among the invertible gcd-free refinements of F there 

is exactly one minimal element with respect to the partial ordering < and that 

Algorithm 3.1 computes this factorization. 

Lemma 4.6. If F1 is an invertible gcd-free refinement of the input factorization F 
of Algorithm 3.1, then F1 is a refinement of any of the factorizations F' which are 
computed in the course of Algorithm 3.1. 

Proof. Let F' be the initial factorization computed in Algorithm 3.1 from F. Its 

order (9' is the smallest order (with respect to inclusion) such that the extensions 

of all bases in (9' are inlvertible. Since the extensions of the bases of F in the order 
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01 of F1 are products of the invertible bases of F1 they are invertible 01-ideals. 
This shows that 0' C 01. Also, since the bases of F' are simply extensions of the 
bases of F in the order 0' and because 0' c 01, it follows that their extensions in 
01 are still products of the bases of F1. 

Now assume that F1 is an invertible gcd-free refinement of a factorization F', 
which is computed before a refinement step starts. If a refinement step is necessary, 
then there are i, j E {1, ... I,1} such that i 74 j and c = b'+b' 74 0'. Suppose that c is 
not invertible. Then (9' is replaced by the smallest overorder in which the extension 
of c is invertible. But since the extensions bi(1 and bjOl are both products of the 
pairwise coprime basis elements of F1, it follows from Corollary 4.2 that this is also 
true for the sum bi + bj. Hence, this sum is invertible and this shows that the new 
0' is still contained in 01. Also the extensions of the bases in that new order are 
still products of the bases of F1 and so are their gcd's. This shows that F' < F 
still holds for the new F'. O 

Now we are able to prove the main result of this paper. 

Theorem 4.7. Among the invertible gcd-free refinements of F there is exactly one 
minimal element with respect to < and this factorization is the output of Algorithm 
3.1. 

Proof. The output F' of Algorithm 3.1 is invertible gcd-free and it follows from 
Lemma 4.6 that all other invertible gcd-free refinements of F are refinements of F'. 
This proves the result. E 
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