
MATHEMATICS OF COMPUTATION
Volume 68, Number 225, January 1999, Pages 351-369
S 0025-5718(99)00995-3

ANALYSIS OF PSLQ,
AN INTEGER RELATION FINDING ALGORITHM

HELAMAN R. P. FERGUSON, DAVID H. BAILEY, AND STEVE ARNO

ABSTRACT. Let 1K be either the real, complex, or quaternion number system
and let O(]K) be the corresponding integers. Let x = (xl, . . . , xn) be a vector
in IK". The vector x has an integer relation if there exists a vector m =
(ml,.. ., mn) E C(K)', m#O& 0, such that mlxl + m2x2 + . . . + mfXl = 0. In
this paper we define the parameterized integer relation construction algorithm
PSLQ(r), where the parameter r can be freely chosen in a certain interval.

Beginning with an arbitrary vector x = (xi,..., xn) E K-, iterations of
PSLQ(r) will produce lower bounds on the norm of any possible relation for
x. Thus PSLQ(r) can be used to prove that there are no relations for x of
norm less than a given size. Let M. be the smallest norm of any relation for x.
For the real and complex case and each fixed parameter r in a certain interval,
we prove that PSLQ(r) constructs a relation in less than 0(n3 + n2 log Mx)
iterations.

1. INTRODUCTION

Let EK be either the real, complex or quaternion number system and let OD(IEK) be
the corresponding system of integers (i.e., ordinary integers, Gaussian integers, or
Hamiltonian integers, respectively). Let x = (xi, . ., Xn) be a vector in Kn. The
vector x has an integer relation if there exists a vector m = (ml, * , mn) E ?D(K)n
m $& 0, such that mlxi + m2x2 + + mnxn = 0.

In this paper we define the parameterized integer relation construction algorithm
PSLQ(-r), which, compared with other integer relation algorithms in the literature,
features superior performance and excellent numerical stability. The parameter -r
can be freely chosen in the interval 1 < r < p, where p is 2 or vX2 depending on
whether KI is the reals or complexes, respectively; if IEK is the quaternions take -r and
p to be 1. We analyze PSLQ(-r) for these three number systems. We describe in
detail some efficient Fortran multiprecision computer implementations of PSLQ(-r).

Beginning with an arbitrary vector x = (X1,... , Xn) E Kn, a finite number of
iterations of PSLQ(-r) will produce lower bounds on the (Frobenius) norm of any
possible relation for x. The computation of such a lower bound constitutes a proof
that x has no integer relations whatsoever of norm less than this lower bound. Any
finite computation done with PSLQ or any other presently known relation finding
algorithm can only prove that no small relation exists. Such an algorithm can
construct an alleged relation based on inputs given to finite precision, but the proof
that this alleged relation is a true relation for the real numbers is a separate matter.

Received by the editor April 12, 1996 and, in revised form, June 9, 1997.
1991 Mathematics Subject Classification. Primary 11A05, 11Y16, 68-04.
Key words and phrases. Euclidean algorithm, integer relation finding algorithm, Gaussian

integer, Hamiltonian integer, polynomial time.

351

352 H. R. P. FERGUSON, D. H. BAILEY, AND STEVE ARNO

Let M. be the smallest norm of a relation for x. Define -y by the equation
-r = 1/i/lp2 + l-/y2, where p = 2 for the real number field and p = XV'2 for the
complex number field, and -r is as above. For each fixed parameter -r in the interval
1 < r < p, we prove in the real and complex case that PSLQ(-r) constructs a
relation in less than (n) log (-yn-lMx) iterations. This shows that PSLQ(-r) is
'polynomial time' in the dimension and the number of bits of a smallest integer
relation. Different choices of r or -y lead to different time and space requirements
for the algorithm.

For dimension n = 2 we prove that PSLQ(-r) will construct a relation of smallest
norm Mx. We give examples in dimension n = 3, for some -r, for which PSLQ(-r)
does not construct a relation of smallest norm Mx. However for any dimension
n > 2, we do prove that any relation constructed by PSLQ(r) has norm less than
or equal to an-2Mx.

The 'polynomial time' and 'small norm' proofs given here are straightforward
generalizations to the parameter r and to the complex numbers of the original
'polynomial time' proofs which appear in Lagarias et al., [23]. We show, however,
that the algorithm of [23] is distinct from any of these PSLQ(-r) algorithms.

PSLQ(-r) was introduced by the authors [2] in 1991. PS refers to partial sums of
squares, LQ to a lower trapezoidal orthogonal decomposition, and (-r) is a parameter
defined as above. Since PSLQ(-r) was introduced it has been used to discover
numerous previously unknown identities among real numbers. One example is

- +... + (l (k + 1)-3
k=1

= 4L5(1/2) -30 1n5(2) - 173 (5) - 12 7r4 In(2)

+?k(3)ln2(2)+ 172In3(2) - 3 _ (3)_ 4 18 24i ()

where Ln(x) denotes the polylogarithm function EkxkkXn. See [3] for details.
Another example is the following formula for 7r:

?? 1 4 2 1 1
=Z 16t48i(+j1 8i+4 8i+5 8i+6)

This remarkable series permits one to rapidly compute individual digits from the
hexadecimal expansion of 7r. See [4] for details. It was found by applying PSLQ(r)
to the vector X = (X1, X2, , X8, 7r) where Xj = Zk>o 1/(16k(8k + j)). The
smallest relation known,

(4,0,0, -2, -1, -1,0,0, -1),

yields the above 'base 16' formula for 7r. A next smallest relation known,

(0,8,4,4,0,0, -1,0, -2),

was subsequently discovered by Ferguson, and this relation yields a similar 'base
16' formula for 7r. Together these two integral lattice relation vectors generate a
two-dimensional lattice of relations of this 'base 16' type. It is conjectured that
there are no further such relations outside this lattice. Note that

(-8,8,4,8,2,2, -1,0,0)

is in this lattice, so evidently X7 is integrally dependent upon X1,... ,X6.

ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM 353

Of course, a numerical discovery of a relation using PSLQ(-r) does not constitute
a rigorous proof of the relation. However, in the wake of this numerical evidence,
proofs have subsequently been found for many of these relations, including the
above formula for 7r. See [3] and [4] for details.

In the theoretical proofs in Sections 2, 3, 4, and 5, we will assume exact arithmetic
over the real numbers augmented by comparisons over the reals and the nearest
integer function.

2. LOWER BOUNDS ON INTEGER RELATIONS

If 1K is the complex number field, then z* denotes the complex conjugate of z,
i.e. if z = x + iy, then z* = x - iy. I I denotes the complex absolute value, i.e.
|Z12 = Z*z = ZZ* = X2 + y2. If A is a matrix or vector, then A* is the conjugate
transpose of A. A unit in the complex number field is any element z such that
Izl = 1. For real z, the conjugate operation is null, and lzl is the usual absolute
value.

