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NEW FIBONACCI AND LUCAS PRIMES 

HARVEY DUBNER AND WILFRID KELLER 

ABSTRACT. Extending previous searches for prime Fibonacci and Lucas num- 
bers, all probable prime Fibonacci numbers Fn have been determined for 
6000 < n < 50000 and all probable prime Lucas numbers Ln have been deter- 
mined for 1000 < n < 50000. A rigorous proof of primnality is given for F9311 
and for numbers Ln with n = 1097, 1361, 4787, 4793, 5851, 7741, 10691, 
14449, the prime L14449 having 3020 digits. Primitive parts Fn and Ln of 
composite numbers Fn and Ln have also been tested for probable primality. 
Actual primality has been established for many of them, including 22 with 
more than 1000 digits. In a Supplement to the paper, factorizations of num- 
bers Fn and Ln are given for n > 1000 as far as they have been completed, 
adding information to existing factor tables covering n < 1000. 

1. INTRODUCTION 

Fibonacci numbers Fn and the related Lucas numbers Ln are defined recursively 
by the formulas 

Fn+2 = Fn+1 + Fn) n > 0, Fo = 0, F1 = 1, 
Ln+2 = Ln+1 + Ln, n > 0 Lo=2, L1 = 1. 

These numbers have many interesting properties and applications; see [7] and the 
historical references therein. Here we report on a search for new primes Fn and Ln 
which extends previous work of J. Brillhart, H. C. Williams, and F. Morain. 

It turned out that Fn is a prime (or a probable prime, when marked with an 
asterisk) for n = 3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83, 131, 137, 359, 431, 
433, 449, 509, 569, 571, 2971, 4723, 5387, 9311, 9677*, 14431*, 25561*, 30757*, 
35999*, 37511*, and for no other n < 50000. The interval n < 1000 had been 
covered by Brillhart; cf. the review of [7]. Williams searched 1000 < n < 6000 for 
probable primes (as reported by Brillhart [2]) and showed that F2971 was indeed a 
prime, while F4723 and F5387 were subsequently proven prime by Morain [12] using 
techniques similar to those we will be describing below. 

Also, Ln has been shown to be a prime (or a probable prime) for n = 0, 2, 4, 
5, 7, 8, 11, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353, 503, 613, 
617, 863, 1097, 1361, 4787, 4793, 5851, 7741, 8467*, 10691, 12251*, 13963*, 14449, 
19469*, 35449*, 36779*, 44507*, and for no other n < 50000. The interval n < 500 
had been covered by Brillhart [7] and was extended to n < 1000 by Williams (as 
mentioned in [2]), who found four new primes Ln. 
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We recall that Fn with n > 5 cannot be prime unless n itself is a prime. Also, Ln 
with n > 0 can be prime only when n is a prime or a power of 2. For large numbers 
Fn and Ln, rigorous proofs of primality became possible due to the multiplicative 
structure of Fn ? 1 and Ln ? 1, the existence of extensive factor tables, and the 
availability of powerful factoring algorithms. 

2. PRIMALITY TESTING 

The theorems applied to prove primality of large numbers N rely on the provision 
of a completely factored part of N-I or of N + 1 that exceeds in magnitude N1/2 or 
lies, at least, between N1l3 and N1/2. We first state the theorems, which are derived 
from those found in [4], and then we discuss their application from a practical point 
of view. 

Let N - 1 = G H, where G is a completely factored portion of N - 1, H > 1, 
and (G,H) =1. 

Theorem 1. Suppose G2 > N. If for each prime pi dividing G there exists an a2 
such that a.1 1 (mod N) and (a(N l)/P - 1, N) = 1, then N is prime. 

Theorem 2. Suppose 2G3 > N. Let r and s be defined by H = 2Gs + r, 1 < r < 
2G, where s = 0 or otherwise r2 _ 8s is not a perfect square. If for each prime Pi 
dividing G there exists an ai such that aN- 1 (mod N) and (a(N 1)/p -1, N) 
1, then N is prime. 

