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ANALYSIS OF PSLQ, 
AN INTEGER RELATION FINDING ALGORITHM 

HELAMAN R. P. FERGUSON, DAVID H. BAILEY, AND STEVE ARNO 

ABSTRACT. Let 1K be either the real, complex, or quaternion number system 
and let O(]K) be the corresponding integers. Let x = (xl, . . . , xn) be a vector 
in IK". The vector x has an integer relation if there exists a vector m = 
(ml,.. ., mn) E C(K)', m#O& 0, such that mlxl + m2x2 + . . . + mfXl = 0. In 
this paper we define the parameterized integer relation construction algorithm 
PSLQ(r), where the parameter r can be freely chosen in a certain interval. 

Beginning with an arbitrary vector x = (xi,..., xn) E K-, iterations of 
PSLQ(r) will produce lower bounds on the norm of any possible relation for 
x. Thus PSLQ(r) can be used to prove that there are no relations for x of 
norm less than a given size. Let M. be the smallest norm of any relation for x. 
For the real and complex case and each fixed parameter r in a certain interval, 
we prove that PSLQ(r) constructs a relation in less than 0(n3 + n2 log Mx) 
iterations. 

1. INTRODUCTION 

Let EK be either the real, complex or quaternion number system and let OD(IEK) be 
the corresponding system of integers (i.e., ordinary integers, Gaussian integers, or 
Hamiltonian integers, respectively). Let x = (xi, . ., Xn) be a vector in Kn. The 
vector x has an integer relation if there exists a vector m = (ml, * , mn) E ?D(K)n 
m $& 0, such that mlxi + m2x2 + + mnxn = 0. 

In this paper we define the parameterized integer relation construction algorithm 
PSLQ(-r), which, compared with other integer relation algorithms in the literature, 
features superior performance and excellent numerical stability. The parameter -r 
can be freely chosen in the interval 1 < r < p, where p is 2 or vX2 depending on 
whether KI is the reals or complexes, respectively; if IEK is the quaternions take -r and 
p to be 1. We analyze PSLQ(-r) for these three number systems. We describe in 
detail some efficient Fortran multiprecision computer implementations of PSLQ(-r). 

Beginning with an arbitrary vector x = (X1,... , Xn) E Kn, a finite number of 
iterations of PSLQ(-r) will produce lower bounds on the (Frobenius) norm of any 
possible relation for x. The computation of such a lower bound constitutes a proof 
that x has no integer relations whatsoever of norm less than this lower bound. Any 
finite computation done with PSLQ or any other presently known relation finding 
algorithm can only prove that no small relation exists. Such an algorithm can 
construct an alleged relation based on inputs given to finite precision, but the proof 
that this alleged relation is a true relation for the real numbers is a separate matter. 

Received by the editor April 12, 1996 and, in revised form, June 9, 1997. 
1991 Mathematics Subject Classification. Primary 11A05, 11Y16, 68-04. 
Key words and phrases. Euclidean algorithm, integer relation finding algorithm, Gaussian 

integer, Hamiltonian integer, polynomial time. 

351 



352 H. R. P. FERGUSON, D. H. BAILEY, AND STEVE ARNO 

Let M. be the smallest norm of a relation for x. Define -y by the equation 
-r = 1/i/lp2 + l-/y2, where p = 2 for the real number field and p = XV'2 for the 
complex number field, and -r is as above. For each fixed parameter -r in the interval 
1 < r < p, we prove in the real and complex case that PSLQ(-r) constructs a 
relation in less than (n) log (-yn-lMx) iterations. This shows that PSLQ(-r) is 
'polynomial time' in the dimension and the number of bits of a smallest integer 
relation. Different choices of r or -y lead to different time and space requirements 
for the algorithm. 

For dimension n = 2 we prove that PSLQ(-r) will construct a relation of smallest 
norm Mx. We give examples in dimension n = 3, for some -r, for which PSLQ(-r) 
does not construct a relation of smallest norm Mx. However for any dimension 
n > 2, we do prove that any relation constructed by PSLQ(r) has norm less than 
or equal to an-2Mx. 

The 'polynomial time' and 'small norm' proofs given here are straightforward 
generalizations to the parameter r and to the complex numbers of the original 
'polynomial time' proofs which appear in Lagarias et al., [23]. We show, however, 
that the algorithm of [23] is distinct from any of these PSLQ(-r) algorithms. 

PSLQ(-r) was introduced by the authors [2] in 1991. PS refers to partial sums of 
squares, LQ to a lower trapezoidal orthogonal decomposition, and (-r) is a parameter 
defined as above. Since PSLQ(-r) was introduced it has been used to discover 
numerous previously unknown identities among real numbers. One example is 

- +... + ( l (k + 1)-3 
k=1 

= 4L5(1/2) -30 1n5(2) - 173 (5) - 12 7r4 In(2) 

+?k(3)ln2(2)+ 172In3(2) - 3 _ (3)_ 4 18 24i () 

where Ln(x) denotes the polylogarithm function EkxkkXn. See [3] for details. 
Another example is the following formula for 7r: 

?? 1 4 2 1 1 
=Z 16t48i(+j1 8i+4 8i+5 8i+6) 

This remarkable series permits one to rapidly compute individual digits from the 
hexadecimal expansion of 7r. See [4] for details. It was found by applying PSLQ(r) 
to the vector X = (X1, X2, , X8, 7r) where Xj = Zk>o 1/(16k(8k + j)). The 
smallest relation known, 

(4,0,0, -2, -1, -1,0,0, -1), 

yields the above 'base 16' formula for 7r. A next smallest relation known, 

(0,8,4,4,0,0, -1,0, -2), 

was subsequently discovered by Ferguson, and this relation yields a similar 'base 
16' formula for 7r. Together these two integral lattice relation vectors generate a 
two-dimensional lattice of relations of this 'base 16' type. It is conjectured that 
there are no further such relations outside this lattice. Note that 

(-8,8,4,8,2,2, -1,0,0) 

is in this lattice, so evidently X7 is integrally dependent upon X1,... ,X6. 
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Of course, a numerical discovery of a relation using PSLQ(-r) does not constitute 
a rigorous proof of the relation. However, in the wake of this numerical evidence, 
proofs have subsequently been found for many of these relations, including the 
above formula for 7r. See [3] and [4] for details. 