Similarly, if 1K is the quaternion number system, then z* denotes the quaternion
conjugate of z, i.e. if z = x + yi + -j + ?vk, then z* = x-yi-ulj-vk. The
quaternion absolute value or norm is similarly defined, so that Iz12 = zz* = z =

x2 + y2 + u2 + v2. Units and conjugates of matrices are defined analogously.
If 1K is any of the above three number systems, two vectors x, y E K' are said

to be orthogonal if xy* = 0. Let JAI = (tr(A*A))1/2 denote the Frobenius norm

of the matrix A, i.e., JAI = (Zai*ai,j)1/ . An n x n matrix A is unitary if
A*A = AA* = In. U(n, K) denotes the group of unitary matrices over 1K. An n x n
matrix A is unimodular if det A is a unit. GL(n, ?(K)) is the group of unimodular
matrices with entries in the integers 0(1K).

Definition 1 (Mx). Assume x = (Xli,... ,xn) E 1Kn has norm lxl = 1. Define xl
to be the set of all vectors in 1Kn orthogonal to x. Let 0(1K)n n xl be the discrete
lattice of integral relations for x. Define Mx > 0 to be the smallest norm of any
relation for x in this lattice.

Definition 2 (Hx). Assume x = (xl,. ..,xn) E IKn has norm I= 1. Further-
more, suppose that no coordinate entry of x is zero, i.e., xj #4 0 for 1? j < n
(otherwise x has an immediate and obvious integral relation). For 1 < j < n define
the partial sums

Sj=E Xk Xk-

j<k<n

Given such a unit vector x, define the nx (n-1) lower trapezoidal matrix Hx =(hij)
by

0O if 1 < i < j < n -1,

hi{j
=

xgxsi+1/si
if 1 < i=j < n-1,

t-xi*xjl(sjsj+l) if 1 < j < i < n.

Note that hij is scale invariant.

Lemma 1. Let Hx be the lower trapezoidal matrix defined above. Then:
(i) Hx*Hx = In-i, i.e., the columns of Hx are orthogonal,
(ii) IHxI = - 1,
(iii) xHX = 0.

354 H. R. P. FERGUSON, D. H. BAILEY, AND STEVE ARNO

Proof. The columns can be proven orthogonal by considering the cases i = j and
i < j separately. When i = j the inner product is

____ ~XiX~XkX* 2 xtxi N'Z
St1+ E 2 2+1 2S Xx

S_ XiXik + X 1.
2 2

When i < the inner product is

Sj+lxi*Xj + X XXjXkX*

SjSiSi+1 j<k<n sisi+lsjsj+j

Sj+ljixj x xi XkXk=O?

SjSiSi+l SiSi+ljj+j j<k<n

Item (i) shows that Hx*Hx = In-,, which has trace n - 1, so lHX = -n1. To
prove (iii), fix 1 < j < n - 1; then

_ _____ XkX____ XJSj+1 _ j XS~+
S khk,j * E Xk - y 50.

1<k<n Si *<k<n SS+ i SS+

Lemma 2. For a unit vector x E Kn define Px = HXHx*. Then Px satisfies:
(i) PX = PX
(ii) P =In - x*X

(iii) p2 =p

(iv) PPx = n- 1
(v) Pxz* =z* for any z E x,
(vi) Pxm* = m* for any relation m E (D(K)n for x.

Proof. Item (i) follows from HXHx* = (HxHx*)*. To prove (ii) note that, from
Lemma 1 (iii), Hx is an n x (n- 1) rank n - 1 matrix whose columns transposed
form an orthonormal basis for xl. Defining U = (Hxlx*), an n x n unitary matrix,
we have UU* = HXHx* + x*x = In. To prove (iii), note that

p2 = (In x*x)2 = n- 2I x*x + x*(xx*)x = Px.

To prove (iv), note that PX12 = tr(Px*Px) = trPx = trHx*Hx = n- 1. Item (vi)
follows from (v), which follows from (ii) and the associativity (x*x)z* = x*(xz*).

n~~~~~~~~
Theorem 1. Let x $ 0 RE K. Suppose that for any relation m of x and for
any matrix A E GL(n, O(K)) there exists a unitary matrix Q E U(n - 1) such
that H = AHXQ is lower trapezoidal and all of the diagonal elements of H satisfy
hj,j 0. Then

1 . 1
-ax _ {jmin < mT,l.

maxl<j<n-1 I hj?I <jn-1I h~jj I

ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM 355

Proof. Let m be any relation for x. By the hypothesis, there exists a unitary matrix
Q E U(n - 1) such that H = AHXQ is lower trapezoidal (this is equivalent to QR
factorization). There is an n x n -1 matrix T with diagonal ones and an n -1 x n -1
diagonal matrix D where H = TD with diagonal entries hj,j $4 O, 1 < j < n- 1,
from the hypothesis. On the other hand, APx - HQ*Hx, from the definition of Px
in Lemma 2. The equation APx = TDQ*Hx gives a decomposition of APx into the
product of a lower trapezoidal matrix T with diagonal l's, an invertible diagonal
matrix D with diagonal h's, and an n - 1 x n matrix Q*Hx with orthonormal rows,
since Q*H4HXQ = Q*ITn-Q = In-, by Lemma 1. So the norm of the j-th row of
DQ*Hx* is Jhj,j.

From Lemma 2, part (vi), m* = Pxm*, so that Am* = APxm*. From the above
decomposition of APx = TDQ*Hx, we have Am* = APxm* = TD(Q*Hx)m*. Let
QH,j be the j-th row of Q*Hx and let Aj be the j-th row of A. Then

Ajm* = hj,jQH,jm* + S tj,khk,kQH,km.-

k<j

Since A is invertible, Am* # 0. Let j be the least j for which Ajm* # 0, so that
Akm* = 0 for k < j. Then the k < j rows of TDQ*Hxm* are zero, and since T is
lower trapezoidal by recursion, the k-th rows of Q*Hxm* are also zero. With this
least choice of j, then, Ajm* = hj,jQjm*. Therefore, from A E GL(n, ?(K)),

1 < lAjm*l < lhj,jQH,jm*l ? <hj,jIHm*lI

because QH,j is a unit vector. C]

Comment on Theorem 1. Theorem 1 suggests a strategy to construct a relation
finding algorithm: Find a way to reduce the norm of the matrix HX by multiplication
by some unimodular A on the left. The inequality of Theorem 1 offers an increasing
lower bound on the size of any possible relation. Theorem 1 can be used with any
algorithm that produces any GL(n, ?(K)) matrices. Any GL(n, ?(K)) matrix A
whatsoever can be put into Theorem 1.

Definition 3 (Hermite reduction). Let H be a lower trapezoidal matrix, with
hij = 0 if j > i and hj,j y4 0. Define the matrix D = (di,j) E GL(n,0O(K))
recursively as follows. For fixed i, decrement j from n to 1, setting

(0 if i <j,
di= if i =j,

{nint((- j<k<i di,khk,j)/hj,j) if j < i

We will say that DH is the Hermite reduction of H and that D is the reducing matrix
of H. The function nint denotes a nearest integer function, e.g., nint(t) = [t + 1/2].
This definition of nint can be extended to each coordinate for complex or quaternion
arguments.