A pair of Lucas sequences {Un}, {Vn} is defined by the formulas 

Un+2 = PUn+1 -QUn, n > 0, Uo = 0, Ui = 1, 
Vn+2 = PVn+l - QVn n > 0, Vo = 2, V1 = P, 

where P and Q are integers such that the discriminant D = p2 - 4Q 74 0. Note 
that the Fibonacci and Lucas numbers we are studying in this paper are included 
in the more general definition by assuming P = 1, Q = -1, D = 5. 

Now let N + 1 = C H, where G is a completely factored portion of N + 1, 
H > 1, and (G,H) = 1. 

Theorem 3. Suppose (G - 1)2 > N. If for each prime p, dividing G there exists 
a Lucas sequence {U(i)} with a given discriminant D such that (D/N) = -1, 
U(")1 _0 (mod N), and (UM ))/p, N) = 1, then N is prime. 

Theorem 4. Suppose (G - 1)3 > N. Let r and s be defined by H = 2Gs + r, 
Irl < G, where s = 0 or otherwise r2 _ 8s is not a perfect square. If for each prime 

P% dividing G there exists a Lucas sequence {U(i) } with a given discriminant D such 
that (D/N) =-1, U 01-0 (mod N), and (U((j))/ ,N) = 1, then N is prime. 

Theorems 2 and 4 are corollaries to Theorems 5 and 17 of [4] obtained by letting 
m = 1 in the assumptions of both theorems, which seems to be a good choice for 
most practical purposes. Note that, in Theorem 2, s = 0 would mean H = r and 
H < 2G, the inequality being equivalent to N - 1 = G H < 2G2 or N < 2G2. 
Thus, the square root of r2 _ 8s must be calculated whenever 2G3 > N > 2G2, and 
this is always the case when G scarcely exceeds (N/2) 1/3. Similarly, in Theorem 4, 
s = 0 means N < G2 - 2 and the square root must be calculated when (G -1)3 > 
N > G2 - 2. 
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Examining Theorem 1 and Theorem 2, it is apparent in both cases that the 
amount of computation needed to prove a number N prime is roughly proportional 
to the number of (different) prime factors pi of the completely factored part. 

Now, suppose we have a factored part G > N1l2 that includes many small factors 
pi while the larger ones alone suffice to surpass the minimum limit of (N/2) 1/3. In 
this situation it appears more advisable to use Theorem 2 with a reduced set of 
factors, though at first sight we would be inclined to apply Theorem 1. The reason 
is that for every small pi discarded the computation of at least one power modulo N 
is saved. The required additional computation of a single square root can certainly 
be neglected. 

It is interesting to note that the absence of small factors pi in the used factored 
part of N - 1 has another favorable effect. In this case, usually a single base a 
fixed in advance is sufficient to check all the conditions guaranteeing primality. In 
particular, the power aN-l mod N has to be calculated only once for all the larger 
pi involved. 

In the experience of the first author in determining very large primes over many 
years, this has in fact been the standard situation, which allows a further important 
shortcut. If A = aH mod N is computed first, then aN-l _ AG (mod N) and 
a(N-l)/p -AG/Pi (mod N) for each pi. This eliminates about two thirds of the 
computing time otherwise needed. 

In Section 4 our general observations will be illustrated by a 1137-digit prime N. 
Considerations similar to the above suggest that, whenever possible, also Theorem 4 
should be preferred to Theorem 3 on the same grounds. 

3. APPLICATION TO FIBONACCI AND LUCAS NUMBERS 

In the specific case of proving primality for Fibonacci and Lucas numbers we can 
try to obtain a sufficiently large factored part by using the following identities and 
relations, which are all taken from [5], the most relevant reference for this paper. 
We include them here to make our exposition largely self-contained. The basic 
relations are: 

F4k+l -1 = FkLkL2k+1, F4k+3 - 1= Fk+lLk+lL2k+1, 

F4k+l + 1 =F2k+1L2k, F4k+3 + 1 =F2k+lL2k+2, 

L4k+l - 1 5FkLkF2k+1, L4k+3 - 1= L2k+lL2k+2, 

L4k+l + 1= L2kL2k+1, L4k+3 + 1= 5Lk+lFk+lF2k+1l 

To obtain the needed factorizations of Fibonacci and Lucas numbers appearing 
on the right-hand side of each identity, use is made of the following facts. First, we 
recall that F2n = FL,. Thus every Fn with n even always splits into the product 
of an Fn with odd subscript n and one or more factors Ln. 