In the theoretical proofs in Sections 2, 3, 4, and 5, we will assume exact arithmetic 
over the real numbers augmented by comparisons over the reals and the nearest 
integer function. 

2. LOWER BOUNDS ON INTEGER RELATIONS 

If 1K is the complex number field, then z* denotes the complex conjugate of z, 
i.e. if z = x + iy, then z* = x - iy. I I denotes the complex absolute value, i.e. 
|Z12 = Z*z = ZZ* = X2 + y2. If A is a matrix or vector, then A* is the conjugate 
transpose of A. A unit in the complex number field is any element z such that 
Izl = 1. For real z, the conjugate operation is null, and lzl is the usual absolute 
value. 

Similarly, if 1K is the quaternion number system, then z* denotes the quaternion 
conjugate of z, i.e. if z = x + yi + -j + ?vk, then z* = x-yi-ulj-vk. The 
quaternion absolute value or norm is similarly defined, so that Iz12 = zz* = z = 

x2 + y2 + u2 + v2. Units and conjugates of matrices are defined analogously. 
If 1K is any of the above three number systems, two vectors x, y E K' are said 

to be orthogonal if xy* = 0. Let JAI = (tr(A*A))1/2 denote the Frobenius norm 

of the matrix A, i.e., JAI = (Zai*ai,j)1/ . An n x n matrix A is unitary if 
A*A = AA* = In. U(n, K) denotes the group of unitary matrices over 1K. An n x n 
matrix A is unimodular if det A is a unit. GL(n, ?(K)) is the group of unimodular 
matrices with entries in the integers 0(1K). 

Definition 1 (Mx). Assume x = (Xli,... ,xn) E 1Kn has norm lxl = 1. Define xl 
to be the set of all vectors in 1Kn orthogonal to x. Let 0(1K)n n xl be the discrete 
lattice of integral relations for x. Define Mx > 0 to be the smallest norm of any 
relation for x in this lattice. 

Definition 2 (Hx). Assume x = (xl,. ..,xn) E IKn has norm I= 1. Further- 
more, suppose that no coordinate entry of x is zero, i.e., xj #4 0 for 1? j < n 
(otherwise x has an immediate and obvious integral relation). For 1 < j < n define 
the partial sums 

Sj=E Xk Xk- 

j<k<n 

Given such a unit vector x, define the nx (n-1) lower trapezoidal matrix Hx =(hij) 
by 

0O if 1 < i < j < n -1, 

hi{j 
= 

xgxsi+1/si 
if 1 < i=j < n-1, 

t-xi*xjl(sjsj+l) if 1 < j < i < n. 

Note that hij is scale invariant. 

Lemma 1. Let Hx be the lower trapezoidal matrix defined above. Then: 
(i) Hx*Hx = In-i, i.e., the columns of Hx are orthogonal, 
(ii) IHxI = - 1, 
(iii) xHX = 0. 
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Proof. The columns can be proven orthogonal by considering the cases i = j and 
i < j separately. When i = j the inner product is 

____ ~XiX~XkX* 2 xtxi N'Z 
St1+ E 2 2+1 2S Xx 

S_ XiXik + X 1. 
2 2 

When i < the inner product is 

Sj+lxi*Xj + X XXjXkX* 

SjSiSi+1 j<k<n sisi+lsjsj+j 

Sj+ljixj x xi XkXk=O? 

SjSiSi+l SiSi+ljj+j j<k<n 

Item (i) shows that Hx*Hx = In-,, which has trace n - 1, so lHX = -n1. To 
prove (iii), fix 1 < j < n - 1; then 

_ _____ XkX____ XJSj+1 _ j XS~+ 
S khk,j * E Xk - y 50. 

1<k<n Si *<k<n SS+ i SS+ 

Lemma 2. For a unit vector x E Kn define Px = HXHx*. Then Px satisfies: 
(i) PX = PX 
(ii) P =In - x*X 

(iii) p2 =p 

(iv) PPx = n- 1 
(v) Pxz* =z* for any z E x, 
(vi) Pxm* = m* for any relation m E (D(K)n for x. 

Proof. Item (i) follows from HXHx* = (HxHx*)*. To prove (ii) note that, from 
Lemma 1 (iii), Hx is an n x (n- 1) rank n - 1 matrix whose columns transposed 
form an orthonormal basis for xl. Defining U = (Hxlx*), an n x n unitary matrix, 
we have UU* = HXHx* + x*x = In. To prove (iii), note that 

p2 = (In x*x)2 = n- 2I x*x + x*(xx*)x = Px. 

To prove (iv), note that PX12 = tr(Px*Px) = trPx = trHx*Hx = n- 1. Item (vi) 
follows from (v), which follows from (ii) and the associativity (x*x)z* = x*(xz*). 

n~~~~~~~~ 
Theorem 1. Let x $ 0 RE K. Suppose that for any relation m of x and for 
any matrix A E GL(n, O(K)) there exists a unitary matrix Q E U(n - 1) such 
that H = AHXQ is lower trapezoidal and all of the diagonal elements of H satisfy 
hj,j 0. Then 

1 . 1 
-ax _ {jmin < mT,l. 

maxl<j<n-1 I hj?I <jn-1I h~jj I 
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Proof. Let m be any relation for x. By the hypothesis, there exists a unitary matrix 
Q E U(n - 1) such that H = AHXQ is lower trapezoidal (this is equivalent to QR 
factorization). There is an n x n -1 matrix T with diagonal ones and an n -1 x n -1 
diagonal matrix D where H = TD with diagonal entries hj,j $4 O, 1 < j < n- 1, 
from the hypothesis. On the other hand, APx - HQ*Hx, from the definition of Px 
in Lemma 2. The equation APx = TDQ*Hx gives a decomposition of APx into the 
product of a lower trapezoidal matrix T with diagonal l's, an invertible diagonal 
matrix D with diagonal h's, and an n - 1 x n matrix Q*Hx with orthonormal rows, 
since Q*H4HXQ = Q*ITn-Q = In-, by Lemma 1. So the norm of the j-th row of 
DQ*Hx* is Jhj,j. 