Definition 4 (Modified Hermite reduction). With the same notation as in
Definition 3, set D = In. For i from 2 to n, and for j from i - 1 to 1 (step
-1), set q = nint(hi,j/hj,j); then for k from 1 to j replace hi,k by hi,k- qhj,k, and
for k from 1 to n replace di,k by di,k- qdj,k.

Lemma 3. For a lower triangular matrix H with hij = 0 if j > i and hj,j #4 0,
Hermite reduction is equivalent to modified Hermite reduction.

356 H. R. P. FERGUSON, D. H. BAILEY, AND STEVE ARNO

Comment. This variation can be found in [8] and later in [28]. This recursion
replaces the input H with DH while developing the left multiplying reduction
matrix D. C]
Lemma 4. There exists a constant pK = p > 1, with the property that the entries
of the Hermite reduced matrix H' = (hl j) = DH satisfy the inequality

Ihk il < ' hlillp |/ Ihi,i llp

for all k > i. The constant p = 2 for the real case, p = vX for the complex case,
and p = 1 for the quaternion case.

Proof. This follows from the definitions of the nint function, Hermite reduction,
and the fact that Iz - nint(z)I < d/im2R/2 for z E 1K. D2

3. STATEMENT OF THE ALGORITHM PSLQ(-r)

Definition 5 (The parameters -y and r). Fix the real number -y > 2/V3 or
-y > X or -y = oo for the real, complex, and quaternion cases respectively. In
terms of this -y, define the real number r by

1/T2 = 1/p2 + 1/_y2,

where p is defined as in Lemma 4. For the proof of Theorem 2, we will require that
1 < r and that r < p; clearly these conditions are satisfied in the real and complex
cases. In the quaternion case r = 1 and p = 1.

For the proofs that follow assume 1K is real or complex, not quaternion. Note
however that the statement of the algorithm is valid for the quaternions.

Initial conditions. Given the input unit vector x E IKE, set H = Hx, where Hx is
defined as above. Set the n x n matrices A and B equal to the identity In. Perform
Hermite reduction on H, producing D E GL(n, 0(1K)). Replace x by xD-1, H by
DH, A by DA, B by BD-1.

One four-step iteration.

Step 1: Exchange. Let H = (hij), where hij is the i-th row, j-th column entry of
H. Let

0e = hr,r I d = hr+,?ri, A = hr+?,r+l I 6 = V/03* + AA*.

Choose an integer r such that -y'jhr,,, > fyjhji,ij for all 1 < i < n - 1. Define

the permutation matrix R to be the identity matrix with the r and r + 1 rows

exchanged. Replace x by xR, H by RH, A by RA, and B by BR.

Step 2: Corner. At this point the updated matrix H may not be lower trapezoidal

since A may not be zero. If r < n- 1, replace H by HQ, where Q is the unitary

n- 1 x n - 1 matrix Q = (qi,j) E U(n - 1,1K) defined by

/3*76 if i = r,j = r,
-A/6 if i=r,j=r+1,

_ A*/6 if i= r + 1,j = r,
qi,j = p316 if i = r + 1,j = r + 1,

1 if i = j #4 r or =j 4r + 1,
0 otherwise,

where the ag, ,3, A, 6 are defined in Step 1. If r = n- 1 then H is unchanged.

ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM 357

Step 3: Reduction. Perform Hermite reduction on H, producing D E GL(n, O(DK)).
Replace x by xD-1, H by DH, A by DA, B by BD-1.

Step 4: Termination. Terminate the algorithm if xj = 0 for some 1 < j < n or if
hi,j = 0 for some 1 < i < n - 1.

4. NUMBER OF ITERATIONS OF PSLQ(-r)

Let H(k) = H, A, and B = A-1 be the result after exactly k iterations of PSLQ.
Let ae = hr,,(k) and /3 = h,+?,,(k). These definitions of ae and /3 are consonant
with those of Step 2. Because H is Hermite reduced in Step 3, from Lemma 4,
131 < IcI/p. For r < n-1 set A = hr?1,r+ (k) and define t by t = >/,3p* +`AA*/a .
From this definition of t we have

JAI< Icllt.

From the Step 1 Exchange, 0 < JAI < lal/-y. It follows that

t = 3/3 +A`*/?aj, < V/l/p2+ =/y2 =,
as in Definition 5. For this proof we will require that t < 1 < r, clearly satisfied in
the real and complex cases.

Lemma 5. If hj,j(k) = 0 for some 1 < j < n-1 and no smaller k, then j = n-1
and a relation for x must appear as a column of the matrix B.

Proof (Alyson Reeves). First we show that hj,j = 0 implies that j = n-1. Consider
the matrix H(k - 1), the end result of the k - 1-th iteration. By the hypothesis on
k we know that no diagonal elements in H(k - 1) are zero. In particular, for the
r about to be chosen in Step 1 of the k-th iteration, we know that hr,,(k - 1) #4 0
and that h,+?,,+?(k - 1) y4 0. Now, suppose the r chosen in Step 1 is not n - 1.
Let

()
be the submatrix of H(k - 1) consisting of the r and r + 1 rows of columns r and
r + 1. After Step 1 has been performed this submatrix becomes

(oe O)
At Step 2, we post-multiply the matrix by the unitary sub-matrix of Q

(0*16 -A168
tA*16 016 J

where 6 = /,/,3* + AS*. The result is the matrix

K6 O

(aY16 -aA/6

Since A and ae are not zero (they were diagonal elements of H(k - 1)), we know
that 6 and -aA/6, the two diagonal elements in the matrix, are also not zero.
Note that since the rest of Q is the identity matrix, none of the other diagonal
elements is affected by the multiplication. Thus, at the end of Step 2, all diagonal
elements are non-zero. Since Hermite reduction doesn't introduce any new zeros on
the diagonal, the end result of the k-th iteration has all non-zero diagonal elements.
But this contradicts the hypothesis on k and our assumption that r < n - 1 was

358 H. R. P. FERGUSON, D. H. BAILEY, AND STEVE ARNO

false. Note that for r = n- 1, in order to have hn_l,n,l(k) = 0, we must have

hn,n-l (k-1)- 0 and hn-l,n-l(k - 1) #& 0.
Next we show that a relation for x must appear as a column of the matrix B.

By Lemma 1, xHx = 0. BA = In implies 0 = xBAHx = xBAHxQ = xBH(k - 1),
where Q is an appropriate unitary n - 1 x n - 1 matrix. Let z = xB. The above
gives

(O, ... , 0) = xBH(k - 1) = zH(k - 1) = . n. ., -hnl,nl(k-1)).

Since hn_l,n,l(k -1) = 0, then z -1 = 0. Hence the n - 1-th column of B is a
relation for x. E

Lemma 6. At any k-th iteration of the algorithm the diagonal entries of H(k)
satisfy the inequality Jhj,j(k)J < 1.