A Fibonacci number Fn with n odd is algebraically factored as 

F = jJF*, n > 1 where Fd* = nF (d/6) d>1 
dln 6Id 

, being the M6bius function. Fn* is called the primitive part of Fn. The algebraic 
multiplicative structure of Ln is described similarly. Let n = 2sm, where m is odd. 
Then 

Ln =flLsd, n>1 where L2Sd L2s86 d>1. 
dlm 6id 

Now Ln is the primitive part of Ln. 
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4. THE PRIMALITY OF L14449 

To exemplify various aspects of the methodology, we give a rather detailed anal- 
ysis of the 3020-digit Lucas number L14449. In this case we have 14449 = 4*3612 +1 
and 

L14449-1 = 5F3612L3612F7225 

where the last factor is 

r722 =rr 725F85F289F425r 1445F7225- F7225 - 5 7 

Surprisingly enough, F7225 is a 1137-digit probable prime representing 37.6% of the 
digits of L14449 - 1. If we could prove F7225 prime, then Theorem 2 would provide 
a primality proof for the given Lucas number. 

To accomplish this, the clue was given by the following formula kindly supplied 
by J. Brillhart [2], namely, 

F2*2 
- 1 = 25F5pF5p(p_ F5p(p+ )(F22+ F2-1)/F25p 

For p = 17, 25p2 = 7225, this becomes 

F7225- 1 = 25F85F1360F1530 (F1445 + F`85 - 1)/F425 = C H, 

where 

G = 5F1360F1530= 5F85L85L17=L340L680F765L765 

and 

H = 5F85 (F1445 + F85 - 1)/F425= 7 43 . 3407 . 7639 . c524. 

The complete factorization of the portion G, which has 604 digits, is obtained by 
joining the prime factors of 

L* = 1376321 . 9830081 . 280381350009601 

*2843304747267841 .616713904085105580641 . p44, 

L* = 1531 . 852211 . 6091987724746741777931027724601 p41 

to those of all the remaining components which are factored in [5]. Altogether, the 
portion G has about 53.1% of the number of digits of F7225 -1 and contains 65 
different prime factors pi to be taken into account if Theorem 1 were to be applied 
to prove the primality of F7225 

As we have indicated in Section 2, the amount of computation involved might 
be reduced by neglecting the 16 small divisors pi of G having Pi < 1000. Then 
the remaining part of G still has 50.6% of the total number of digits. However, 
the reduction is much more substantial if we choose to use Theorem 2 instead. 
Retaining only those 17 prime factors pi of G having 14 digits at least (the largest 
one has 56 digits), their product gives a 400-digit number representing a 35.1% 
portion of F7 225-1, well in excess of the required minimum. 

Once the proof is complete, the primality of the 3020 digit number L14449 can 
also be established. 

A similar but less fortunate situation occurred with the probable prime number 
F35999, since 

F35999 -1 = F- oL9oL17999 
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TABLE 1. Summary of primality proofs for new Fibonacci and 
Lucas primes 

Factored Number Factored Number of Digits of least 
number of digits portion factors used factor used 

F9311 - 1 1946 0.386 31 8 
L1097- 1 230 1.000 3 29 
L136- 1 285 1.000 3 34 
L4787- 1 1001 0.530 4 18 
L4793 + 1 1002 0.714 1 475 
L5851- 1 1223 0.557 13 16 
L7741- 1 1618 0.586 9 28 
L10691 + 1 2235 0.347 37 4 
L14449- 1 3020 0.662 1 1137 

and 

L1* -= 35999 615492974061 prp3645, 

the prp3645 cofactor G of L*17999 representing 48.4% of the number F35999 -1. Try- 
ing to factor G - 1 or G + 1 is a hopeless enterprise, as an algebraic decomposition 
cannot be expected and the magnitude of the number is prohibitive anyway. Unfor- 
tunately, the portion F900oL9ooo did not supply the factors needed for a prime-proof 
of F35999 either. 