From Lemma 2, part (vi), m* = Pxm*, so that Am* = APxm*. From the above 
decomposition of APx = TDQ*Hx, we have Am* = APxm* = TD(Q*Hx)m*. Let 
QH,j be the j-th row of Q*Hx and let Aj be the j-th row of A. Then 

Ajm* = hj,jQH,jm* + S tj,khk,kQH,km.- 

k<j 

Since A is invertible, Am* # 0. Let j be the least j for which Ajm* # 0, so that 
Akm* = 0 for k < j. Then the k < j rows of TDQ*Hxm* are zero, and since T is 
lower trapezoidal by recursion, the k-th rows of Q*Hxm* are also zero. With this 
least choice of j, then, Ajm* = hj,jQjm*. Therefore, from A E GL(n, ?(K)), 

1 < lAjm*l < lhj,jQH,jm*l ? <hj,jIHm*lI 

because QH,j is a unit vector. C] 

Comment on Theorem 1. Theorem 1 suggests a strategy to construct a relation 
finding algorithm: Find a way to reduce the norm of the matrix HX by multiplication 
by some unimodular A on the left. The inequality of Theorem 1 offers an increasing 
lower bound on the size of any possible relation. Theorem 1 can be used with any 
algorithm that produces any GL(n, ?(K)) matrices. Any GL(n, ?(K)) matrix A 
whatsoever can be put into Theorem 1. 

Definition 3 (Hermite reduction). Let H be a lower trapezoidal matrix, with 
hij = 0 if j > i and hj,j y4 0. Define the matrix D = (di,j) E GL(n,0O(K)) 
recursively as follows. For fixed i, decrement j from n to 1, setting 

(0 if i <j, 
di= if i =j, 

{nint((- j<k<i di,khk,j)/hj,j) if j < i 

We will say that DH is the Hermite reduction of H and that D is the reducing matrix 
of H. The function nint denotes a nearest integer function, e.g., nint(t) = [t + 1/2]. 
This definition of nint can be extended to each coordinate for complex or quaternion 
arguments. 

Definition 4 (Modified Hermite reduction). With the same notation as in 
Definition 3, set D = In. For i from 2 to n, and for j from i - 1 to 1 (step 
-1), set q = nint(hi,j/hj,j); then for k from 1 to j replace hi,k by hi,k- qhj,k, and 
for k from 1 to n replace di,k by di,k- qdj,k. 

Lemma 3. For a lower triangular matrix H with hij = 0 if j > i and hj,j #4 0, 
Hermite reduction is equivalent to modified Hermite reduction. 
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Comment. This variation can be found in [8] and later in [28]. This recursion 
replaces the input H with DH while developing the left multiplying reduction 
matrix D. C] 
Lemma 4. There exists a constant pK = p > 1, with the property that the entries 
of the Hermite reduced matrix H' = (hl j) = DH satisfy the inequality 

Ihk il < ' hlillp |/ Ihi,i llp 

for all k > i. The constant p = 2 for the real case, p = vX for the complex case, 
and p = 1 for the quaternion case. 

Proof. This follows from the definitions of the nint function, Hermite reduction, 
and the fact that Iz - nint(z)I < d/im2R/2 for z E 1K. D2 

3. STATEMENT OF THE ALGORITHM PSLQ(-r) 

Definition 5 (The parameters -y and r). Fix the real number -y > 2/V3 or 
-y > X or -y = oo for the real, complex, and quaternion cases respectively. In 
terms of this -y, define the real number r by 

1/T2 = 1/p2 + 1/_y2, 

where p is defined as in Lemma 4. For the proof of Theorem 2, we will require that 
1 < r and that r < p; clearly these conditions are satisfied in the real and complex 
cases. In the quaternion case r = 1 and p = 1. 

For the proofs that follow assume 1K is real or complex, not quaternion. Note 
however that the statement of the algorithm is valid for the quaternions. 

Initial conditions. Given the input unit vector x E IKE, set H = Hx, where Hx is 
defined as above. Set the n x n matrices A and B equal to the identity In. Perform 
Hermite reduction on H, producing D E GL(n, 0(1K)). Replace x by xD-1, H by 
DH, A by DA, B by BD-1. 

One four-step iteration. 

Step 1: Exchange. Let H = (hij), where hij is the i-th row, j-th column entry of 
H. Let 

0e = hr,r I d = hr+,?ri, A = hr+?,r+l I 6 = V/03* + AA*. 

Choose an integer r such that -y'jhr,,, > fyjhji,ij for all 1 < i < n - 1. Define 

the permutation matrix R to be the identity matrix with the r and r + 1 rows 

exchanged. Replace x by xR, H by RH, A by RA, and B by BR. 

Step 2: Corner. At this point the updated matrix H may not be lower trapezoidal 

since A may not be zero. If r < n- 1, replace H by HQ, where Q is the unitary 

n- 1 x n - 1 matrix Q = (qi,j) E U(n - 1,1K) defined by 

/3*76 if i = r,j = r, 
-A/6 if i=r,j=r+1, 

_ A*/6 if i= r + 1,j = r, 
qi,j = p316 if i = r + 1,j = r + 1, 

1 if i = j #4 r or =j 4r + 1, 
0 otherwise, 

where the ag, ,3, A, 6 are defined in Step 1. If r = n- 1 then H is unchanged. 
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Step 3: Reduction. Perform Hermite reduction on H, producing D E GL(n, O(DK)). 
Replace x by xD-1, H by DH, A by DA, B by BD-1. 

Step 4: Termination. Terminate the algorithm if xj = 0 for some 1 < j < n or if 
hi,j = 0 for some 1 < i < n - 1. 

4. NUMBER OF ITERATIONS OF PSLQ(-r) 

Let H(k) = H, A, and B = A-1 be the result after exactly k iterations of PSLQ. 
Let ae = hr,,(k) and /3 = h,+?,,(k). These definitions of ae and /3 are consonant 
with those of Step 2. Because H is Hermite reduced in Step 3, from Lemma 4, 
131 < IcI/p. For r < n-1 set A = hr?1,r+ (k) and define t by t = >/,3p* +`AA*/a . 
From this definition of t we have 

JAI< Icllt. 