Proof. We follow the a, /, A definitions of the proof of Lemma 5 and use induction.
For k = 1 the diagonal entries of H(k) are those of Hx, and sj+l < sj < 1 gives
the required inequality. Assume that the inequality also holds up to k - 1. The
diagonal entries of H(k) are equal to those of H(k - 1) except for row r, where
Step 1 Exchange occurs. When r = n- 1, after the exchange, the r-th diagonal
element is /3. But 131 < lal/p < 1, because p > 1 and lal < 1 by induction. When
r < n - 1, after the exchange the r-th diagonal element is 6. But 161 = lait < 1,
since t < 1 and lal < 1. The r + 1-th diagonal element of H is -aA/6 (as in the
proof of Lemma 5), so that I- aA/61 = JAI/t < cal, because JAI2 < JAI2 + 1!12 and

JAI < Icelt. D

We show that every iteration of PSLQ causes a geometric monotonic increase
in a certain function H(k) which is roughly the product of all the principal minors
of the matrix H(k). If a relation for x exists, this product will be bounded above
and below. Assume x has some relation, and as usual let Mx denote the norm of a
smallest relation for x. We will need the following technical lemma in the proof of
Lemma 9.

Lemma 7. Consider the quotient
min{ B, t} min{ A, 1}

q(A, B,t) =
min{B1} . min{A, t}

Suppose that the four positive real numbers A, B, 1, t satisfy the three inequalities

A > B) A > t, 1 > t.

Then,

q(A,B,t) > 1.

Proof. Of the 16 possible choices in the min's, the inequality A > t removes 8,
A > B removes 2, and 1 > t removes 1, leaving 5. These five are

A > B > 1 > t with quotient t/1 1/t = 1,
A > 1 > B > t with quotient t/B 1/t > t/1 1/t = 1,
1 > A > B > t with quotient t/B A/t = A/B > 1,

1 > A > t > B with quotient B/B A/t A/t > 1,

A > I > t > B with quotient B/B 1/t 1/t > 1. D

Lemma 8. For a, -y, Mx as above,

IyTn2 Mxla?l > 1.

ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM 359

Proof. By the choice of r in Step 1 Exchange, we have -yr' Ia> ?y3 h3,jI for any
j, 1 < j < n-1, which implies

IT n-1 llhj,jl > -yrllhj,, I > -y/llal > -y /l0lal

for all j including that jo for which M. > 1/jhj0,30j from Theorem 1. Thus
In-2M > M 1/lal and -yn-2M cxlal > I

Definition 6 (The II function). Recall that T = i//p2 + l/ y2. Define

H(k) = 11 min{_yn- 1 M, 1/I h3,3 (k)
I
In- .

1<j<n-1

Lemma 9. For any k > 1 we have
(i)

(i)(^-1Mx)(2) > 1(k) > 1,

(ii)

H(k) > -rH(k - 1).

Proof. For the k's so far, h.,, (k) 54 0 for all 1 < j < n-1. Moreover, Mx > 1 and
1/ hj,3(k) > 1 by Lemma 6. This gives

min{Ax, 1/I hj,j (k) } > 1

for all 1 < j < n - 1, which implies the right hand inequality of (i). On the other

hand, it is always the case that Mx > min{Mx, 1/ Ih3, (k) }, which together with

the fact that (n) = n-1 -I+ + 2 + 1 and that -y > 1 gives the left hand inequality
of (i).

The proof of part (ii) is more involved. Let r be given by the Step 1 Exchange of

PSLQ. Recall the definitions of the two successive diagonal elements ag, A and the

single off diagonal element ,B, t = /3/3B* + AA*/ aj in Step 2 (Corner development)
of the unitary matrix in terms of ,B and A.

Suppose that r < n - 1. Then only two diagonal elements change. These

correspond to the 2 x 2 submatrix of H

(og O)
t: AJ

which after a single iteration becomes

K6 O

(aA16 -acA/)

But 161 = lalt, so that the absolute values of the of the ag, A diagonal elements are

replaced by the absolute values of the 6, -aA/8 diagonal elements. All the factors

of H(k) are the same except these two, so that

H(k) (min{ 1n-Mx, 1/(ajt)}\n r (min{fyt- 1MX, t/ A } n-r1

H(k -1) min{yn-lMx, c/lal} kmin{fyn1-1Mx, 1/JA}}
Set

A =n-1Mxlalt and B n-1MxjAj1

so that

H(k) (min{A, 1} (min{B,t} min{A, t}jnr

360 H. R. P. FERGUSON, D. H. BAILEY, AND STEVE ARNO

We now show that the assumptions for Lemma 7 hold. Note that 1 > t by the
definition of t; also, A > B since lalt > AI. By Lemma 8 we have A > tOy > t. By
Lemma 7 we have

11(k) > min{A, I} > 1 >
Il(k-1) -min{A, t} - t

Now suppose that r = n- 1. By Step 3 Reduction, under one iteration the
absolute value of the last diagonal element ag is less than oalp. All the factors of
Il(k) except the last are the same, so that

1I1(k) min{fy-1Mx, 1/(ajp)} _ min{A, t/p}
Il(k-1)- min{fyn-1Mx,1/ja} min{A, t}

But we always have -yn-2MxjaJ > 1, so if A > t/p > t, then

1(- (1) > l/p >'T.

By Lemma 8, A > tOy > t. If t < A < t/p, then

1-1(k) > Alt > Oy> r-. 1-1(k-)

Thus for r < n-1, I11(k) > 1II(k - 1).

Theorem 2. Assume real or complex numbers, n > 2, 'r > 1, and that 0 : x EKn
has ?O3(K) integer relations. Let Mx be the least norm of relations for x. Then
PSLQ(7) will find some integer relation for x in no more than

Kn log (-y n1MX)
(2) log T

iterations.

Proof. Suppose we have done k iterations; then, from Lemma 6 and Lemma 7,
1hj,j(k) I- 0 and not all Ihj,j(l)I < l/Mx for I < k. By Lemma 6, Hl(0) > 1, and by
Lemma 7, 11(k) > rk so that

(n-Wx)(n) >,Tk.

Taking natural logarithms of both sides of this inequality gives

(n) log (y n-1M) > klogT

Corollary 2. Let K be the real numbers R or the complex numbers C. Fix n > 1
and assume given a unit n-tuple x E Kn which has a relation mx E O(IK)n of least
norm Mx. Then there exists a -y such that the algorithm PSLQ(r) will construct
some 0(K)n relation for x in no more than

2 (dimRIK) (n 3 + n2 log MX)

iterations.

Proof. Let Oy 2. Then for either IK, T > 1; specifically, 1/logT < 4dimR1K.
PSLQ(r) takes O(n) exact arithmetic operations per iteration, so in this sense
finds relations in 'polynomial time' O(n4 + n3 log Mx). D

ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM 361

5. UPPER BOUNDS ON INTEGER RELATIONS

We compare the relation found by PSLQ to a shortest possible relation.

Lemma 10. Suppose m is the relation found on the k + 1-st iteration, so that
hn_l,n_l(k + 1) = hn,n0l(k) = O and hn_1l,n_l(k) 54 0. Then

Iml = 1/| hn_l,n-l (k)j.