For the one Fibonacci number and several Lucas numbers N whose primality 
could be established for the first time, we give in Table 1 their number of digits, the 
proportion of the effectively factored part G of N - 1 or N + 1, which is approxi- 
mately log(G)/log(N), and the number of factors sufficient to apply Theorem 2 or 
Theorem 4. Finally, the size of the least factor included is shown. 

5. PRIME PRIMITIVE PARTS 

Encouraged by the conclusive treatment of F7225 and by a remark in [5] saying 
that there are a number of additional formulas breaking the factorization of Fn* ? 1 
and Ln i 1 into factorizations of smaller numbers Fn and Ln, we engaged in a 
systematic search for prime primitive parts. Let us first summarize our findings, 
including earlier knowledge from [5]. 

For composite Fibonacci numbers Fn, the primitive part Fn* has been shown 
to be a prime (or a probable prime, when marked with an asterisk) for n = 9, 
15, 21, 33, 35, 39, 45, 51, 63, 65, 75, 93, 105, 111, 119, 121, 123, 135, 145, 185, 
195, 201, 207, 209, 225, 231, 235, 245, 285, 287, 299, 301, 321, 335, 363, 399, 
423, 453, 473, 693, 707, 771, 1047, 1113, 1215, 1365, 1371, 1387, 1533, 1537, 1539, 
2185, 2285, 2289, 2361, 2511, 2587, 2733, 2877, 3211, 3339, 3757, 3857, 3867, 3927, 
4025, 4849*, 4881, 5141*, 5579, 5691, 5921*, 6285, 6705, 7035, 7225, 7397*, 7423*, 
7783*, 7787*, 7917, 8225*, 8275, 8283*, 8917*, 9499*, 9813, 10025, 10203*, 10215*, 
10377, 11457*, 11545, 11915, 12137*, 12717, 12987*, 13797*, 13893*, 13995*, 14203, 
16225*, 16745*, 17221*, 18689*, 19415*, and for no other n < 20000. 
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For composite Lucas numbers Ln, the primitive part Ln has been shown to be 
a prime (or a probable prime) for n = 9, 10, 14, 15, 20, 21, 26, 27, 30, 33, 36, 38, 
49, 56, 62, 66, 68, 70, 72, 76, 78, 80, 86, 90, 91, 110, 117, 120, 121, 136, 140, 144, 
164, 168, 172, 178, 202, 207, 220, 261, 284, 328, 354, 357, 420, 423, 458, 459, 468, 
480, 504, 513, 530, 586, 606, 630, 633, 636, 644, 679, 812, 836, 837, 861, 914, 966, 
999, 1082, 1098, 1178, 1257, 1306, 1318, 1326, 1431, 1450, 1504, 1558, 1617, 1632, 
1671, 1742, 1767, 1863, 1881, 2013, 2057, 2058, 2091, 2170, 2220, 2270, 2279, 2307, 
2400, 2944, 2946, 2973, 3069, 3074, 3106, 3248, 3510, 3753, 3777, 4006, 4152, 4200, 
4558*, 4627, 5007, 5048, 5064, 5160, 5371*, 5414, 5496, 5498, 5574, 5656, 5707*, 
6028*, 6044, 6594, 6651, 6750, 6958*, 6973*, 7116, 7370*, 8777*) 8781, 8827*, 9072, 
9356, 9683*, 9996*, 10500*, 10514*, 10821, 11140*, 11221, 11662*, 11808, 11836*, 
12190*, 13173, 13876, 14241*, 14318*, and for no other n < 15000. 

As we could not find the formulas alluded to in the published literature, we 
independently developed some identities which proved useful for establishing the 
primality of primitive parts Fn* and Ln in quite a number of cases. 