From the Step 1 Exchange, 0 < JAI < lal/-y. It follows that 

t = 3/3 +A`*/?aj, < V/l/p2+ =/y2 =, 
as in Definition 5. For this proof we will require that t < 1 < r, clearly satisfied in 
the real and complex cases. 

Lemma 5. If hj,j(k) = 0 for some 1 < j < n-1 and no smaller k, then j = n-1 
and a relation for x must appear as a column of the matrix B. 

Proof (Alyson Reeves). First we show that hj,j = 0 implies that j = n-1. Consider 
the matrix H(k - 1), the end result of the k - 1-th iteration. By the hypothesis on 
k we know that no diagonal elements in H(k - 1) are zero. In particular, for the 
r about to be chosen in Step 1 of the k-th iteration, we know that hr,,(k - 1) #4 0 
and that h,+?,,+?(k - 1) y4 0. Now, suppose the r chosen in Step 1 is not n - 1. 
Let 

( ) 
be the submatrix of H(k - 1) consisting of the r and r + 1 rows of columns r and 
r + 1. After Step 1 has been performed this submatrix becomes 

(oe O) 
At Step 2, we post-multiply the matrix by the unitary sub-matrix of Q 

(0*16 -A168 
tA*16 016 J 

where 6 = /,/,3* + AS*. The result is the matrix 

K6 O 

(aY16 -aA/6 

Since A and ae are not zero (they were diagonal elements of H(k - 1)), we know 
that 6 and -aA/6, the two diagonal elements in the matrix, are also not zero. 
Note that since the rest of Q is the identity matrix, none of the other diagonal 
elements is affected by the multiplication. Thus, at the end of Step 2, all diagonal 
elements are non-zero. Since Hermite reduction doesn't introduce any new zeros on 
the diagonal, the end result of the k-th iteration has all non-zero diagonal elements. 
But this contradicts the hypothesis on k and our assumption that r < n - 1 was 
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false. Note that for r = n- 1, in order to have hn_l,n,l(k) = 0, we must have 

hn,n-l (k-1)- 0 and hn-l,n-l(k - 1) #& 0. 
Next we show that a relation for x must appear as a column of the matrix B. 

By Lemma 1, xHx = 0. BA = In implies 0 = xBAHx = xBAHxQ = xBH(k - 1), 
where Q is an appropriate unitary n - 1 x n - 1 matrix. Let z = xB. The above 
gives 

(O, ... , 0) = xBH(k - 1) = zH(k - 1) = . n. ., -hnl,nl(k-1)). 

Since hn_l,n,l(k -1) = 0, then z -1 = 0. Hence the n - 1-th column of B is a 
relation for x. E 

Lemma 6. At any k-th iteration of the algorithm the diagonal entries of H(k) 
satisfy the inequality Jhj,j(k)J < 1. 

Proof. We follow the a, /, A definitions of the proof of Lemma 5 and use induction. 
For k = 1 the diagonal entries of H(k) are those of Hx, and sj+l < sj < 1 gives 
the required inequality. Assume that the inequality also holds up to k - 1. The 
diagonal entries of H(k) are equal to those of H(k - 1) except for row r, where 
Step 1 Exchange occurs. When r = n- 1, after the exchange, the r-th diagonal 
element is /3. But 131 < lal/p < 1, because p > 1 and lal < 1 by induction. When 
r < n - 1, after the exchange the r-th diagonal element is 6. But 161 = lait < 1, 
since t < 1 and lal < 1. The r + 1-th diagonal element of H is -aA/6 (as in the 
proof of Lemma 5), so that I- aA/61 = JAI/t < cal, because JAI2 < JAI2 + 1!12 and 

JAI < Icelt. D 

We show that every iteration of PSLQ causes a geometric monotonic increase 
in a certain function H(k) which is roughly the product of all the principal minors 
of the matrix H(k). If a relation for x exists, this product will be bounded above 
and below. Assume x has some relation, and as usual let Mx denote the norm of a 
smallest relation for x. We will need the following technical lemma in the proof of 
Lemma 9. 

Lemma 7. Consider the quotient 
min{ B, t} min{ A, 1} 

q(A, B,t) = 
min{B1} . min{A, t} 

Suppose that the four positive real numbers A, B, 1, t satisfy the three inequalities 

A > B) A > t, 1 > t. 

Then, 

q(A,B,t) > 1. 

Proof. Of the 16 possible choices in the min's, the inequality A > t removes 8, 
A > B removes 2, and 1 > t removes 1, leaving 5. These five are 

A > B > 1 > t with quotient t/1 1/t = 1, 
A > 1 > B > t with quotient t/B 1/t > t/1 1/t = 1, 
1 > A > B > t with quotient t/B A/t = A/B > 1, 

1 > A > t > B with quotient B/B A/t A/t > 1, 

A > I > t > B with quotient B/B 1/t 1/t > 1. D 

Lemma 8. For a, -y, Mx as above, 

IyTn2 Mxla?l > 1. 
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Proof. By the choice of r in Step 1 Exchange, we have -yr' Ia> ?y3 h3,jI for any 
j, 1 < j < n-1, which implies 

IT n-1 llhj,jl > -yrllhj,, I > -y/llal > -y /l0lal 

for all j including that jo for which M. > 1/jhj0,30j from Theorem 1. Thus 
In-2M > M 1/lal and -yn-2M cxlal > I 

Definition 6 (The II function). Recall that T = i//p2 + l/ y2. Define 

H(k) = 11 min{_yn- 1 M, 1/I h3,3 (k) 
I 
In- . 

1<j<n-1 

Lemma 9. For any k > 1 we have 
(i) 

(i)(^-1Mx)(2) > 1(k) > 1, 

(ii) 

H(k) > -rH(k - 1). 