Proof. At this iteration we have developed the matrix A E GL(n, O(K)), where
the (n - 1)-st column of A1 by Lemma 5 is m and the vector Am* en-I
has as its only non-zero entry a 1 in the (n - 1)-st position. Since AP TDQ,
Qm* = D-lTtAm*, where Tt is the generalized inverse of T and D is a diagonal
matrix with last entry hn_l,n,l(k), which is also the last entry of D-lTtAm*.
Because Q is unitary, jQm*1 = Im*j. E

Theorem 3. Let M, be the smallest possible norm of any relation for x. Let m
be any relation found by PSLQ(-r). For all y > 4/3 for real vectors and for all
,y > vX2 for complex vectors

Iml < _n-2

Proof. Assume we are at the k-th step of PSLQ, where a Step 1 Exchange r = n-1
was made with hn_ n_ -1(k) Iz 0 and hn -1,n -1(k + 1) = 0. Then

IT n-1 I hn_ l,n- 1 (k) I > -yi I hj,j (k) I

for all 1 < j < n - 2 by the choice of r. Hence, by Theorem 1, Lemma 8 and
Lemma 10

Mx > I/ max I hi,j (k) I > -,2-n /lhn_l ,n_l(k)j| = _y2-njImj

Comment on Theorem 3. For n = 2, Theorem 3 proves that any relation 0 :& m E
D(K 2) found has norm Iml = Mx. In other words, PSLQ(r) finds a shortest

relation. For real numbers this corresponds to the case of the Euclidean algorithm,
[13, Book X], [20], [26]. For complex numbers this corresponds to the case of an
algorithm in [33].

For n = 3, let x = (113,343,311). This vector has a shortest relation mx
(7, -15,14) with the shortest norm lmxI = Mx = 21.6794.... This can be verified
directly; cf. [25], [31], [11]. On the other hand, for Tr 1.0000 ..., -y = 1.1547...,
PSLQ(r) in iteration 6 produces the relation m1 = (24, -7, -1). Indeed,

Mx < I mlI = 25.0199 ... < -yMx = 25.0333.

This relation appears from a zero in the second coordinate of the xA-1 vector.
Continuing to iteration 8 gives the relations appearing from the first and second
coordinates of the current xA-1 vector, m2 = (-17, -8,15) and m3 = (41,1, -16)
of norms 24.0416... and 44.0227..., respectively. The vector m2 has smaller
but not smallest norm. Continuing to iterations 9 and 10 gives the relations ap-
pearing from the first and second coordinates of xA-1 of m4 = (7, -15,14) and
m2 = (-17, -8,15), so a shortest vector m4 was eventually found. In iteration
11 the condition h2,2(11) = 0 appeared for the first time, giving the relation
m5 = (-10, -23,29) of norm 38.3405....

362 H. R. P. FERGUSON, D. H. BAILEY, AND STEVE ARNO

This example is instructive in that various choices of the parameter 'r give dif-
ferent outputs. The 'legal' T are such that 1 < T < 2, although the PSLQ('r)
sometimes works for 'illegal' 'r outside of this interval. For the 'legal' 'r = 1.1,
iteration 6 yields m1, 8 yields M2,M i3, 9 yields m4, m2, and 10 yields mi5. On the
other hand, for r = 1.8, iterations 4, 5, 6 all yield only the shortest length relation
M4. For the 'illegal' T below 0.7 and above 2.1 the algorithm cycles indefinitely.
The end point T = 1.0 gives essentially the same outputs as TF 1.1. The other end
point r = 2.0 yields two new relations, m6 = (1, -91,100) and M7 = (0, -311,343),
of norms 135.2109... and 463.0010 .., respectively.

6. MULTIPLE RELATIONS

A given unit vector x E]K' may have 0, 1, 2, or up to n - 1 relations. Once
a relation has been constructed, one of the coordinates of xB for the appropriate
B E GL(n, ?9(K)) will be zero, and the corresponding column of B will be a relation.
The remaining n - 1 coordinates can be used to form a new unit vector in y E
Kr. Apply PSLQ('r) to this y. Any second relation so found will be integrally
independent from the first and can be referred back to the original x. In this way
as many as n -1 integrally independent relations for x can be constructed. We omit
here the tangent discussion of using classical lattice reduction techniques to find
integer relations; this is the case for the Recognize[] function in MathematicaTM
which calls the function LatticeReduce[], cf. [11], [12], [27]. Lattice reduction
there applies typically only to integer relations for integer vectors. Integer relation
finding here is directed specifically at integer or Gaussian integer relations for real
or complex number vectors.

7. VARIATIONS OF PSLQ(T)

The algorithm PSLQ('r) as stated may be performed for various 'illegal' T or
'illegal' -y, and under these circumstances will find relations for some x vectors. This
can happen for -y < V47/3 in the real case, for -y < VX2 in the complex case, and for
-y < oc in the quaternion case, so that T < 1 and the conclusions of Theorem 2 or
Theorem 3 make no sense or have no apparent content. The reason for this apparent
anomaly is that for a specific n-tuple x the actual field or division ring constant p
bound in Lemma 4 is not universal and could depend upon an input vector x. Say
Px gives a bound such as that of Lemma 4 for some special x or collection of them.
Then there may be an "illegal" -y so that Tx 1/ lI/p2 + l/1y2 > 1. For such x one
could expect to see some relation emerge before the number of iterations indicated
by Theorem 2 for this Tx = r.

On the other hand, it is possible to use the real PSLQ(T) algorithm to find
complex and quaternion relations at the expense of doubling and quadrupling the
dimension. For example, suppose z = x + yi + uj + vk is a vector in EH with vector
components x, y, u, v E R'. Suppose the corresponding relation is m = a+bi+cj+dk
which is a lattice point in Wn with integral vector components a, b, c, d E Zn. Then
zm* = 0 implies four integer relations among the interlaced and suitably sign
changed coordinates of z. For the first set l<j<n(ax-bjy3 - c3u - djvj) = 0
and one can apply real PSLQ(r) to the real 4n-tuple (... , x;, Yj, uj, vj,...). There
are three others which are similar. A relation for z will be in the intersection of the
four associated lattices. Alternatively, one can give a PSLQ(r) algorithm along the
lines of [23, Section 5. Finding simultaneous integer relations].

ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM 363

8. COMPUTER IMPLEMENTATION OF PSLQ(T)

The PSLQ('r) algorithm can be implemented using ordinary floating point arith-
metic on a computer. Using double precision (i.e., 64-bit) arithmetic, relations of
two or three digits in size can be recovered for n up to five or so. Beyond this level,
precision is quickly exhausted, and recovered relations and norm bounds are mean-
ingless. Thus a serious implementation of PSLQ (or any other integer relation algo-
rithm for real numbers) must employ some form of multiprecision arithmetic. The
authors employed the MPFUN multiprecision translator and computation package.
The Fortran-77 version of this software is described in [6], and the newer Fortran-
90 version is described in [7]. A C++ translator that employs these routines is
also now available. Alternatively, one may employ the multiprecision facilities of
symbolic math software packages, such as Maple, Pari or MathematicaTM.

The descriptions presented here of computer implementation of PSLQ('r) are
for the case of the real number system. Extensions to the case of the complex
and quaternions number systems are straightforward, provided one's multiprecision
system supports these datatypes.