Let us assume that the index n is of the particular form n = qrp, where q, p are 
primes, q < 5, p odd, p 74 q, and r > 1. Then we have: 

L*r-I = 5F2r-1(p_l)F2r-l(p+l)/L2r, 

LrIp - 1 = 5F3r-1(p_j)F3r_1(p+l)/(L23rl + 1), 

F*rp - 1 5F3r-1(p-l)F3rl1(p+l)/(L2.3r-1 - 1), 

F5rp - 
1 = 5F5r-l(p_l)Fsr_l( L5r-1(p-l)L5r-l(p+l) - 1 

SF5r-1(pl)F5r-1(p?l) 
L4.5r-1 - L2.sr5-i + 

For the particular case of r = 1 each of these formulas boils down to a very simple 
form: 

L2p-1 = (513)Fp_jFp+j, 

L3p-1 = (5/4)Fp1,Fp+, 

F3*p-1 = (5/2)Fp1,Fp+, 

F*p- 1 = 5Fp-1Fp+,F . 

The last of these expressions follows from the fact that (Lp1 Lp+1 - 1)/5 - F2. This p. 
relation, as well as the given general formulas, can be verified through calculation 
involving the well-known expressions of Fn and Ln in terms of a = (1 + v5)/2 and 
0 = (I - /'S5)/2. 

Since p is assumed to be odd, on the right-hand side we always have a decom- 
position of the form 

Fp_lFp+l = F(P-1)/2L(p-l)/2F(P+1)/2L(p+l)/2, 

which similarly applies to the general case. This further facilitates finding the prime 
factors needed to invoke Theorem 2. 
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6. THE PRIMALITY OF L13876 

Again, let us first discuss an instructive particular case. For the 2900-digit 
number L13876 we have 13876 - 22 3469, where 3469 is a prime, and thus we 
obtain the decomposition 

L* I6- = 5F2.3468F2.3470/L4 

=(5/7)F867L867Ll734L3468Fl735Ll735L3470) 

observing that L289 divides L867, L102 and L578 divide L1734, L204 divides L3468, 
F347 divides F1735, and L694 divides L3470. Also, L1735 = L347 A1735 B1735 (for 
this special Aurifeuillian factorization, see [5]). 

The numbers F867, L289, L102, L204, F347, and L347 were factored in [5]. More- 
over, we factored 

A1735 = 11 . 17351 4202171 . 140916701 . 3124791659551720658921 . p104, 

B1735= 14719741 88704249076841 2349072345221377801 . p87, 

as well as 

L578= 3 . 67. 3467 63443 . 893346576820363 . 52117518727310243 . p79, 

L694= 3 . 594273587. 27159850749888907 61443319601189051182963 . p97. 

Seeking for more of the needed prime factors, we also found 

L*l6 = 6452026727 55920023657924567 . c201, 

L*74 = 521511493561 . 8030487401843243 . c200, 

F1735 = 97382081 . 4765843741 2344355547421 . c260, 

the first of these primitive parts dividing L3468. 
With all these factors at hand, we could proceed to prove the primality of L13876. 

Multiplying the 37 known prime factors of L13876 -1 having 8 digits at least, we got 
a portion of 999 digits, or 34.4%, sufficient to apply Theorem 2. The final test took 
about 21 minutes on the special purpose computer designed by the first author and 
described in [6]. 

It seems worth mentioning that this not only completed our primality proof, but 
also the remarkable factorization of the Lucas number L13876= L*L* - 7L* 

The summary of Table 2 is an analogue to Table 1 for prime primitive parts with 
more than 1000 digits. The recorded form of subscripts shows in which cases the 
formulas of the last section could be applied successfully. For the primes F142O3 and 
L*1221, whose subscripts are of the form 7rp, and for those three instances where 
the subscript has more than two different prime factors, see the next short section 
on more recent developments in the field. 

The given formulas were also applicable to Fn for n = 2285 (= 5 . 457), 2361 (= 
3.787), 2511 (= 34 .31), 2733 (= 3.911), 3867 (= 3.1289), 4881 (= 3.1627), and to 
Ln for n = 2944 (= 27 23), 3106 (= 2. 1553), 3753 (= 33 139), 3777 (= 3. 1259), 
4006 (= 2 .2003), 5007 (= 3 1669), 6651 (= 32 739). 

