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in the discussion of Arnoldi’s eigenvalue method where the authors use “Arnoldi
leminscates” to illustrate the convergence of the method.

The authors also stress the interrelation between algorithms. For example they
use a four-way division of Krylov sequence methods (linear systems vs. eigenprob-
lems and Hermitian vs. non-Hermitian) to guide their discussion. Again, the au-
thors make an amusing distinction between “orthogonal structuring” and “struc-
tured orthogonalization” to illustrate the difference between algorithms based on
Householder transformations and those based on orthogonalizing a sequence of vec-
tors.

The book concludes with an essay by Trefethen on the definition of numerical
analysis. One does not have to agree with the definition itself to appreciate the
important issues Trefethen raises so entertainingly.

I have two reservations about the book—mneither damning. First, there could
be more stress on implementation issues (e.g., convergence criteria for the QR
algorithm). It is natural that a book of this sort would not spend a great deal
of time on the minutiae, but given the many ways you can shoot yourself in the
foot while computing with matrices, a few more examples of the pitfalls would be
helpful. Second, the material and presentation was developed for graduate students
at two high-powered institutions (MIT and Cornell). I would certainly not say that
the book is unsuitable for other schools, but the instructor who uses it should be
prepared to field some difficult questions.

These reservations aside, I can strongly recommend this book. The authors are
to be congratulated on producing a fresh and lively introduction to a fundamental
area of numerical analysis.

G. W. STEWART

2[65-01, 65Lxx, 65Mxx]|—A first course in the numerical analysis of differential
equations, by Arieh Iserles, Cambridge Texts in Applied Mathematics, Cam-
bridge University Press, New York, New York, 1996, xvi+378 pp., softcover,
$27.95, hardcover, $74.95

This is a lively textbook that is suited for mathematics graduate students or
for well-prepared (mathematically) engineering students. This text is, on the one
hand, rigorous and concise in its presentation of mathematical ideas and, on the
other hand, verbose in its discussion of the big picture, i.e., “the ways and means
whereby computational algorithms are implemented” and developed. To quote
Professor Iserles: “In this volume we strive to steer a middle course between the
complementary vices of mathematical nitpicking and of hand-waving”.

This monograph is devoted to the numerical analysis of both ordinary and par-
tial differential equations but, as needed, many other traditional topics are in-
troduced and studied. These include interpolatory quadrature, Newton’s method
(and its variants) in R, Gaussian elimination, iterative methods for sparse lin-
ear systems, and the FFT. There are several appendices, called “Bluffer’s guide to
useful mathematics”, wherein important definitions and theorems from linear alge-
bra, approximation theory, and ordinary differential equations are presented. Each
chapter concludes with a short but challenging list of exercises and a Comments
and Bibliography section. The text is organized into three parts. Part I consists of
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six chapters devoted to numerical methods for ODE’s. Part II deals with elliptic
PDE’s and Part III with evolution equations.

The material in Part I is as follows.

1. FEuler’s method and beyond. This introductory chapter is concerned with
simple single step methods for first-order nonlinear systems of standard form,
y'(t) = f(t,y), with Lipschitz right-hand side. The presentation is limited to Eu-
ler’s method, the implicit Trapezoidal rule, and the so-called #-method that includes
each of the aforementioned schemes as special cases. As an indication of the level
of exposition, we mention that the implicit function theorem in R? is invoked on
p. 14 in the error analysis of the #-method. 2. Multistep methods. This chapter
is devoted to the Adams family of multistep methods, both explicit and implicit,
and to backward difference formulae. There is a careful analysis of order and sta-
bility via the root condition. The classical Dahlquist convergence theorem is given
and discussed. 3. Runge-Kutta methods. The chapter begins with a discussion of
interpolatory quadrature with emphasis on Gaussian rules. Then explicit (ERK)
and implicit (IRK) methods of Runge-Kutta type are developed. The chapter con-
cludes with a derivation of collocation schemes that result in IRK methods. In
the Comments and Bibliography section there is an introduction to the graph the-
oretic derivation of RK methods (due to Butcher). 4. Stiff equations. To begin
the chapter, Professor Iserles has given an extensive and revealing discussion of a
simple stiff system having one stable and one unstable eigenvector. In discussing
the temptation to increase stepsize after the unstable eigenvector component has
decayed, he admonishes the reader with the delightful analogy: “like a malign ver-
sion of the Chesire cat, the rogue eigenvector might seem to have disappeared, but
its hideous grin stays and is bound to thwart our endeavors”. The bulk of the
chapter is devoted to issues of A-stability for Runge-Kutta and multistep methods.
5. Error control. Up to this point in the text the author has not been concerned
with the practical implementation of the many numerical methods derived and an-
alyzed in previous chapters. The estimation of local errors (using another method
in tandem) and controlling the error with stepsize changes is the theme of this
chapter. A particularly nice aspect of the chapter is Iserles’ device of applying
each of the error-control devices to three specific simple systems of ODE’s, one of
which is moderately stiff. The presentation is limited to halving or doubling of the
stepsize; however, both multistep and single step methods are considered. 6. Non-
linear algebraic systems. This final chapter of Part I is concerned with Newton’s
method (and variants) as applied to the solution of those nonlinear systems that
arise in implicit methods (both RK and multistep) for ODE’s. The Banach fixed
point theorem is proved and utilized to establish convergence of the methods con-
sidered. The issue of starting the iteration is addressed in the last section wherein
predictor-corrector schemes (PECE) are discussed and the equally important issue
of stopping the iteration is also presented.