One key to an efficient implementation is to utilize a simplified version of Her-
mite reduction and the associated update. As noted in Lemma 3 above, Hermite
reduction can be done more efficiently by a triply nested loop. In fact, the update
operations associated with Hermite reduction (updating x, H, A and B) can also
be done in a loop of this form. Further, if these updates are done in this manner,
then it is not necessary to compute the D matrix. This simplified scheme is as
follows. In the initialization step, Hermite reduction and the subsequent updates
are replaced with the following:

For i from 2 to n, for j from i - 1 to 1 (step -1), set t = nint(hi,j/hj,j) and
replace xj by x3 - txi; then for k from 1 to j replace hi,k by hi,k - thj,k; for k from
1 to n replace ai,k by ai,k - taj,k and replace bk,j by b(k, j) + tb(k, i).

Step 3 is also replaced with this, except i is incremented from r + 1 to n, and j
is decremented from min{i - 1, r + 1} to 1. Here r denotes the row index selected
in Step 1. These more restrictive limits on i and j merely reflect the fact that t = 0
outside these limits.

Obviously in a computer implementation some care must be taken in testing
for zero. This is typically done by checking that the absolute value of the tested
value is less than the "epsilon" appropriate for the level of numeric precision being
used. Also, a run should be terminated if any entry of the A matrix exceeds the
level of numeric precision being used (so that these integer values can no longer be
represented exactly).

The level of working precision required for PSLQ is generally only a few digits
greater than the accuracy of the input x vector. Along this line, if one wants
to recover (or to exclude) relations of size d digits, then the input data must be
specified to at least nd digits in order to obtain numerically meaningful results. The
significance of a recovered result can be measured by noting the ratio between the
multiprecision epsilon and the largest entry of the updated x vector when a relation
is recovered. If this ratio is very small, such as 10-40, then one can be fairly certain
that the relation produced by PSLQ is a real relation. But if this ratio is only a few
orders of magnitude below unity, then the result is suspect, and higher accuracy in
the input data, as well as correspondingly higher working precision, is required.

364 H. R. P. FERGUSON, D. H. BAILEY, AND STEVE ARNO

The above implementation is satisfactory for most applications. For more de-
manding applications, a "two-level" implementation is significantly faster. In a two-
level implementation, most operations are performed in ordinary double precision
arithmetic, with occasional updates of multiprecision arrays using multiprecision
arithmetic. This two-level scheme can be described as follows. Here the prime
notation is used to denote double precision approximations to multiple precision
values.

To initialize, perform the initialization step as described above using full preci-
sion. Then perform an "double precision initialization": (1) set x' = x/ maxi,j lxj
and set H' = H; (2) perform a LQ decomposition on H', using double precision
arithmetic, setting H' to be the lower triangular part; (3) set A' = B' = In.

PSLQ iterations are then performed as above on the arrays x', H', A' and B',
using double precision arithmetic. Some care must be taken to insure numerical
accuracy in these iterations. Obviously these iterations before entries in A' grow so
large (9 x 1015 on IEEE systems) that they cannot be exactly represented as double
precision values. In the authors' implementation, double precision iterations are
halted when the largest entry of A' exceeds 1010. Tests for zero in these iterations
must reflect the accuracy of double precision arithmetic the authors used an
"epsilon" of 10-13 here. As an additional measure to insure numerical integrity,
the authors' code aborts the modified Hermite reduction procedure (and restores
arrays to their previous values) if the multiplier q exceeds 107.

When the double precision iterations are halted, due either to large entries in
A', or to a tentative zero in x' or H', it is necessary to perform a "multiprecision
update": (1) replace A by A'A, replace B by BB', replace H by A'H, and replace
x by xB'; (2) check for zero entries in x, using the multiprecision epsilon. If no
zeroes are found, then a double precision initialization is performed, followed by
more double precision PSLQ iterations.

One detail has been omitted here. In some cases, the entries of the updated
x vector have such a large dynamic range (greater than 1010 in the authors' im-
plementation) that when converted to double precision, additions and subtractions
would produce results of questionable reliability. In these cases it is necessary to
perform PSLQ iterations on the multiprecision arrays, using multiprecision arith-
metic, for a number of iterations until this large dynamic range is eliminated. If this
situation is encountered on any iteration other than the very first, a multiprecision
LQ decomposition of H must be performed prior to performing these multiprecision
iterations (so that the H array contains the same entries as the H array defined in
the PSLQ algorithm statement).

The authors' Fortran implementation of PSLQ, together with the required mul-
tiprecision arithmetic software, is available by sending electronic mail to dbailey@
nas.nasa.gov. Also available are MathematicaTM implementations of PSLQ as
well as a number of other integer relation algorithms for comparison.

9. SUMMARY OF THE LITERATURE

The problem of finding integer relations among sets of rational and real numbers
is quite old. When n = 2 this problem can be solved for rationals by the first
Euclidean algorithm in Euclid, Book VII, and for reals by the second Euclidean
algorithm given in Euclid, Book X; cf. [26], [11], [37]. Generalizations of this
algorithm to higher real dimensions were proposed without proof by many authors,

ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM 365

including Jacobi [24], Hermite [22], Poincare [32], Perron [30], Brun [9], [10] and
Szekeres [38]. Various counterexamples can be found in [15] and [19].

The first integer relation finding algorithm with proofs for the case of real num-
bers was discovered in 1977 by Ferguson and Forcade, [14], [15]. These algorithms
were shown to be polynomial time in the logarithm of the size of a smallest relation.
They were not shown to be polynomial in the dimension. Since then, other related
algorithms for finding relations for real vectors have appeared in [8], [16], [17], [18].
For example, [5] reports on a computer implementation of [16]. The sequence in-
cluding [23] (HJLS), [2] and [1] (PSLQ), [3] (a concise statement of PSLQ), and
[35] (a stable variation of HJLS) will be discussed below.

These algorithms all depend upon an orthogonal decomposition of some kind.
See [21] for a list of various orthogonalization algorithms and their numerical linear
algebra differences. PSLQ is of the QR type. HJLS follows the lattice reduction
work of [28], [34], and [36], which is classical Gram-Schmidt type, cf. [31] and [11].
This conceptual difference may explain some of the numerical differences observed
between PSLQ and HJLS, cf. [2].

Rigorous proofs that the algorithm under investigation must find a relation if
one exists appeared in [14], [8], [15], [16]. All of these proofs gave a linear bound
in the logarithm of the size of a relation, but were not known to be polynomial
in the dimension. [8] and [16] had unsatisfactory proofs in the sense that they
were shown to be at worst exponential in the dimension rather than polynomial in
the dimension. This unsatisfactory state of affairs was resolved affirmatively with
the proofs that appeared in [23] for the 'small integer relation algorithm'. We will
refer to this 'small integer relation algorithm' as HJLS, as stated in [23, Section
3] as a reflection of that in [8, Section 3]. In fact, this proof in [23] was the first
appearance in the literature of a 'polynomial time' bound for a relation finding
algorithm, polynomial in both dimension and logarithm of relation size.