A number of primitive parts that resisted such a concise treatment, but were 
of a size just accessible to a general prime-proving procedure, have been subjected 
to APRT-CL, the Cohen-Lenstra version of the Adleman-Pomerance-Rumely test 
implemented in [13]. The largest prime primitive part confirmed in this way was 
the 843-digit number F7*917, which consumed 134 hours and 28 minutes on a Pen- 
tium 100 processor. 
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TABLE 2. Summary of primality proofs for primitive parts Fn and 
Ln with more than 1000 digits 

Factored Form of Number Factored Number of 
number subscript of digits portion factors used 

F7*225- 1 52 . 172 1137 0.540 17 
F8275- 1 52 331 1380 0.499 31 
F9813- 1 3 3271 1367 0.469 13 

F10025- 1 52 . 401 1672 0.434 23 
F10377- 1 32 1153 1445 0.441 19 
F11545- 1 5 . 2309 1930 0.500 9 
F11915- 1 5 . 2383 1992 0.369 13 
F12717- 1 34 157 1761 0.397 35 
F14203- 1 7. 2029 2544 0.336 49 
L048- 1 23 631 1054 0.565 16 
L5414- 1 2 .2707 1131 0.475 8 
L5498- 1 2 2749 1149 0.535 8 
L5656-1 2 37 101 1004 0.337 42 

L6044- 1 22 .1511 1263 0.662 9 
L871- 1 3 2927 1223 0.582 9 

L9072- 1 24 34 . 7 1084 0.385 21 
L9356 - 1 22 2339 1955 0.527 18 

L1082- 1 3 3607 1508 0.407 15 
L1122- 1 72 . 229 2002 0.342 61 
L11808-1 2 5. 32. 41 1606 0.361 39 
L1317- 1 3 4391 1835 0.500 12 
L1387- 1 22 3469 2900 0.384 37 

7. RECENT DEVELOPMENTS 

After the original version of this paper had been submitted we were pleased to 
learn from J. Brillhart that he had decided to put together a paper with a collection 
of identities for primitive parts Fn that he had been keeping in his notebooks for 
many years. This paper [3] particularly contains a general expression for Fq*rps - 1 
in terms of some other Fibonacci numbers. That expression includes the special 
formula crucially applied in our Section 4, and some of those given in Section 5 as 
well. 

As we had the privilege of seeing an early draft of Brillhart's enlightening note, we 
could profitably use his ideas for developing a number of further identities that are 
provisionally assembled in [9]. They include expressions for Ln -1 with subscripts 
of the form n = 2tqrps, where t > 0 and q = 3, 5, 7. 

The following two formulas are special cases corresponding to ones from [3] and 
[9], respectively, and were applied to verify the new primes Ff4203 and L*1221, now 
added to Table 2. They also give an idea of certain similarities generally observed 
in such identities: 

25F4- 10F2 + 4 
7p- 1= 5Fp-iFp+l 13 
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L4 + 848L7p + 713182 
L72p- 1 5F7(p_l)F7(pl) 599786069 

The entries Ln - 1 of Table 2 whose subscripts n have three different prime 
factors (as well as several smaller primes Ln of that kind) are also related to explicit 
formulas given in [9]. Previously the factors needed for a prime-proof in those cases 
had only been determined experimentally. 

8. FACTOR TABLES 

Many of the factorizations needed for our primality proofs were taken from the 
tables in [5] and their update [10], which cover Fibonacci numbers Fn for odd 
n < 1000 and Lucas numbers Ln for all n < 500. However, many factorizations 
needed beyond these limits were specifically obtained during the course of this 
investigation. Thus the occurrence of large prime cofactors was often decisive for 
the completion of a proof. 

The means used were essentially the factoring and prime-proving procedures of 
the UBASIC package [13], R. P. Brent's vectorized ECM implementation [1], and 
the first author's program for the "p - 1" method. 

Based on a rather modest collection of factorizations of numbers Ln we had 
gathered for 500 < n < 1000, P. Montgomery has added to this a considerable 
number of more significant factorizations. Currently he is maintaining the extension 
table [11] covering that segment. 