There are six chapters devoted to elliptic PDE’s and related matters in Part II.

7. Finite difference schemes. The famous 5-point difference approximation to
the Laplacian is used to solve the Poisson problem on a rectangle. The eigenvalues
of this discrete Laplacian are determined and shown to approximate the eigenvalues
of the Laplace operator. The 9-point operator and a powerful modification thereof
are derived and utilized on a model problem. 8. The finite element method. Much
of this chapter is introductory in nature and intended to give the reader some feeling
for the main ideas involved in the FEM. A two-point boundary problem is utilized as



456 REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

a vehicle for the description of the FEM that is presented as a Galerkin method for
the differential equation as well as a Ritz method for the minimization of the appro-
priate functional. More general self-adjoint elliptic problems and the corresponding
FEM are described later in the chapter with careful statements of important tools
(for existence of the FEM solution and error analysis) such as Cea’s lemma and the
Lax-Milgram theorem. 9. Gaussian elimination for sparse linear equations. This
brief chapter examines the issue of “fill in” in Cholesky factorization and the use
of graphs to investigate the sparsity structure and factorization of matrices. 10.
Iterative methods for sparse linear equations. The classical Jacobi, Gauss-Seidel,
and SOR methods are analyzed with emphasis on SOR. Unfortunately, the pow-
erful conjugate gradient method is relegated to the Comments and Bibliography
sections at the end of the chapter. 11. Multigrid techniques. The author motivates
the multigrid technique by demonstrating the smoothing property of Gauss-Seidel
thereby revealing how one may accelerate via a hierarchy of grids. Then the basic
ideas of the V-cycle and full multigrid iteration are discussed. No error analysis
is presented. 12. Fast Poisson solvers. This chapter is concerned with the use of
FFT techniques to efficiently solve block Toeplitz, symmetric tridiagonal systems
that arise in certain finite difference (element) approximations.

The final two chapters constitute Part III, namely partial differential equations
of evolution.

13. The diffusion equation. The analysis, stability and convergence, of semidis-
crete and fully discrete schemes for parabolic initial-boundary value problems is
presented. The discussion is, by and large, limited to Euler and Crank-Nicolson
time discretizations. 14. Hyperbolic equations. Professor Iserles motivates the de-
velopment of numerical schemes for hyperbolic problems by considering the advec-
tion equation % + —g—;‘ = 0 and its numerical solution by Euler and Crank-Nicolson
with particular attention to stability. The remainder of the chapter deals with the
wave equation and Burgers equation. (On p. 308, Burgers is incorrectly stated; the
expression g—g; should read %—15,)

This is a well-written, challenging introductory text that addresses the essential
issues in the development of effective numerical schemes for the solution of differ-
ential equations: stability, convergence, and efficiency. The softcover edition is a
terrific buy—I highly recommend it.

ToMm KING

DEPARTMENT OF MATHEMATICAL SCIENCES
UNIVERSITY OF CINCINNATI
CINCINATTI, OH 45221

3[65MO06, 656M12, 65M20]—Numerical methods for the three dimensional shal-
low water equations on supercomputers, by E. D. de Goede, CWI Tract, Vol.
88, Stichting Mathematisch Centrum, Amsterdam, 1993, x+124 pp., 24cm,
softcover, Dfl. 40.00

This book is a collection of articles on the development of a numerical method for
the three dimensional shallow water equations. They are obtained by simplifying
the Navier-Stokes model: the unknowns are the horizontal velocity and the water
elevation as for the two dimensional model, but the velocity may depend on the
vertical coordinate. The pressure gradient is directly linked to the water elevation,