This important progress was made when [23] combined two independent streams
of research, [14], [8], [15], [16], [18] and [28], [29], [34], [35], [11]. Inspired by
the polynomial result of [23], but not the details, the first author of this paper
formulated what he thought was a new algorithm [2], [1] and gave a polynomial
proof. This proof was independent of that of [23], a different analysis, but flawed
by giving a slightly higher degree polynomial in the dimension than the polynomial
proof given in [23]. This algorithm in [2], [1] was called PSLQ and had the advantage
of the adjustable parameter Oy or -r. Applications and implementation of this earlier
version of PSLQ('r) were described in [3], [7], [4]. These implementations showed
that the parameters were a helpful feature of the algorithm. The bound on iterations
for HJLS proven in [23] was Q(n3 + n 2 1og2 M.); this is consonant with the bound
proven in this paper for PSLQ(v'X). The subsequent paper [35] included parameters
as well as addressing a certain issue of stability.

As a specific example, consider the triple x = (11, 27,31). We list the sequence
of A1 matrices for each algorithm. A relation if found will be constructed as a
column of one of these A1 matrices.

For PSLQ(1.1547) the successive iterations k = 0,1, 2,3,4, yield the five A1
matrices

I 0 00 1 0 0 - t2 1 0

366 H. R. P. FERGUSON, D. H. BAILEY, AND STEVE ARNO

/3 -2 0 ' -1 -8 -2'
(1 2 1),1 5 9 2I)
\-2 -1 -1, -4 -5 -1,

Note that PSLQ has constructed two relations appearing as the first and second
columns of the last matrix, iteration k = 4.

For HJLS the successive iterations k = 0, 1, 2, 3, 4, 5, 6 yield the seven A-1 ma-
trices

I 0 1 0 0 0 1 0 1 -2 0)

o 1 o 0l 1 0l o 1 , o 1 ,
0 O 1, 0 1 -1 I I 0 I1 0 1 I1

/1 0 -2\ /0 1 -2' /0 -2 -1'
(21)1 1 3 2 1>Q 2 5
0o - I I - 1 -3 -1, \-1 -1 -4,

Note that only one relation is found; it appears in the last column of the last matrix,
iteration k = 6. The authors of [34] claimed that HJLS is a special case of PSLQ(r)
for -y = X or equivalently T = V4/3. The example just given shows that this claim
cannot be true.

The significance of the parameter was revealed clearly in the extensive tables
appearing in [2]. In [2] the parameter was -y, which is equivalent to giving T =
1/ p2 + 1/7-y2. The choice of the parameter T has precision consequences: depend-
ing upon the choice of parameter, a numerical precision much higher than that of
the input real vector must be used to obtain a reliable result. For example, the
algebraic number

a8 = 3 1/4 - 21 /4 = f3 - Af

satisfies a polynomial of degree 16 with coefficients

(1,0,0,0, -3860,0,0,0, -666,0,0,0, -20,0,0,0,1).

The algorithm PSLQ(T) for T = 1.000006145 or Oy 1.1547005384, applied to the
vector (1, c, a 2,..a , afl), with n = 17, finds these coefficients with a working
precision of 75 decimal digits. We have shown with the n = 3 example above that
HJLS is not PSLQ(4/3). Again, we see that HJLS requires a working precision
of more than 10,000 decimal digits to find this n = 17 relation. Comparative run
times are not particularly relevant here but are also correspondingly higher for
HJLS see Table 2 of [2].

For a slightly different T = 4/3 = 1.154700538..., PSLQ(T) requires 85 deci-
mal digits, 10 digits more than for -y = 1.1547005384. Generally the closer T is to
1 the less precision seems to be required. This observed phenomenon appears to
have nothing to do with any question of numerical stability.

The various algorithms in the literature stand independently of their published
proofs; their published proofs may not reveal their actual properties clearly. Though
the proofs were exponential, the algorithms stated in [14], and in [15], and again
in [16] were parametric. The parameter b in [14], [15] satisfies 1 < b < 2, whereas
in [16] the parameter -y is emphasized. The algorithm in [8, Sect. x] seems closest
to PSLQ(4/3) with the T parameter set by -y = v. This parameter choice
appears in [8, Sect. x] without the [28] setting and reappears in [23] as the "small

ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM 367

integer relation algorithm", which we call HJLS, rewritten in the [28] language and
accompanied by a 'polynomial time' proof for the first time.

Bergman discussed the complex case of finding Gaussian integer relations for
complex vectors in [8, Sect. 5: Variants]. Bergman also gave an algorithm for
the simultaneous real vector case in [8, Sect. 7]. Following Bergman, the paper
defining HJLS for simultaneous real vectors, [23, cf. Sect. 5]; implicitly includes
the complex and quaternion vector case as well. As an alternate approach, inspired
by [37], in this paper we have extended the base field of PSLQ(r) to these division
rings and introduced unitary matrices into the algorithm directly. The proof given
here of polynomial number of iterations covers the real and complex cases, but fails
for quaternions. However, the quaternion version of PSLQ(T) performs reasonably
well experimentally in finding Hamiltonian integer relations for quaternion vectors.
This was explained in Section 8.

10. OPEN QUESTIONS

1) Is there a relation finding algorithm that finds a shortest relation in a poly-
nomial (in the dimension) number of iterations?

2) What are the best choices for the parameter T or Oy relative to the number of
iterations, time, and precision requirements of PSLQ?

1 1. ACKNOWLEDGMENTS

The authors thank (in alphabetical order) Peter Borwein, M. Euchner, Rod
Forcade, Jeff Lagarias, Alyson Reeves, Robert Riley, M. L. Robinson, Carsten
R6ssner, Claus Schnorr, and Francis Sullivan for their motivating comments about
PSLQ. Specifically, we thank Alyson Reeves for her lucid rewriting of the proof of
Lemma 5, Rodney Forcade for counterexamples, and the referee for clarifications.

REFERENCES

1. Steve Arno and Helaman Ferguson, A new polynomtal time algorithm for finding relations
among real numbers, Supercomputing Research Center Tech Report SRC-93-093 (March
1993), 1-13.

2. D. H. Bailey and H. R. P. Ferguson, A polynomial time, numerically stable integer relation
algorithm, SRC Technical Report SRC-TR-92-066; RNR Technical Report RNR-91-032 (16
December 1991; 14 July 1992), 1-14.

3. D. H. Bailey, J. Borwein, and R. Girgensohn, Experimental evaluation of Euler sums, Exper-
imental Mathematics 3 (October 1994), 17 - 30. MR 96e:11168

4. D. H. Bailey, P. Borwein, and S. Plouffe, On the rapid computation of various polylogarithmic
constants, Mathematics of Computation 66 (218) (April 1997), 903 - 913. CMP 97:06

5. D. H. Bailey, Numerical results on the transcendence of constants involving xr, e, and Euler's
constant, Mathematics of Computation 50 (181) (January 1988), 275 - 281. MR 88m:11056

6. D. H. Bailey, Multiprecision translation and execution of Fortran programs, ACM Transac-
tions on Mathematical Software 19 (3) (1993), 288 - 319.