Special mention should be made of two "difficult" factorizations in the extended 
range that were kindly produced at our request. H. J. J. te Riele, using PPMPQS, 
split the 90-digit cofactor of L*91 into a p35 . p56 product to enable us to complete 
the proof for L10691, and Montgomery, using SNFS, split the 118-digit cofactor of 
L*01 into a p44 . p75 product to enable us to complete the proof for L10821. 

Regardless of their possible involvement in primality proofs, we have continued 
doing factoring work for numbers Fn and Ln with 1000 < n < 9750. The result is 
recorded in [8] and includes, in particular, a listing of all primitive prime divisors 
p < max(234,4 106n). They were determined by trial division taking advantage of 
certain linear dependencies on n that are summarized in Theorems 2 and 3 of [5]. 

In the Supplement to this paper we assemble all the complete factorizations of 
numbers Fn (Table I) and Ln (Table II) that we have obtained. The notation used 
to display the algebraic structure of each number is that of [5]. Both tables include 
factorizations with probable prime "final" factors whose primality could not yet be 
established. Note that in this context "complete" does not necessarily mean that 
all the algebraic factors of a listed number have also been completely factored. 

Within the range of the Supplement, the factorizations of L*181 and L1347 had 
previously been obtained by Montgomery, and F2361 had been proven prime by 
Morain, in order to be used in the prime-proofs of [12] that were carried out in 1990. 
Furthermore, the factorizations of Ff015 and Ff035 have recently been completed 
by Thomas Sosnowski. 

9. AN EXTRAORDINARY COINCIDENCE 

A glimpse at Table I in the Supplement led us to the casual observation that 
the large primitive parts F12987 and F13797, two clearly different probable prime 
numbers, have the same number of digits, which is 1626. More amazingly, a closer 
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look at these primitive parts revealed that they even coincide in their first 26 digits, 
since 

Ff2987=1224095853688062236705644239919... 92961, 

Fj 37971224095853688062236705644245612... 77761, 

the second number being "slightly" larger than the first. 
The reason for this striking coincidence is an equally surprising similarity in the 

structure of the subscripts. They are both of the form n = 33uv, where u, v are 
primes, and uv - u - v has the same value in both cases. In fact, 12987 = 3 134337 
and 13797 = 33 7. 73, where 13 37 - 13 - 37 = 7 73 - 7 - 73 = 431. 

The role played by these relations becomes apparent when an attempt is made 
to give an estimate of log(F*) for the special form of n, based on the expression 

= F33F32UF32VF33UV = F32UF32F33U 

3 uv F32F33UF33VF32UV F33UF33VF32UV 

where 5777 = F33/F32. Since for reasonably large n we have log(F,) nlog(a), 
the logarithm of the last fraction approximately becomes 

(33 - 32)(Uv -_u - v) . log(a) = 18. 431 . log(a) = 7758 . log(a). 

Adding log(5777) to the result and doing all the calculations with high precision, 
we obtain log(F*) = 1625.087815426876..., whose inverse logarithm exactly re- 
produces the first 49 digits of F12987. These include the complete string of common 
initial digits of the two numbers Fn in question. 

We then investigated the possible uniqueness of this phenomenon. Obviously, 
there are many pairs (nl, n2) such that Fn1 and Fn2 are "almost equal" in the 
above sense. We have only to look for pairs (ul, vl), (U2,v2) of odd primes with 
UIVI - U1 - VI= U2V2 - U2 - V2 = C- Here the smallest possible constant is c = 71, 
which occurs for (u, v) = (7, 13), (5, 19), giving (nl, n2) = (2457, 2565). The next 
examples are (nl, n2) = (3861, 4185), (5049, 5535), (5481, 5805), (5643,5859), ... 

In spite of this rather frequent occurrence, among all couples of pairs (u, v) 
having c < 623 the only two of the involved primitive parts that happen to be 
primes (or probable primes) are the numbers F12987 and F1*3797. It is just this 
accidental fact that makes them so exceptional. Incidentally, there is a third pair 
(u,v) with c = 431, leading to another seemingly equal primitive part, which is 
F14715. This one, however, is divisible by the prime p = 310074481. 
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