Proof. For the k's so far, h.,, (k) 54 0 for all 1 < j < n-1. Moreover, Mx > 1 and 
1/ hj,3(k) > 1 by Lemma 6. This gives 

min{Ax, 1/I hj,j (k) } > 1 

for all 1 < j < n - 1, which implies the right hand inequality of (i). On the other 

hand, it is always the case that Mx > min{Mx, 1/ Ih3, (k) }, which together with 

the fact that (n) = n-1 -I+ + 2 + 1 and that -y > 1 gives the left hand inequality 
of (i). 

The proof of part (ii) is more involved. Let r be given by the Step 1 Exchange of 

PSLQ. Recall the definitions of the two successive diagonal elements ag, A and the 

single off diagonal element ,B, t = /3/3B* + AA*/ aj in Step 2 (Corner development) 
of the unitary matrix in terms of ,B and A. 

Suppose that r < n - 1. Then only two diagonal elements change. These 

correspond to the 2 x 2 submatrix of H 

(og O) 
t: AJ 

which after a single iteration becomes 

K6 O 

(aA16 -acA/) 

But 161 = lalt, so that the absolute values of the of the ag, A diagonal elements are 

replaced by the absolute values of the 6, -aA/8 diagonal elements. All the factors 

of H(k) are the same except these two, so that 

H(k) (min{ 1n-Mx, 1/( ajt)}\n r (min{fyt- 1MX, t/ A } n-r1 

H(k -1) min{yn-lMx, c/lal} kmin{fyn1-1Mx, 1/JA}} 
Set 

A =n-1Mxlalt and B n-1MxjAj1 

so that 

H(k) (min{A, 1} (min{B,t} min{A, t}jnr 
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We now show that the assumptions for Lemma 7 hold. Note that 1 > t by the 
definition of t; also, A > B since lalt > AI. By Lemma 8 we have A > tOy > t. By 
Lemma 7 we have 

11(k) > min{A, I} > 1 > 
Il(k-1) -min{A, t} - t 

Now suppose that r = n- 1. By Step 3 Reduction, under one iteration the 
absolute value of the last diagonal element ag is less than oalp. All the factors of 
Il(k) except the last are the same, so that 

1I1(k) min{fy-1Mx, 1/( ajp)} _ min{A, t/p} 
Il(k-1)- min{fyn-1Mx,1/ja} min{A, t} 

But we always have -yn-2MxjaJ > 1, so if A > t/p > t, then 

1(- (1) > l/p >'T. 

By Lemma 8, A > tOy > t. If t < A < t/p, then 

1-1(k) > Alt > Oy> r-. 1-1(k- ) 

Thus for r < n-1, I11(k) > 1II(k - 1). 

Theorem 2. Assume real or complex numbers, n > 2, 'r > 1, and that 0 : x EKn 
has ?O3(K) integer relations. Let Mx be the least norm of relations for x. Then 
PSLQ(7) will find some integer relation for x in no more than 

Kn log (-y n1MX) 
(2) log T 

iterations. 

Proof. Suppose we have done k iterations; then, from Lemma 6 and Lemma 7, 
1hj,j(k) I- 0 and not all Ihj,j(l)I < l/Mx for I < k. By Lemma 6, Hl(0) > 1, and by 
Lemma 7, 11(k) > rk so that 

(n-Wx)(n) >,Tk. 

Taking natural logarithms of both sides of this inequality gives 

(n) log (y n-1M) > klogT 

Corollary 2. Let K be the real numbers R or the complex numbers C. Fix n > 1 
and assume given a unit n-tuple x E Kn which has a relation mx E O(IK)n of least 
norm Mx. Then there exists a -y such that the algorithm PSLQ(r) will construct 
some 0(K)n relation for x in no more than 

2 (dimRIK) (n 3 + n2 log MX) 

iterations. 

Proof. Let Oy 2. Then for either IK, T > 1; specifically, 1/logT < 4dimR1K. 
PSLQ(r) takes O(n) exact arithmetic operations per iteration, so in this sense 
finds relations in 'polynomial time' O(n4 + n3 log Mx). D 
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5. UPPER BOUNDS ON INTEGER RELATIONS 

We compare the relation found by PSLQ to a shortest possible relation. 

Lemma 10. Suppose m is the relation found on the k + 1-st iteration, so that 
hn_l,n_l(k + 1) = hn,n0l(k) = O and hn_1l,n_l(k) 54 0. Then 

Iml = 1/| hn_l,n-l (k)j. 

Proof. At this iteration we have developed the matrix A E GL(n, O(K)), where 
the (n - 1)-st column of A1 by Lemma 5 is m and the vector Am* en-I 
has as its only non-zero entry a 1 in the (n - 1)-st position. Since AP TDQ, 
Qm* = D-lTtAm*, where Tt is the generalized inverse of T and D is a diagonal 
matrix with last entry hn_l,n,l(k), which is also the last entry of D-lTtAm*. 
Because Q is unitary, jQm*1 = Im*j. E 

Theorem 3. Let M, be the smallest possible norm of any relation for x. Let m 
be any relation found by PSLQ(-r). For all y > 4/3 for real vectors and for all 
,y > vX2 for complex vectors 

Iml < _n-2 

Proof. Assume we are at the k-th step of PSLQ, where a Step 1 Exchange r = n-1 
was made with hn_ n_ -1(k) Iz 0 and hn -1,n -1(k + 1) = 0. Then 

IT n-1 I hn_ l,n- 1 (k) I > -yi I hj,j (k) I 

for all 1 < j < n - 2 by the choice of r. Hence, by Theorem 1, Lemma 8 and 
Lemma 10 

Mx > I/ max I hi,j (k) I > -,2-n /lhn_l ,n_l(k)j| = _y2-njImj 

Comment on Theorem 3. For n = 2, Theorem 3 proves that any relation 0 :& m E 
D(K 2) found has norm Iml = Mx. In other words, PSLQ(r) finds a shortest 

relation. For real numbers this corresponds to the case of the Euclidean algorithm, 
[13, Book X], [20], [26]. For complex numbers this corresponds to the case of an 
algorithm in [33]. 

For n = 3, let x = (113,343,311). This vector has a shortest relation mx 
(7, -15,14) with the shortest norm lmxI = Mx = 21.6794.... This can be verified 
directly; cf. [25], [31], [11]. On the other hand, for Tr 1.0000 ..., -y = 1.1547..., 
PSLQ(r) in iteration 6 produces the relation m1 = (24, -7, -1). Indeed, 

Mx < I mlI = 25.0199 ... < -yMx = 25.0333. .... 

This relation appears from a zero in the second coordinate of the xA-1 vector. 
Continuing to iteration 8 gives the relations appearing from the first and second 
coordinates of the current xA-1 vector, m2 = (-17, -8,15) and m3 = (41,1, -16) 
of norms 24.0416... and 44.0227..., respectively. The vector m2 has smaller 
but not smallest norm. Continuing to iterations 9 and 10 gives the relations ap- 
pearing from the first and second coordinates of xA-1 of m4 = (7, -15,14) and 
m2 = (-17, -8,15), so a shortest vector m4 was eventually found. In iteration 
11 the condition h2,2(11) = 0 appeared for the first time, giving the relation 
m5 = (-10, -23,29) of norm 38.3405.... 
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This example is instructive in that various choices of the parameter 'r give dif- 
ferent outputs. The 'legal' T are such that 1 < T < 2, although the PSLQ('r) 
sometimes works for 'illegal' 'r outside of this interval. For the 'legal' 'r = 1.1, 
iteration 6 yields m1, 8 yields M2,M i3, 9 yields m4, m2, and 10 yields mi5. On the 
other hand, for r = 1.8, iterations 4, 5, 6 all yield only the shortest length relation 
M4. For the 'illegal' T below 0.7 and above 2.1 the algorithm cycles indefinitely. 
The end point T = 1.0 gives essentially the same outputs as TF 1.1. The other end 
point r = 2.0 yields two new relations, m6 = (1, -91,100) and M7 = (0, -311,343), 
of norms 135.2109... and 463.0010 .., respectively. 

6. MULTIPLE RELATIONS 

A given unit vector x E ]K' may have 0, 1, 2, or up to n - 1 relations. Once 
a relation has been constructed, one of the coordinates of xB for the appropriate 
B E GL(n, ?9(K)) will be zero, and the corresponding column of B will be a relation. 
The remaining n - 1 coordinates can be used to form a new unit vector in y E 
Kr. Apply PSLQ('r) to this y. Any second relation so found will be integrally 
independent from the first and can be referred back to the original x. In this way 
as many as n -1 integrally independent relations for x can be constructed. We omit 
here the tangent discussion of using classical lattice reduction techniques to find 
integer relations; this is the case for the Recognize[ ] function in MathematicaTM 
which calls the function LatticeReduce[ ], cf. [11], [12], [27]. Lattice reduction 
there applies typically only to integer relations for integer vectors. Integer relation 
finding here is directed specifically at integer or Gaussian integer relations for real 
or complex number vectors. 

7. VARIATIONS OF PSLQ(T) 

The algorithm PSLQ('r) as stated may be performed for various 'illegal' T or 
'illegal' -y, and under these circumstances will find relations for some x vectors. This 
can happen for -y < V47/3 in the real case, for -y < VX2 in the complex case, and for 
-y < oc in the quaternion case, so that T < 1 and the conclusions of Theorem 2 or 
Theorem 3 make no sense or have no apparent content. The reason for this apparent 
anomaly is that for a specific n-tuple x the actual field or division ring constant p 
bound in Lemma 4 is not universal and could depend upon an input vector x. Say 
Px gives a bound such as that of Lemma 4 for some special x or collection of them. 
Then there may be an "illegal" -y so that Tx 1/ lI/p2 + l/1y2 > 1. For such x one 
could expect to see some relation emerge before the number of iterations indicated 
by Theorem 2 for this Tx = r. 

On the other hand, it is possible to use the real PSLQ(T) algorithm to find 
complex and quaternion relations at the expense of doubling and quadrupling the 
dimension. For example, suppose z = x + yi + uj + vk is a vector in EH with vector 
components x, y, u, v E R'. Suppose the corresponding relation is m = a+bi+cj+dk 
which is a lattice point in Wn with integral vector components a, b, c, d E Zn. Then 
zm* = 0 implies four integer relations among the interlaced and suitably sign 
changed coordinates of z. For the first set l<j<n(ax-bjy3 - c3u - djvj) = 0 
and one can apply real PSLQ(r) to the real 4n-tuple (... , x;, Yj, uj, vj,... ). There 
are three others which are similar. A relation for z will be in the intersection of the 
four associated lattices. Alternatively, one can give a PSLQ(r) algorithm along the 
lines of [23, Section 5. Finding simultaneous integer relations]. 
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8. COMPUTER IMPLEMENTATION OF PSLQ(T) 

The PSLQ('r) algorithm can be implemented using ordinary floating point arith- 
metic on a computer. Using double precision (i.e., 64-bit) arithmetic, relations of 
two or three digits in size can be recovered for n up to five or so. Beyond this level, 
precision is quickly exhausted, and recovered relations and norm bounds are mean- 
ingless. Thus a serious implementation of PSLQ (or any other integer relation algo- 
rithm for real numbers) must employ some form of multiprecision arithmetic. The 
authors employed the MPFUN multiprecision translator and computation package. 
The Fortran-77 version of this software is described in [6], and the newer Fortran- 
90 version is described in [7]. A C++ translator that employs these routines is 
also now available. Alternatively, one may employ the multiprecision facilities of 
symbolic math software packages, such as Maple, Pari or MathematicaTM. 

The descriptions presented here of computer implementation of PSLQ('r) are 
for the case of the real number system. Extensions to the case of the complex 
and quaternions number systems are straightforward, provided one's multiprecision 
system supports these datatypes. 

One key to an efficient implementation is to utilize a simplified version of Her- 
mite reduction and the associated update. As noted in Lemma 3 above, Hermite 
reduction can be done more efficiently by a triply nested loop. In fact, the update 
operations associated with Hermite reduction (updating x, H, A and B) can also 
be done in a loop of this form. Further, if these updates are done in this manner, 
then it is not necessary to compute the D matrix. This simplified scheme is as 
follows. In the initialization step, Hermite reduction and the subsequent updates 
are replaced with the following: 

For i from 2 to n, for j from i - 1 to 1 (step -1), set t = nint(hi,j/hj,j) and 
replace xj by x3 - txi; then for k from 1 to j replace hi,k by hi,k - thj,k; for k from 
1 to n replace ai,k by ai,k - taj,k and replace bk,j by b(k, j) + tb(k, i). 

Step 3 is also replaced with this, except i is incremented from r + 1 to n, and j 
is decremented from min{i - 1, r + 1} to 1. Here r denotes the row index selected 
in Step 1. These more restrictive limits on i and j merely reflect the fact that t = 0 
outside these limits. 

Obviously in a computer implementation some care must be taken in testing 
for zero. This is typically done by checking that the absolute value of the tested 
value is less than the "epsilon" appropriate for the level of numeric precision being 
used. Also, a run should be terminated if any entry of the A matrix exceeds the 
level of numeric precision being used (so that these integer values can no longer be 
represented exactly). 

The level of working precision required for PSLQ is generally only a few digits 
greater than the accuracy of the input x vector. Along this line, if one wants 
to recover (or to exclude) relations of size d digits, then the input data must be 
specified to at least nd digits in order to obtain numerically meaningful results. The 
significance of a recovered result can be measured by noting the ratio between the 
multiprecision epsilon and the largest entry of the updated x vector when a relation 
is recovered. If this ratio is very small, such as 10-40, then one can be fairly certain 
that the relation produced by PSLQ is a real relation. But if this ratio is only a few 
orders of magnitude below unity, then the result is suspect, and higher accuracy in 
the input data, as well as correspondingly higher working precision, is required. 
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The above implementation is satisfactory for most applications. For more de- 
manding applications, a "two-level" implementation is significantly faster. In a two- 
level implementation, most operations are performed in ordinary double precision 
arithmetic, with occasional updates of multiprecision arrays using multiprecision 
arithmetic. This two-level scheme can be described as follows. Here the prime 
notation is used to denote double precision approximations to multiple precision 
values. 

To initialize, perform the initialization step as described above using full preci- 
sion. Then perform an "double precision initialization": (1) set x' = x/ maxi,j lxj 
and set H' = H; (2) perform a LQ decomposition on H', using double precision 
arithmetic, setting H' to be the lower triangular part; (3) set A' = B' = In. 

PSLQ iterations are then performed as above on the arrays x', H', A' and B', 
using double precision arithmetic. Some care must be taken to insure numerical 
accuracy in these iterations. Obviously these iterations before entries in A' grow so 
large (9 x 1015 on IEEE systems) that they cannot be exactly represented as double 
precision values. In the authors' implementation, double precision iterations are 
halted when the largest entry of A' exceeds 1010. Tests for zero in these iterations 
must reflect the accuracy of double precision arithmetic the authors used an 
"epsilon" of 10-13 here. As an additional measure to insure numerical integrity, 
the authors' code aborts the modified Hermite reduction procedure (and restores 
arrays to their previous values) if the multiplier q exceeds 107. 

When the double precision iterations are halted, due either to large entries in 
A', or to a tentative zero in x' or H', it is necessary to perform a "multiprecision 
update": (1) replace A by A'A, replace B by BB', replace H by A'H, and replace 
x by xB'; (2) check for zero entries in x, using the multiprecision epsilon. If no 
zeroes are found, then a double precision initialization is performed, followed by 
more double precision PSLQ iterations. 

One detail has been omitted here. In some cases, the entries of the updated 
x vector have such a large dynamic range (greater than 1010 in the authors' im- 
plementation) that when converted to double precision, additions and subtractions 
would produce results of questionable reliability. In these cases it is necessary to 
perform PSLQ iterations on the multiprecision arrays, using multiprecision arith- 
metic, for a number of iterations until this large dynamic range is eliminated. If this 
situation is encountered on any iteration other than the very first, a multiprecision 
LQ decomposition of H must be performed prior to performing these multiprecision 
iterations (so that the H array contains the same entries as the H array defined in 
the PSLQ algorithm statement). 

The authors' Fortran implementation of PSLQ, together with the required mul- 
tiprecision arithmetic software, is available by sending electronic mail to dbailey@ 
nas.nasa.gov. Also available are MathematicaTM implementations of PSLQ as 
well as a number of other integer relation algorithms for comparison. 

9. SUMMARY OF THE LITERATURE 

The problem of finding integer relations among sets of rational and real numbers 
is quite old. When n = 2 this problem can be solved for rationals by the first 
Euclidean algorithm in Euclid, Book VII, and for reals by the second Euclidean 
algorithm given in Euclid, Book X; cf. [26], [11], [37]. Generalizations of this 
algorithm to higher real dimensions were proposed without proof by many authors, 
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including Jacobi [24], Hermite [22], Poincare [32], Perron [30], Brun [9], [10] and 
Szekeres [38]. Various counterexamples can be found in [15] and [19]. 

The first integer relation finding algorithm with proofs for the case of real num- 
bers was discovered in 1977 by Ferguson and Forcade, [14], [15]. These algorithms 
were shown to be polynomial time in the logarithm of the size of a smallest relation. 
They were not shown to be polynomial in the dimension. Since then, other related 
algorithms for finding relations for real vectors have appeared in [8], [16], [17], [18]. 
For example, [5] reports on a computer implementation of [16]. The sequence in- 
cluding [23] (HJLS), [2] and [1] (PSLQ), [3] (a concise statement of PSLQ), and 
[35] (a stable variation of HJLS) will be discussed below. 

These algorithms all depend upon an orthogonal decomposition of some kind. 
See [21] for a list of various orthogonalization algorithms and their numerical linear 
algebra differences. PSLQ is of the QR type. HJLS follows the lattice reduction 
work of [28], [34], and [36], which is classical Gram-Schmidt type, cf. [31] and [11]. 
This conceptual difference may explain some of the numerical differences observed 
between PSLQ and HJLS, cf. [2]. 

Rigorous proofs that the algorithm under investigation must find a relation if 
one exists appeared in [14], [8], [15], [16]. All of these proofs gave a linear bound 
in the logarithm of the size of a relation, but were not known to be polynomial 
in the dimension. [8] and [16] had unsatisfactory proofs in the sense that they 
were shown to be at worst exponential in the dimension rather than polynomial in 
the dimension. This unsatisfactory state of affairs was resolved affirmatively with 
the proofs that appeared in [23] for the 'small integer relation algorithm'. We will 
refer to this 'small integer relation algorithm' as HJLS, as stated in [23, Section 
3] as a reflection of that in [8, Section 3]. In fact, this proof in [23] was the first 
appearance in the literature of a 'polynomial time' bound for a relation finding 
algorithm, polynomial in both dimension and logarithm of relation size. 

This important progress was made when [23] combined two independent streams 
of research, [14], [8], [15], [16], [18] and [28], [29], [34], [35], [11]. Inspired by 
the polynomial result of [23], but not the details, the first author of this paper 
formulated what he thought was a new algorithm [2], [1] and gave a polynomial 
proof. This proof was independent of that of [23], a different analysis, but flawed 
by giving a slightly higher degree polynomial in the dimension than the polynomial 
proof given in [23]. This algorithm in [2], [1] was called PSLQ and had the advantage 
of the adjustable parameter Oy or -r. Applications and implementation of this earlier 
version of PSLQ('r) were described in [3], [7], [4]. These implementations showed 
that the parameters were a helpful feature of the algorithm. The bound on iterations 
for HJLS proven in [23] was Q(n3 + n 2 1og2 M.); this is consonant with the bound 
proven in this paper for PSLQ(v'X). The subsequent paper [35] included parameters 
as well as addressing a certain issue of stability. 

As a specific example, consider the triple x = (11, 27,31). We list the sequence 
of A1 matrices for each algorithm. A relation if found will be constructed as a 
column of one of these A1 matrices. 

For PSLQ(1.1547) the successive iterations k = 0,1, 2,3,4, yield the five A1 
matrices 

I 0 00 1 0 0 - t2 1 0 
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/3 -2 0 ' -1 -8 -2' 
(1 2 1),1 5 9 2I) 
\-2 -1 -1, -4 -5 -1, 

Note that PSLQ has constructed two relations appearing as the first and second 
columns of the last matrix, iteration k = 4. 

For HJLS the successive iterations k = 0, 1, 2, 3, 4, 5, 6 yield the seven A-1 ma- 
trices 

I 0 1 0 0 0 1 0 1 -2 0) 

o 1 o 0l 1 0l o 1 , o 1 , 
0 O 1, 0 1 -1 I I 0 I1 0 1 I1 

/1 0 -2\ /0 1 -2' /0 -2 -1' 
( 21)1 1 3 2 1>Q 2 5 
0o - I I - 1 -3 -1, \-1 -1 -4, 

Note that only one relation is found; it appears in the last column of the last matrix, 
iteration k = 6. The authors of [34] claimed that HJLS is a special case of PSLQ(r) 
for -y = X or equivalently T = V4/3. The example just given shows that this claim 
cannot be true. 

The significance of the parameter was revealed clearly in the extensive tables 
appearing in [2]. In [2] the parameter was -y, which is equivalent to giving T = 
1/ p2 + 1/7-y2. The choice of the parameter T has precision consequences: depend- 
ing upon the choice of parameter, a numerical precision much higher than that of 
the input real vector must be used to obtain a reliable result. For example, the 
algebraic number 

a8 = 3 1/4 - 21 /4 = f3 - Af 

satisfies a polynomial of degree 16 with coefficients 

(1,0,0,0, -3860,0,0,0, -666,0,0,0, -20,0,0,0,1). 

The algorithm PSLQ(T) for T = 1.000006145 or Oy 1.1547005384, applied to the 
vector (1, c, a 2,..a , afl), with n = 17, finds these coefficients with a working 
precision of 75 decimal digits. We have shown with the n = 3 example above that 
HJLS is not PSLQ( 4/3). Again, we see that HJLS requires a working precision 
of more than 10,000 decimal digits to find this n = 17 relation. Comparative run 
times are not particularly relevant here but are also correspondingly higher for 
HJLS see Table 2 of [2]. 

For a slightly different T = 4/3 = 1.154700538..., PSLQ(T) requires 85 deci- 
mal digits, 10 digits more than for -y = 1.1547005384. Generally the closer T is to 
1 the less precision seems to be required. This observed phenomenon appears to 
have nothing to do with any question of numerical stability. 

The various algorithms in the literature stand independently of their published 
proofs; their published proofs may not reveal their actual properties clearly. Though 
the proofs were exponential, the algorithms stated in [14], and in [15], and again 
in [16] were parametric. The parameter b in [14], [15] satisfies 1 < b < 2, whereas 
in [16] the parameter -y is emphasized. The algorithm in [8, Sect. x] seems closest 
to PSLQ( 4/3) with the T parameter set by -y = v. This parameter choice 
appears in [8, Sect. x] without the [28] setting and reappears in [23] as the "small 
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integer relation algorithm", which we call HJLS, rewritten in the [28] language and 
accompanied by a 'polynomial time' proof for the first time. 

Bergman discussed the complex case of finding Gaussian integer relations for 
complex vectors in [8, Sect. 5: Variants]. Bergman also gave an algorithm for 
the simultaneous real vector case in [8, Sect. 7]. Following Bergman, the paper 
defining HJLS for simultaneous real vectors, [23, cf. Sect. 5]; implicitly includes 
the complex and quaternion vector case as well. As an alternate approach, inspired 
by [37], in this paper we have extended the base field of PSLQ(r) to these division 
rings and introduced unitary matrices into the algorithm directly. The proof given 
here of polynomial number of iterations covers the real and complex cases, but fails 
for quaternions. However, the quaternion version of PSLQ(T) performs reasonably 
well experimentally in finding Hamiltonian integer relations for quaternion vectors. 
This was explained in Section 8. 

10. OPEN QUESTIONS 

1) Is there a relation finding algorithm that finds a shortest relation in a poly- 
nomial (in the dimension) number of iterations? 

2) What are the best choices for the parameter T or Oy relative to the number of 
iterations, time, and precision requirements of PSLQ? 
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