7. D. H. Bailey, A Fortran-90 based multiprecision system, ACM Transactions on Mathematical
Software 21 (4) (1995), 379 - 387..

8. G. Bergman, Notes on Ferguson and Forcade's generalized Euclidean algorithm, University
of California at Berkeley, unpublished notes, Nov. 1980.

9. V. Brun, En generalisatiken av kjedebro0ken, I, II, Norske Videnskapsselskapets Skrifter I.
Matematisk Naturvidenskapelig Klasse 6 (1919, 1920), 1-29, 1-24.

10. V. Brun, Algorithmes euclidiens pour trois et quatre nombres, Treizieme Congres des mathe-
maticiens Scandinaves, tenu a Helsinki 18-23 aofit 1957, Mercators Trycheri, Helsinki, 1958,
pp. 46-64. MR 22:2597

368 H. R. P. FERGUSON, D. H. BAILEY, AND STEVE ARNO

11. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathe-
matics 138, Springer-Verlag, Berlin Heidelberg New York, 1993. MR 94i:11105

12. M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C. P. Schnorr, J. Stern, Improved
low-density subset sum algorithms, Computational Complexity 2 (1992), no. 2, 111-128. MR
94e: 11141

13. Euclid, translated from the text of Heiberg with introduction and commentary by Sir Thomas
L. Heath, The Thirteen Books of Euclid's Elements, Second Edition, revised with additions,
unabridged, Volumes I, II, III, Dover Publications, Inc., New York, 1956. MR 17:814b

14. H. R. P. Ferguson and R. W. Forcade, Generalization of the Euclidean algorithm for real num-
bers to all dimensions higher than two, Bulletin (New Series) of the American Mathematical
Society 1 (1979), 912 - 914. MR 80i:11039

15. H. R. P. Ferguson and R. W. Forcade, Multidimensional Euclidean algorithms, (Crelle's)
Journal fur die reine und angewandte Mathematik 334 (1982), 171 - 181. MR 84d:10015

16. Helaman Ferguson, A short proof of the existence of vector Euclidean algorithms, Proceedings
of the American Mathematical Society 97 (1) (May 1986), 8 - 10. MR 87k:11080

17. Helaman Ferguson, A noninductive GL(n, Z) algorithm that constructs integral linear rela-
tions for n Z-linearly dependent real numbers, Journal of Algorithms (8) (1987), 131 - 145.
MR 88h:11096

18. Helaman Ferguson, PSOS: A new integral relation finding algorithm involving partial sums
of squares and no square roots, Abstracts of papers presented to the American Mathematical
Society 9 (56; 88T-11-75) (March 1988), 214.

19. Rodney W. Forcade, Brun's algorithm, unpublished manuscript (November 1981), 1 - 27.
20. David Fowler, Ratio in early Greek mathematics, Bulletin (New Series) of the American

Mathematical Society 1 (6) (November 1979), 807 - 846. MR 82c:01008
21. G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd Edition, The Johns Hopkins

University Press, Baltimore, Maryland, 1990. MR 90d:65055
22. C. Hermite, Extraits de lettres de M. Ch. Hermite a M. Jacobi sur differ6nts objets de la

th6orie de nombres, (Crelle's) Journal fur die Reine und Angewandte Mathematik (3, 4)
(1850), 261 - 315.

23. J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr, Polynomial time algorithms for finding
integer relations among real numbers, SIAM Journal of Computing 18 (1989), 859 - 881. MR
90g: 11171

24. C. G. J. Jacobi, Allgemeine Theorie der Kettenbruchahnlichen Algorithmen, in welchen jede
Zahl aus drei vorhergehenden gebildet wird (Aus den hinterlassenen Papieren von C. G. J.
Jacobi mitgetheilt durch Herrn E. Heine.), Journal fur die Reine und Angewandte Mathematik
69 (1) (1868), 29 - 64.

25. R. Kannan, Lattices, basis reduction, and the shortest vector problem, Theory of Algorithms
(Pecs, 1984), Colloquia Mathematica Societatis Janos Bolyai, vol. 44, North-Holland, Ams-
terdam, 1985, pp. 283-311. MR 87m:90087

26. D. E. Knuth, The Art of Computer Programming, Vol. 2 Seminumerical Algorithms, Second
Edition, Addison-Wesley, Reading, MA, 1981. MR 83i:68003

27. J. C. Lagarias, H. W. Lenstra Jr., and C. P. Schnorr, Korkin-Zolotarev bases and successive
minima of a lattice and its reciprocal lattice, Combinatorica 10 (4) (1990), 333 - 348. MR
92a: 11075

28. A. K. Lenstra, H. W. Lenstra Jr., and L. Lovasz, Factoring polynomials with rational coeffi-
cients, Math. Ann. 261 (1982), 515 - 534. MR 84a:12002

29. Laszlo Lovasz and Herbert E. Scarf, The generalized basis reduction algorithm, Mathematics
of Operations Research 17 (3) (August 1992), 751 - 764. MR 93h:52023

30. 0. Perron, Grundlagen fuir eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann.

(64) (1907), 1 - 76.
31. M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Chapter 3: Methods

from the Geometry of Numbers, Encyclopedia of Mathematics and its Applications, Cam-
bridge University Press, New York, 1989. MR 92b:11074

32. H. Poincar6, Sur une g6n6ralisation des fractions continues, Comptes Rendus Acad. Sci. Paris
99 (1884), 1014 - 1016.

33. Asmus L. Schmidt, Diophantine approximation of complex numbers, Acta Mathematica 134
(1975), 1 - 85. MR 54:10160

ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM 369

34. C. Schnorr and M. Euchner, Lattice basis reduction: improved practical algorithms and solving
subset sum problems, Fundamentals of Computation Theory (Gosen, 1991), Lecture Notes in
Computer Science, vol. 529, Springer-Verlag, Berlin, Heidelberg, New York, 1991, pp. 68-85;
also published in Mathematical Programming Series A 66 (2) (1994), 181-199. MR 92g:68007;
MR 95j:90064

35. C. Rossner and C. P. Schnorr, A stable integer relation algorithm, FB Mathematik/ Informatik
Universitat Frankfurt TR-94-016 (1994), 1 - 11.

36. C. P. Schnorr, A more efficient algorithm for lattice basis reduction, Journal of Algorithms 9
(1988), 47 - 62. MR 89h:11086

37. G. Shimura, Fractional and trigonometric expressions for matrices, The American Mathe-
matical Monthly 101 (8) (October 1994), 744 - 758. MR 96e:15053

38. G. Szekeres, Multidimensional continued fractions, Ann. Univ. Sci. Budapest Eotvos Sect.
Math. 13 (1970), 113 - 140. MR 47:1763

CENTER FOR COMPUTING SCIENCES, 17100 SCIENCE DRIVE, BOWIE, MD 20715-4300
E-mail address: helamanfOsuper.org
E-mail address: arnoKsuper.org

LAWRENCE BERKELEY LAB, MAIL STOP 50B-2239, BERKELEY, CA 94720
E-mail address: dhbOnersc.gov

	Cit r465_c472:
	Cit r474_c482:

