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THE DISCRETE PLATEAU PROBLEM: 
CONVERGENCE RESULTS 

GERHARD DZIUK AND JOHN E. HUTCHINSON 

ABSTRACT. We solve the problem of finding and justifying an optimal fully 
discrete finite element procedure for approximating minimal, including unsta- 
ble, surfaces. In a previous paper we introduced the general framework and 
some preliminary estimates, developed the algorithm and give the numerical 
results. In this paper we prove the convergence estimate. 

1. INTRODUCTION 

We recall from [DH4] that a minimal surface or solution of the Plateau Problem 
can be characterised in a number of different ways. For our purposes it is convenient 
to begin with the following formulation, which we restate more precisely later, 
cf. (3). 

Let D be the unit disc in X2 and F a smooth Jordan curve in Rn. Let Y be 
the class of harmonic maps u: D , Rn such that U&D: AD -- F is monotone 
and satisfies a certain integral "three-point condition", cf. (1). The function u E F 
is said to be a minimal surface if u is stationary in Y for the Dirichlet energy 
D(u) = f 

fD 1Vul2. Such maps u provide an harmonic conformal parametrisation 
of the corresponding minimal surface. 

Let Dh be a quasi-uniform triangulation of D with grid size controlled by h. 
Let Fh be the class of discrete harmonic maps Uh:Dh -* Rn for which Uh(?/;) E F 
whenever bj is a boundary node of Dh, and which satisfy an analogue of the previous 
integral "three-point condition". Note that we do not require "monotonicity" of 
Uh aDh. The function Uh E Yh is said to be a discrete minimal surface if Uh is 
stationary within Fh for the Dirichlet energy D(Uh) = I 

fDh IVUh 2; cf. (27) for the 
precise formulation. 

The main result (Theorem 5.5) is that if u is a nondegenerate minimal surface 
spanning F then there exist discrete minimal surfaces Uh, unique in a ball of "al- 
most" constant radius sol log h -1, such that Iu -Uh1H1 (Dh) < ch, where c depends 
on F and the nondegeneracy constant A for u but is independent,df h. Recall that 
nondegeneracy corresponds to the absence of zero eigenvalues for the second vari- 
ation of the Dirichlet energy at u, and generically corresponds to the absence of 
branch points. The constant c blows up as A -- 0, and this is consistent with the 
numerical results in [DH4]. We give an outline of the proof of the main result in 
Section 2.3. 
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2. FORMULATION OF THE PROBLEM 

2.1. The energy functional. We first recall some notation from [DH4] Section 
3, to which we refer for further discussion. See Section 3 of the present paper for 
the properties of H1!2. 

Let D be the open unit disc in R2, with boundary OD. It will be convenient to 
let S1 denote another, distinct, copy of the unit circle. Let F be a Jordan curve in 
R' with regular Cr-parametrisation -y: S- IF where r > 3. 

For f: OD - Rn we denote by (f) D , Rn its unique harmonic extension to 
D specified by 

A/F(f) =O in D, @F(f) f on OD. 

Then : H1/2 (OD, Rf) - H1(D,Ii R) is a bounded linear map with bounded in- 
verse. 

Harmonic maps are uniquely determined by the associated boundary maps. We 
will use the Hilbert space H of functions defined by 

H = -: D , Re I I(|H1/2 < X and (1) is satisfied}, 

where 

(1) j ((X) do 0, / ~(() cos 0 do =, / (() sin 0 do = O. 

The norm on H is the usual norm 11 IIH1/2 The corresponding affine space of 
maps s: OD -' S1 such that s(q) = X + v(X) for some u- E H is denoted by 
'H. We also need the Banach space T defined by T X H n Co(&D, R) with norm 
R11T = H1/2 + jj1 co. The corresponding affine space T is defined by T = 
Hn fco (OD, S1). With some abuse of standard notation, we write I s I = 1 + I I1I 
for various norms on v. 

The energy functional E is defined on 'H by 

(2) E(s) = J - V1(y O s) = D()(-y o s)). 

Finiteness of E follows from (8). We say the harmonic function u = (y o s) is a 
minimal surface spanning F, or a solution of the Plateau Problem for F, if and only 
if s is monotone and stationary for E, i.e. 

(3) (E'(s), () = ? V14 E T. 

As discussed in [DH4], this is equivalent to other formulations of the notion of a 
minimal surface. 

For the proof of asymptotic convergence of the numerical method we need the 
following regularity result, which follows from standard regularity results (cf. [DH4] 
Theorem 3.2) and the Implicit Function Theorem used to write F locally as the 
graph of a Ck,, function. 

Proposition 2.1. If Y E Ck,c, where k > 1 and 0 < -a < 1, and s E T is monotone 
and stationary for E, then 

jSjjCk,- < C = C(jjC0k,-, 11 1'l-1 IL-). 

We next recall some properties of the energy functional from [DH4] Section 3.3. 
Using the notation 



THE DISCRETE PLATEAU PROBLEM: CONVERGENCE RESULTS 521 

we get by formal computation 

(5) E(s) = JD Vu2, 

(6) E'(s)) 
d 

E(s+t()=J vuvv) 

(7) E" (s)(,) dt2 E(s+tt)J /VuVw + IVv1, 

with an analogous expression for E"(s)((, r) obtained by bilinearity in the case of 
distinct variations. 

If -y E C3 then E E C2(Tf), and the Ferchet derivatives are given by (6) 
and (7). The functional E is not differentiable on R-, but if - and s are as smooth 
as is necessary for the following estimates, then one has 

(8) E(s) < 
CII_YI2 7 IISI2 H1/2' 

/ ~~~~~2 III2 
(9) (E'(s)()l ? C 7 0l2 2lS lll H1!2, 

(10) E "(s) (, r1) I<c cllay1 C2 2l I c H1/2 II1H1/2- 

In particular, these will be used in case s is stationary for E. 
It will be important to consider the behaviour of the second derivatives of E near 

a stationary point s E T. The second derivative E"(s) can then be interpreted as 
a self-adjoint bounded map V2E(s):H H H. Let 

(1 1) H =H- ED Ho ED H+, = (- + ?+ + if ( H) 

be the orthogonal decomposition generated by the eigenfunctions of V2E(s) having 
negative, zero and positive eigenvalues respectively. 

Proposition 2.2. Suppose -y E C3'". Suppose s is monotone and stationary for 
E. Then H- and Ho are finite dimensional. If ( E H- e Ho then E H3/2 (OD) 
and 

(12) IIH3/2 < VII IIH112 

with v = - V(II-YC3,a, 11 I-'I-1 IL-) 

Proof. The finite dimensionality of H- and Ho follow from elliptic theory; see the 
proof of [St, Proposition II.5.6]. It is also shown there, with a different notation, 
that 

I?yo) ? S (H2(D) < C'IIC, || I I C, 3S111 01IH1/2) 

< C - 111IC3, || 11 -1 L?, J I) IIH1/2) 

by Proposition 2.1. But 

IIH3/2 < ' 2 'o ? H3!2 by (52) 
17/OS 012 217 

O /2 

< C(11III C30, y1oIIL) IIQ'o1OS) )IIH2(D) from (52) and (40). 

Hence 

RI|H3/2 < C 1171IC3,, 1117K1 IIL-, RIIH1/2)) 

and so the required result follows by scaling. L 
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Higher regularity on - implies higher regularity on (. In particular, Y E C4,, 

implies ( E H5/2 (0D); see the proof of [St, Proposition II.5.6]. 
If s is monotone and stationary for E, we say s is nondegenerate if Ho = {0}. 

The corresponding minimal surface u = (y o s) is also said to be nondegenerate. 
If s is nondegenerate it follows that there exists a A > 0 such that for E H, 

(13) E"(s)((, - -) E"(s)((+, -E"(s)(( , ( ) > Al 1112H1/2* 

We call A the nondegeneracy constant for s. 

2.2. The discrete energy functional. We recall the necessary notation from 
[DH4] Section 4 and prove some preliminary estimates. 

Let gh be a quasi-uniform triangulation of D with grid size comparable to h. 
Let 

Dh=U{G IGEh}, 

&Dh = U{Ej I 1 < j < M} where the Ej are the boundary edges, 

and let 

B3h = fl) ... * * * } be the set of boundary nodes. 

The projection ir: oD -- &Dh is defined by 

(14) ir (ei((1-t)ji+tji+?) (1-t)eiki + teiki+1 

for 0 < t < 1, 1 < j < M. 
In order to have a discrete analogue Eh of the functional E we define the following 

discrete analogues of H1(D; ERn) H1/2 (0D; Rn) H, T, 'H and T: 

(15) X = {Uh E C (Dh; Rn) U Uh E P1(G) for G E!gh}, 

(16) Xn fh E Co(0Dh; Rn) I fh E Pl(Ej) for 1 < j < M} 
(17) Hh ={h E Co(OD; MR) I h E PI (ir 1(Ej)) if 1 < j < M, (h satisfies (1)}, 

(18) 'Hh {Sh E C0(&D; Sl) I Sh(O) = ( + O/)h() for some Ch E Hh}. 

Thus Hh c T c H, 'Hh C T C (, and the space of variations at any Sh E 'Hh is 
naturally identified with Hh. Setting n = 1, we similarly define Xh and Xh. 

We will make frequent use of the following inverse-type estimates: 

Proposition 2.3. If (h E Hh then 

(19) RhIlH' < ch- / RhIlH'/2, 

(20) 11WIco < clloghl 1/2 RhlH11/2. 

Proof. The first estimate is standard. The second is shown in [DH1] Proposition 
5.3. D 

Suppose f E CO(&3D; Rn). One defines the "linear interpolants" 

Ihf E Xn, Ihf ((1 - t)eioj + teioj+?) = (1 - t)f(ei0j) + tf(eij+)1 

h .Df E C0(&D; JRn), Ihf ((1 - t)eiji + tei0j+?) = (1 - t)f (eikij) + tf (eiji+l), 
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where 0 < t < 1, 1 < j < M. Here and elsewhere, qM+1 = 1. Note the different 
domains of Ihf and I0DDf. Note also that the image of Ih(y o s) is a polygonal 
approximation to F, and Ih(y o s)(q$) = -y o s(q) E F for qj E '3h. Finally, 

(21) .r&Df = Ihf o T. 

Another type of approximation operator we require is a map Ph: T (T) - 

Hh (Hh). The usual interpolation operator does not preserve the normalisation 
conditions (1). However, if we first interpolate and then project onto Hh, the 
resulting operator still satisfies all the usual estimates. The proof of the following 
is essentially given in [DH1] Proposition 5.2. 

Proposition 2.4. There is a bounded linear operator Ph: T -- Hh such that, in 
particular, 

(22) 1l-Ph(||Hs < chks fl|iHk 

for s =0,,1 and k =1, , 2. Moreover, 

(23) 11f-Ph~iIcO,l < chfll|(c2, JlPh~fJlC,l ?< CRl|Cfo,1, 

(24) 11b-Ph(iICO < ch 2L11|c2, 11c-PhiJICO < chhlJllci. 

If s E T and s(q)) = q) + v(?)), then PhS is defined by PhS(Q) = X + PhJ(O), 
S - PhS :=- -PhU, and hence PhS satisfies estimates similar to those for Ph&- 

For fh E Xh the discrete harmonic extension 'hfh E Xh is defined by 

(25) Ahbhfh = 0 in Dh, 'Ihfh = fh on &Dh, 

where Ah is the discrete Laplacian and the first equation in (25) is interpreted as 

fDh V(@hfh)V/h = 0 for all 'Oh E Xh such that 'Oh 0 on &Dh. If fh h Xh the 
discrete harmonic extension 'hfh is defined componentwise. 

For Sh E (h, the discrete energy functional Eh is defined by 

(26) Eh(Sh) = J 0 Vhlh( o Sh) = Dh(I)hIh(7 0 Sh))- 

Note that Eh is of course not the restriction of E to 'Hh. The discrete harmonic 
function Uh = hIh(Y o Sh) is said to be a discrete minimal surface spanning F, or 
a solution of the discrete Plateau Problem for F, if and only if 

(27) (Ek(Sh) h) = V (h EHh. 

Note that we do not require monotonicity of Sh, as is the case for s in (3). 
The derivatives of Eh, cf. (5)-(7), are given by 

1 P~~~12 (28) Eh(Sh) = 2]Ih VUh2, 

(29) (Ek(Sh), h) IDh VUhVVh, 
Dh 

(30) EK(Sh)((h, h) = D VUhVWh + J Vvhj2, 
Dh Dh 

where 

(31) Uh =?hIh(7 ? Sh), Vh = hlh(7 ? Sh Wh), Wh = 4)hhIh(7 ? Sh 'h). 
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For jh E Hh and s stationary for E, we define the projection of the decomposi- 
tion (11): 

(32) 6 )Ph5hv (0) = (P+) =Ph= P - 

Note that (-7, ( and h do not normally belong to Hh; in particular, the first two 
are smooth functions. However, if H- = H {O} then (h 

Proposition 2.5. If (h E Hh then 

(33) H h = (H! + - 
( H ? 

and (h )' h) v ( h)E Hh . Moreover, with v as i'n (1 2), 

(34) <H12 ? chvlhIIH'!2, -h H1 < ch112V |h H'!2 

(35) R|ho -h(h 11 H1/2 < chvllfhIIH112, R|( -(h )|1 Hl< ch 112 
11thIIH112) 

(36) Rlf+ -6h)||H1/2 < chvllfhIIH112, IC(h -(h )|1 Hl< ch /2 11|(hIIH112. 

Proof. Since Phfh = (h, (33) follows from (11). Next, from (22) and (12), 

h-) 11 H112 = PhFh |H1/2 < ch I H3/2 < ChvRhfl H112. 
The proof of the other inequality in (34), and of (35), is similar. 

For (36) just note that, from (33) and (11), 

+ -(+) -= (e- - a-)) - (a4 - 0)) 

and use the previous estimates. D 

We remark that the decomposition (33), unlike (11), is not an orthogonal de- 
composition. We also note that the powers of h in (34)-(36) can be increased by 
1/2 if we assume RIIH2 < vRI H1!2; this latter holds if -y E C4,&, cf. the remarks 
after Proposition 2.2. 

2.3. Structure of the proof. The main error estimates, Theorems 5.4 and 5.5, 
are proved in Section 5. To motivate our approach and the need for the various 
preliminary estimates in Sections 4 and 5, we outline in an informal manner the 
structure of the proof of Theorem 5.4. See Figure 1. 

Assume s is a nondegenerate stationary point for E with nondegeneracy constant 
A. One applies the Inverse Function Theorem to the derivative Eh: 7ih -- H' (the 
dual space of Hh) in a neighbourhood of the point phs; remember that Hh is the 
tangent space for 'Hh, i.e. the space of variations at any th E 7h. Identify E" with 
the derivative (E)' of E'; thus (Eh)'(th) Hh -4 Hh for th 'Hh. 

There are three estimates to be proved. 
A: IIE'(phs)II < clh for h sufficiently small. This follows immediately from the 

consistency estimate (Proposition 4.2) for the first derivative. See (109). 
B1: | ((E')'(Phs),) h) || > 2 11(h || for h sufficiently small; i.e. "the slope of E' 

at PhS is bounded away from 0 by A/2". This is a nondegeneracy estimate on 
EKl(Phs) and is established in Proposition 5.3, using the one-sided consistency esti- 
mate (Proposition 4.3) for the second derivative, and the regularity of members of 
the negative eigenspaces to compensate for the one-sided nature of that estimate. 
See (114). 

B2: II(EI)I(phS) - (Eh)I(phS + ?lh)ll < A/4 for h sufficiently small and 'nh SUffi- 
ciently close to PhS, more precisely for nh < 0/l log h ; i.e. "the slope of El near PhS 
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Hh 

slope> ?14 (B) h 

<Clh (A) 

1S h PhS\ h 

<4c1h/k - <? ch3/2 

from (A) & (B) 

FIGURE 1 

differs from that at Phs by at most A/4". This is a consequence of Proposition 5.2. 
See (115). As indicated in the diagram, it follows that there exists a unique sta- 
tionary point Sh for Eh such that lPhS - ShIH1/2 < 4c,h/A, and hence such that 

|S- Sh||H'!2 < ch/A. 

3. PRELIMINARY ESTIMATES 

One can define the HS(0D) and HS(D) norms for any real s; but apart from 
non-negative integers s we will only need the following cases. 

For f :oD -, R the H1/2 (OD) seminorm is defined by 

(37) If2 
( 

I(dD) I f f 1 f(12 dd, 

and for u:D , R the H1/2(D) seminorm is defined by 

(38) I2 = 1 I2 u( -13 dxdx. 

In both cases the corresponding norm is given by 

(39) 11.1*2 2 2 + 
2 

(39) 11 IIH1/' 1L2- +L + H1/2 

Also, 

If IH312(OD) = If|H12(OD)) IU|H3/2(D) = VUIH1/2(D) 

*1_ 1 2 *+1.2 
H3/2 11 II2 H3/2 

If u E HS+l/2(D) for s = 1/2,1, 3/2 (in fact for s > 0), then u has a well-defined 
trace f on oD and 

(40) lf IIHs(&D) < CIIUIIHs+1/2(D). 

More precisely, the previous estimate is true for u E C??(D), and the definition of 
trace is extended by continuity and density to the general case. Such an estimate 
is not true for smooth u if s = 0, but in this case if Au E L2 (D) the following 
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estimate holds, and then the trace operator is again defined by continuity and 
density to satisfy 

(41) lif IL2(QD) < c (IIUIIH1/2(D) + IJAU IL2(D)) 

See [LM], Chapter 1, Section 9.2, page 193 (remarks before Theorem 8.1) and 
page 187, Theorem 7.3. Note that by considering kernels it is clear that in the case 
s = 1/2 one can replace the norms in (40) by the corresponding seminorms. We 
will frequently use this fact without further remark. 

Conversely, if f E Hs(&D) for s = 0, 1/2,1,3/2 (with similar results for any real 
s), then there is a unique harmonic function 4?(f) defined on D with trace f as 
before, and in particular 

(42) |14(f) IIHS+l/2(D) < C|| fI Hs(9D)- 

See [LM], Theorem 7.4, page 188. Note that for s = 1/2, 1, 3/2 the norms can be 
replaced by seminorms, as follows again by considering kernels; we will use this fact 
without further comment. 

In the case of L2 boundary data one also has, with u = -(f), 

(43) lim u(rO) f(0) for a.e. 0 E OD, 
rl 

(44) sup Iu(r.)I < cllfllL2(OD) 
O<r<1 L2 (OD) 

See [JK], Theorem (1.16), page 11. In particular, u(r.) -* f in L2(&D) as r -* 1-. 
(The formulae (43) and (44) are established using the Poisson integral representa- 
tion of u from f. The function u agrees with 1(f) iri (42), since it agrees for f 
in the dense subset C00 (OD) c L 2(OD) by the maximum principle, and since the 
Poisson integral map and 4 are both bounded as maps from L 2(OD) into L2 (D), 
for example.) 

If f: OD -* X has the Fourier series expansion 

00 

f (X) = aO + Z (an cos no + bn sin no), 
n=1 

then one can define 
00 

(45) llfL2D) =aO + E(an + bn 
n=1 

00 

(46) f (2 = E nZ2s(a2+ b2) s > O, 
n=1 

(47) 11f IIHsQ(D) l1f 11L2Q(D) ? f (OD) 

These norms and seminorms are equivalent to the usual definitions in case s E N, 
and the previous definitions in case s = 1/2 or 3/2. The harmonic extension of f 
is given by 

00 

(1f)(r, ) ao + ?E r (an cos no + bn sin n). 
n=1 
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Proposition 3.1. Suppose f,g:6OD -* R. Then 

(48) lfg H1!2 ? lf 0CoIg H1!2 + If IH1!211glCO, 

(49) llfgl H1!2 < Cllf 0C0,1 g191|H1/2, 

(50) lfglH1 < lfIICO lg9l1 + If lH1 11900C, 

(51) llfgllH1 < Clf 0C0, 119IIH1, 

(52) llfgIIH3/2 < CIIfIIC2 II9IIH3/2. 

Proof. The first two inequalities follow from (37). The next two inequalities are 
standard. The last inequality follows from (49). El 

The next proposition will be applied in case g is (a component of) -y, -y' or -y", 
and s is either smooth or piecewise linear and continuous. In particular, g will be 
at least C' but s may be only C0,1 in some cases. 

Proposition 3.2. Suppose s = id + u:OD - S1, g: 5 -* R. Then 

(53) 900 0?90 00 (53) ~~~~~lIg osllco < lIgIlco < l9gllcollslIc? 

(54) 11g o SlIco,i < cjlgIlci IsIc0,1, 

(55) 190 silci < clgIlc ills lcil 
II I 2 

(56) ll90 ? SIC2 < CI90IC2 S2, 

(57) 119 ? SIIL2 < Cl9llCO < CII9IIC00 S||L2, 

(58) 119 o slIH1!2 < CI g i | SH1!2, 

(59) 119 o s| H1 < C 9 |l |C1lSll H1 

Proof. Recall that llsllco = 1 + IloIlco > 1. Then (53) is immediate, and similarly 
for (57). Also (54) is immediate. For (55), (56) and (59), note that 

(g o s)' = g' o s s', (g o s) =g // os (S/)2 + g/lo s s". 

Inequality (58) follows from (37). El 

The following proposition will typically be applied in case g is -y, -y' or 'y" and in 
particular is C1; and either s, = so and S2 = PhSo, or s, = Phso and S2 = PhSo + rh 

for an arbitrary nh E Hh. Note that in (61) only the Co norm of Sl - S2 is required, 
and in case s, - S2 E Hh this will be estimated by the inverse estimate (20). 

Proposition 3.3. Suppose si = id + oij 1D - S' for i = 1, 2 and 9: S'1 - R. 
Then 

(60) 119 ? 51 -g o s2 |L2 ? C19IC1 |1-SS2 IL21 

(61) 19 0 S1 -9 o s2 H1/2 < CI9gI|C2(||SJIICo 0 + 0,? 1 -S211CO) IS1 - S21H1/2, 

(62) 19 0 Sl -9 0 S2IH1 < cg 0C2 |Si 0C,1 l|1-S2 H1 , 
(63) 19 0 S1 - 9 0 S2 0C0,1 < CII90IC2 ISi 00C,1l JS1 - 2 001CO . 

Proof. The proof of (60) is immediate. 
For (61) write 

77(0) = S2(0) - Sl(O)- 
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Then 

(g(si(s)) - g(Siiq) ? M ())) - (9(Si(X)) - g(Si(q5) ? (X)) 

=- jg'(s(q(0) +tl(b))dt rjq(0) + g'(s(q) +trb))dt r(q) 

< J g'(s (0) + t(0)) |dt 1r(q)-r(q) 

+ j I9'(SQ() + tr(q))-g'(s(q) ?+ t(q)) dt 1r(q)1 

< 1glIci 1ci(q) - (q$) + 1 g IC2 (S1$s() - s ?(0) + 1X(0) - 71) 1 (0)1 

It now follows from (37) that 

19 0 
51 

- 9 (Si + 71) H1/2 

< g1 91C1L17|H1/2 + IIIIC2(CIISjIICoj 1? 7L + 1771H1/2 11711CO) 

? cIIgI|C2(||sjI|C0,j + ?11||CO)||7H1/2, 

recalling that ilsillcoi >_ 1. This establishes (61). 
For (62) we compute 

(9 ? S1 -9 S2)' IIL2 

- 1g | S1 S1 -9 0 S2 S2|IL2 

< II9' ?S1 -9 052IIL2 |1||? | 12|,|s -2|2 
? IgIC oIS1- 

OS2 L2 1 L-? go19 S2 11 o ~1 2 SIL2 

K C9c g 52 - S2IL2SjI oC,1 + ?gI1ClS - S21H1 from (60) 
? CIIgIIC2 |lSi ||C0,1 i - S2 H1- 

For (63) we similarly estimate 11(9 sl -g o S2)'II Lo El 

The next proposition will be used repeatedly in the consistency and non-degener- 
acy estimates of Sections 4 and 5, particularly in case s = 1. In Corollary 3.5 we see 
that the H1 (Dh) seminorm of the discrete harmonic extension of a discrete function 
f can be estimated by the H1 (D) seminorm of the smooth harmonic extension of 
the function. This is not true for general smooth f. The corollary is due to Bramble, 
Pasciak and Schatz [BPS]. 

Proposition 3.4. Iff e Hs(OD, Rn) where s= 1, 3/2, then 

(64) |(f) -Jhlh(f) IH1(Dh ) < Chs 1/2 If I Hs (OD), 

(65) J?hlh(f) H1(Dh) < If IH112(OD) + chs /2 fIHs(OD). 

Proof. It is sufficient to take n= 1. Let 

u= (f), Uh = DhIh(f)- 

Note that Ihf is well-defined, as f e C0(&Dh). Since .Uh = IhU on &Dh, it follows 
in the usual way from the weak form of Laplace's equation and (25) that 

(66) 0 J (VUh - VU)(VUh - VIhU), 
Dh 

and so 

(67) J Vu -VUh 12 (Vu7- Vuh)(VU - VIhu). 
h h..n 
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Hence 

1U-UhJH1(Dh) <? U-IhUJH1(Dh) 

chS 1/2 
UI H+1/2(Dh) < chs / UIHS+1/2(D) 

<CS1/2 I() ? chs-1~2U1HS(&D)i 

from a standard interpolation result and (42). This gives (64), and (65) then follows 
from (42). C] 

Corollary 3.5. Suppose fh e Hh. Then 

(68) |I?hIh(fh)1H1(Dh) < C 1(fh)1Hl(D) 

Proof. This follows from (65) with s = 1, the inverse estimate (19), and (40). E] 

Proposition 3.7 will allow us to estimate various quantities involving a harmonic 
function and the discrete disc Dh, in terms of the trace of the harmonic function 
on D. But first we need an elementary lemma. 

Lemma 3.6. Suppose u E H1(D), and w:OD -* ODh is as in (14). Then 

(69) u - u 0 7iF L2(0D) < ch1U1H1(D\Dh) 

Proof. Let Lo be the straight line segment joining 0 E OD to -F(O) e ODh. Then 

Iu(0)-uo(0)12? (j VU) <?ch2j 1VaU2. 

Each z E D \ Dh can be written uniquely as (0, y) E OD x R+, where z E Lo and y 
is the distance of z from 0 E OD. The corresponding map (0, y) ~-? z has Jacobian 
J satisfying 1 - ch2 < J < 1. Hence 

t lu- o 7r2 <- c2 1,7 Iu12 <c2 1 
,Vu12. ID ID dI0 D\Dh 

In the following proposition and elsewhere, au and ,9u denote normal and tan- 
gential derivatives on the relevant curve. 

Proposition 3.7. Suppose u is harmonic in D with trace ua 1D E L2(OD) H1(OD) 
as appropriate. Then 

(70) IIU |L2(D\Dh) < ch1iU11L2(0D)i 

(71) 11VU11L2(D\Dh) < chlulHlQ(D), 

(72) u - u o 7F|lL2(0D) < ch /2UH1(0D)i 

(73) 9,v < 
C|UiH1(0D). 

Proof. Let D(p) be the disc of radius p. From (44) 

JJU 1L2(0D(p)) < C||U||L2(0D)- 

Integrating the square of this inequality with respect to p from 1 - ch/2 to 1 now 
establishes (70). 

Since Vu is also harmonic, it follows that 

1VTUaL2(D\Dh) < ch/iVauJL2(0D)- 
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But 

0 
2 

0 )2 (74)Ot J Ot 

from a Fourier series expansion, and so (71) follows. 
Inequality (72) follows from (71) and the previous lemma. 
For (73) we have that if Au = 0 and Ua D E H1(OD), then AVu = 0 and Vu E 

H1/2 (D) by (42). Hence VUa,D is well-defined, and VU &D E L2(0D) from (41). 
From (44) applied to Vu, 

1jVUajL2(ODh) < C||VUa L2(OD) 

and in particular, using (74), 

I <V I L2(aD ? C UtH1(&D)- D9v L2 (&Dh) 

This establishes (73). C] 

4. CONSISTENCY ESTIMATES FOR THE ENERGY 

In this section we compare E and its derivatives at s with Eh and its derivatives 
at phS. Apart from their intrinsic significance, these estimates will be needed in 
the next section to establish the main convergence results. 

Remarks on the Proofs. In the proof of each of the three propositions in this section, 
Proposition 3.4 is used to estimate the difference between a harmonic function and 
the corresponding discrete harmonic function, and also to estimate various discrete 
harmonic "'error" terms. 

Interpolation results in terms of the H2 piecewise seminorm, together with in- 
verse estimates, are used to estimate the L2 norm of the quantities 

Y OpPhS -h (-D o phs), 

a O PhS h - I_D (_ OPhS (h), 

and 

'y OSh- i&D( OP/INS h 

Since piecewise second derivatives of PhS and (h vanish, this enables us to gain an 
extra power of h over what one might at first expect. 

In each of the three proofs the term 12 is estimated with an integration by parts. 
In Proposition 4.1 this improves the order of convergence from 0(h) to 0(h2). In 
the other two propositions, one could not otherwise expect any order of convergence; 
see also the remark preceding Proposition 4.3 concerning V(v - vh)I L2(Dh) 

Proposition 4.1. Let s E IY n C2, ay E C2. Then 

lEh(phs) - E(s) < ch2|J'Yfl12 2Js| 02 . 

Proof. Let 

(75) u = (Q0y os), Uh = JIhih(Y ?Phs). 
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Then 

Eh(PhS) -FE(s) J VUh DV 
2 tDsw 2 

- if V(U Uh) VUV(U -Uh) - 2 
2 

Dh Dh 
2 D\D, 

(76) -1 +1?2 +?13 

We will estimate these terms separately. 
For 1, 

(21 )1/2 - '(TY o S) - 'JhIh(-Y oPhS) Hl(Dh) 

< 1('Y o s) - 1hIh(Y ? S)|H1(Dl,) + 1|hIh(Y ? S - Y OphS)IH1(Dh) 

< ch17 o SIH312 + 1) ? S-' )PhSIH1/2 +Ch _K/ o S-Y 0phS|H1 

from (64) with s = 3/2 and (65) with s = 1. 

But 

hl-y o sIH3/2 < chl-y o s0C2 < chjH-yjjc2 |ISl122 from (56); 

also 

1OY ? s-Y ? PhS|H1/2 < C'H0llC2(IS|Co 0,1 + j|phs|co,1)Is - PhSl|H1/2 by (61) 
< ch3/2 11-Y}C2 5I0lCl1 Js1H2 by (23) and (22) 

< ch321-Y 0C2 sC2, 

and 

h 1/2 y o S - -Y phSIH1 < chl /2 Y ISlCl |IS -PhS|IH1 from (62) 
< ch3/2 11y 0C2 IIsI022 from (22). 

Hence 

(77) '1 < ch2 Th2 CsH2 

For 12 one has 

12| = IJDh _(aah) 

<I IU - Uh1HL2(0Dh) D9V L2 (ODh) 

< C U|H1(0D)jaU-Uh1HL2(0Dh) by (73) 
< CllIICl lSCll,lj ||U?o-Uho ? lL2(OD) by (59) and (14) 
< C||7||C1 |ISIlCl (I|U O W-U1jL2(0D) + I|U-Uh ? F11L2(0D))- 

But 

||U 0I - UHL2(aD) < ch 2U|H1(OD) = chh2t 0 S|H1 < ch21lyIICi IISIIC1 

by (72) and (59). Also 

||U-Uh ? 1|L2(0D) = ? S-IhID(_ ? PhS) 1L2 by (75) and (21) 
K 11- o S- -YphS11L2 + 11- K phS_-Ih (_ PhS)||L2 

< jjVYjC 1i S-PhS|jL2?+ ch 2_Y ? phSIH2, 
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by (60) and a standard interpolation estimate, where the H2 semi-norm is to be 
understood in a piecewise sense. On each arc segment, (-YpPhS)= 7//ophS ((phS)')2 

since (phS)" = 0, so we can continue the estimate by 

< c11yllclCh2 |SIC2?+ ch 11-||C2 c < ch2 01-||C2 C2, 

using (24) and (23). Hence 

(78) 112 1 < ch2 Kc2 lsc2 

Finally, 

1131 =L2\(D\Dh) < ch H2(OD) by (71) 2 V 
(79) - ch2 Hos2 < ch2 | 1slcl. 

The proposition now follows from (76), (77), (78) and (79). El 

The next proposition shows that E'(Phs) is an 0(h) approximation to E'(S) Hh 

in the H' norm for -y and s sufficiently smooth. The actual power of h is important 
in the proof of Theorem 5.4. 

Proposition 4.2. Let s e 1t n C2, -y e C3. Then for any ,h e Hh 

|(E'(s) h) - (E7(phs),(h) I< ch c3hc SI32 11fhIIH1!2 

Proof. Define u and Uh as in (75), and for (h E Hh define 

(80) v = JD(Y' o s h), Vh = DhIh(Y 0 PhS 'h). 

Then from (29), 

(E (s) , (h)- (E'(PhS),) h) 

= 7 u7v - VUhVVvh 

- JD JDh Vah 

= /(VuVv- VUhVVh) + / VuVv 
Dh D\Dh 

- IDh V(a - Ua)Vvh + VUV(v - vh) + vuvv 
Dh Dh \Dh 

(81) -= 1 + 12 +13 

Now 

I1| <? |V(U - Uh) IIL2(Dh) I|VVh IIL2(Dh) 

< chjj-y|C2 |lSIc 21 VVhI L2(Dh) from (77). 

Also 

I VVh IL2(Dh) 1 I?hIh(Y' ?PhS Jh)1H1(Dh) 

< 1Y 0 PhS h| H1/2 + ch' / _? OPhS (hlHl by (65). 

The first term is estimated by 

1-Y 0phS h |H1/2 < c1Y' OPhS|C00,1 1|hIIH1/2 from (49) 
< Cj||YfC2jjS0jC1jj|h||H1/2 using (23); 
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the second by 

Y' o phS (h|H1 < cI-Y'oPhs CO,l 11fhjjH1 by (51) 

< C 11)| c2 JjPhS 0CO,1 | H1 by (54) 

(82) < ch-1/2 1y0C2 JIslCl 11 hIIH1/2 by (23) and (19). 

So altogether, 

(83) A11 < ch 11|22 ISI13 l1 hIIH1/2. 

For 12, as for 12 in the proof of the previous proposition, 

I2= IDh v-h) 

< C||VYIC1 IISIlCl (|IV O 7>-VIIL2(0D) + |IV-VhOF ? 1L2(0D)). 

From (72) and the argument for (82), 

|V 0 IF-V||L2(0D) < Ch2|V|H1(&D) = Ch 27 o_ s hlH 

< ch3/2 117|C2 Y0SIlCl 11(hIIH1/2- 

Also, 

IV -Vh 0 T|IL2(0D) 

- ||-YO S (h-IhID(_/ ?phS (h)IIL2 

< 0( S -? S-Y phS) 'hIIL2 + 1Y 0?PhS 'h - Ih9D(_ ?PhS (h)||L2 

? |Yll0C2 11S-PhS 00 C'h ||L2+ ch OPhS (hJH2 

where the H2 semi-norm is understood in the piecewise sense 
? ch2|11YIC2 02SjIC2 11(hJIL2 from (24) 

+ ch2 (11-yIC3 IIS|12 s || h JIL2 + jy 0C2 jS|IC1 jh 1H1) since on each arc 

segment, (Q1 0 PhS Ylh) = 0 Ph S((PhS) ) 'h + 2y" 0 PhS(PhS) (h 

? ch2 11-|C3 IISI12 2|jh||Hl 

K ch3/2K11|jc3 IIsI12 2||jh |H1/2 by (19). 

Altogether, 

(84) 12| < ch3/2 |Y| 3 lSI1 2 jfh 11H1/2* 

Finally, 

113 I< VU| L2(D\Dh) vv 11L2(D\Dh) 

? chIjY|C1 oIslCl IvIVVL2(D\Dh) by (79) 

K ch2 II_YC1 |ISIlC1 IVIH1(OD) by (71) 

K ch 2IjYIC1 |ISIlCl 01Y ? S hjHl 

K ch2 11Y0C1 ISIlC1 JIY0C2 ISIlC1 'Fh H1 by (51) and (55) 

(85) < ch3/2 ' _2IS2 S jj hIH1/2 by (19). 

The proposition follows from (81), (83), (84) and (85). El 

Remark. The following proposition, and the related Proposition 5.3, are essential 
for the proof of the main theorem. Assuming -y and s are sufficiently smooth, we 
see from (87) that if E"(s) is positive definite (for example, if s is a strictly stable 
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local minimum for E) then so is E"(PhS) for h sufficiently small, with the same 
"ellipticity" constant up to O(h1/21 log hl 1/2). 

One might hope to estimate the positive term 

(86) IIV(V - Vh)1L2(Dh) = O(Y oS (h) - ?hIh( Y0PhS (h) HHl(Dh) 

in (87) by ch? IIh H1/2 .for some a > 0. But we cannot expect this, as we see by 

considering the "model" estimates: 

Ih'(&h) - -I?hIh((h)IIH1(Dh) < ch /2 jj(hjHl < CjjfhIIH112 

from (64) and (19) these estimates cannot be improved. 
Nonetheless, in Proposition 5.3 we do estimate (86) in case (h = Phi, where 

( is in the negative eigenspace of E" (s). The point is that ( is then smooth by 
elliptic regularity theory (although (h is of course not smooth), and in fact we show 
in (106) that in this case 

IV(V -Vh) L2(Dh) < chjjfhIIH1/2. 

As a consequence we deduce in Proposition 5.3 that if E"(s) is nondegenerate then 
so is E(Phs) for h sufficiently small, with the same nondegeneracy constant up to 

O(h1/21 log hl 1/2). 

Proposition 4.3. Let s e C2 n - and -y e C3. Then for any 'h e Hh 

(87) El(phs)(l h Eh) -E (s)((h, ih) = |V(v - Vh)HL2(Dh) + R 

where 

V =J?( OS (h), Vh = DhIh(Y 0 PhS (h), 

and 

IRI < ch1/21 log hl 1/2 11_11 233 s|2 h| H1/2 

Proof. Let u and Uh be as in (75). Let 

(88) w = (_yo s a ,2), Wh = DhIh(Y 0 phS 'h). 

From (30), 

(E/(s) - El(PhS)) ((h h) 

= ID| Vv|2 + ?JVuVw-J | VVh 
1 

-J VUhVwh 
D D D ~ ~~~~~~~h Dh 

=- J V(V-Vh)J12 + 2 VVV(V- Vh) + V(u- Uh)VWh 
Dh Dh Dh 

+ J V(w - Wh)VU + J 1Vv2 
1 J VuVw 

Dh D\Dh D\Dh 

= 11+12+13+14+15+16. 

We estimate the terms other than I1. 
For 12 we have 

2 2 Dh VVV(V-Vh) | 2 0D v 
(v-Vh) 

< 2 IV1 
- 

Vh12L2(ODh)) 
- DV L2Q9Dh) 
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The first factor is estimated with the use of (73) and arguing as for (82): 

D0v < C|V|H1(OD) = CIY OS (hHl < ch- 1V2IIYiC2HlSIlCl 11hIIH1/2. D9V L2 (Dh) 

The second factor was estimated in the estimate for 12 in the proof of Proposition 
4.2: 

||V-Vh||L2(ODh) ?Ch3KYlC3 SC2 H1!2 

Altogether for 12, 

(89) 1121 < chK,'_I 23 IIS c2 jjh 112H1/2. 

For I3, 

1131 = I V(u-Uh)VWh <? |V(u-Uh)||L2(Dh)11VWh||L2(Dh) 

< chII-y|C2 I0SI122 IVWh IIL2(Dh) from (77). 

From (65) we get 

1VWh IL2(Dh) = I?h1h(Y" 0PhS (h) H1(Dh) 

? KY 0PhS hIlH/2 + ch/2' OPhS h|Hl- 

But 

IY 0PhS (2 H1/2 < Cll-||C3 |ISIlCl 
1 

1/2 from (49) and (54) 
? CII-Y|C3 |ISlCl 11ihIICo 11(hIIH1/2 from (48) 
? cl log hl 1/2 IIyC3 cISIlCl [1h[H1/2 from (20). 

Similarly, 

K" 0PhS h IH1 ? hcII c1 H1 using (51) 
< Cll-7 C3 1ISlIC1 11hlICO 11hIIH1 from(50) 

(90) < ch 1/2I log h 1/21I YIIC3jISc1 Il(h H1/2 

from (20) and (19). Hence 
< cl log hl 1/2 II- C3 |ISIlCl 

11(h|12l/2, V1'Wh IL2(Dh) ?H1' 

and so 

(91) 1131 < ch log h 1/211_1123 IISI1 2 Cj hH1/2. 

For 14 we have 

14 V(w -wh)Vu= (wWh) Dii 

and so, as for 12 in the proof of Proposition 4.1, 

(92) 1I41 < CIIVY|C1 IISIIC1 (||W O F-WIL2(0D) + ||W-Wh ? o FIL2(0D)). 

But 

||W O 7F-W||L2(0D) Ch2 WIH1(aD) by (72) 

? ch 2 ?/ S osH1 

? ch3/21 log hl /2 Iy||C3 |ISIlcl 11(hl121/2 as for (90). 
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Also 

IIW-Wh O 7F||L2(OD) 

os -h hID (Y 0 phS L) |2 from (88) and (21) 
<- oP- ? phS (h| L2 + 11 YPhS P h- IhQY ?PhS h h)|L2 

< l Ol oS -Y 0PhS|1 COl 'jh L4 + chI" 0PhS '2h H1 

? C11-)C3c3 S - PhSlICO h|121/2 + chl /2 log hl 1/ 11-|C3 |IsIlCl 11(h 112 H! H1!2 

using a Sobolev embedding theorem and (90) 
? ch12 loghl 1/2 11y|C3 ISIlCl 1h 1H1/2 from (24). 

Hence 

(93) 1I41 < ch1/21 log h 1/2 1 1c3 11 23SI1 1 h H12 

From the final part of the argument for 13 in the proof of the previous proposition, 

(94) 15 = ||Vv||L2(D\Dh) - ch lY cl c li'h H1/2 

Finally, 

1161 < IUV IIL2(D\Dh) I1VW IL2(D\Dh) 

< ch21 u I H1 (OD) I W I H1 (OD) by (7 1) 
= ch2K? o SIH11-Y"Os hH1 

< ch2 ||y|ci|s||ci ' o s (hjH1 by (59) 
(95) < ch3/21 log h 1/2 1y112 3 cIsI12 jHh 1H1!2 as for (90). 

Now we collect the estimates (89), (91), (93), (94) and (95), and prove the 
proposition. El 

5. THE MAIN ERROR ESTIMATES 

We will apply the following quantitative version of the Inverse Function Theorem 
with X = THh and Y = H' in the proof of Theorem 5.4. 

Lemma 5.1. Let X be an affine Banach space with Banach space X as tangent 
space, and let Y be a Banach space. Suppose xo e X and f e C1(X,Y). Assume 
there are positive constants a, t3, 6 and e such that 

(96) 11f(xo)1 y < 61 

(97) jjf'(x0)o|| L(Y,X) < ae1 ) 
(98) 1f'(X) - f'(Xo)L(x,Y) < 43 for all x e Be(xo), 

where 

(99) t3 < ax, 6 < (ax - t3),E.. 

Then there exists a unique x* e BE(xo) such that f (x*) 0. 

Proof. This follows from the proof of the Inverse Function Theorem in [Be, pp. 
113-114]. The modifications necessary since X is an affine space are trivial. El 

The next proposition establishes that for any ~3> 0, 

||E"((phS)-E"(phS + h) I (Hh xHh)' -3 
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provided Ilog hI17hllH1/2 is sufficiently small (depending on / but independent of 
h). This will be used to establish the appropriate version of (98) in the proof of 
Proposition 5.4. 

Remark on the Proof. The precise form of estimate (61), and the inverse estimate 
(20), are used to control g9 o Sh - 9 (Sh + mh) |H1/2 for g = 'y, -y' and -y". 

Proposition 5.2. Let s E 7l n C' and Oy E C4. Then for any 7ph, (h E Hh 

(EK(Phs)- E"(phS +? h)) 
((hi 

(h) 

< c (1+ loghl12 |?h H1/2) log hl 117h llH1/2 C4 S |C1h H1/2 

Proof. For simplicity we write Sh for PhS. 
From (30), 

(El(Sh)- EK (Sh + 7h)) ((h, (h) 

= JDh | | h|VVh J VUhVWh VhI - VuhVWih, 
Dh Dh Dh Dh 

with 

Uh = 'CDh IhQ ? Sh), Uh = (ThIh(Y ? (Sh + 7h)), 

Vh = 'ChIh/(Y ? S/h h), h C h/IhI(/i ? (Sh + 7h) (h), 

Wh = ?hIh(-Y" 0 Sh (2), Wh = ?hI/(Y ? (Sh + T/h) (2). 

So 

(El(Sh)- E (Sh ?+ Th)) ((h, 
ih) 

< J |VGh- Vh)I (1VvhI + 1VUh ) + JV(Uh-Uh) IVWh 
Dh Vh 

+ I Vuhl IV(Wh - Wh) | 
Dh 

< ||V(Uh-uh)H|L2(Dh)H|VwhIlL2(Dh) 

+IV(Vh -Uh)flL2(Dh) (||VVhllL2(Dh) + IIVVhuIL2(Dh)) 

+?V(Wh - Jh)I |L2(Dh) lVuh flL2(Dh) 

(100) = A1B + A2(B21+ B22)+ A3B3. 

Now we estimate these terms separately. 
By (65) 

A1 = '1h-ih o Sh - (Sh + ? h)) HI(Dh) 

? KY 0 Sh - o (Sh + Ih)|H112 + ch /2 _ ? S-h ? (Sh + 'Ih)IHI 

? CILIyHc2 (IHShIHc0,I + ||hllCO) IL7hIIHI12 + ch' /2I 1HC2 1Shl 0C0,I l/h HI 

by (61) and (62) 

? C1K' 0C2 |S||CI |l7h/IH112 (I+ loghl h/2 llh/HH/2) 

+CII-j0 C2 || S || Cj llnh || H1/2 by (20), (19) and (23) 

< c(l + logh 1/2 ll hl|H112> Ijqh1IHI12IIY0IC2IISIjC1. 
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Again from (65) 

A2 = |'hlh (7 0 Sh (h ? (Sh + 7h) (h) H'(Dh) 

? K(7 ? Sh- 0 (Sh + 7fh)) (hIHI/2 

+ch1/2 ? Sh -o-1 ? (Sh + 77h)) (hjH1 

< 1O o Sh 0 (Sh + 7h)IHI/2 11(hH1CO 

+11Y ? Sh -tY 0 (Sh + ?7h)||co 1(hIHI/2 by (48) 

+ch/2| 11_?0 Sh- o (Sh + 7h)lCO1fh IHI 

+ch' /2 0 Sh - Y 0 (Sh + Ih) HI 1hHICo by (50) 

? c(1 + log hl 1/2 1h1 Hl/2) 1|hHH11/2 11HlIC3 1ISHIC1 HIIhHlCO 

+CLjjYHjc2jlj7hjjC0 1hIH1/2 ?chl/2 11/yHC211r7hllCo 1hIH1 using the argu- 
ment for A1 on the first and last terms in the preceding inequality 

? c(l + loghl 1/2 11h|H1/2)I log hl 1/ 11hl?H1/2 L110C3flSSIICI 11(hIH1/2, 

again using the inverse estimates (20) and (19) on nh and 'h- 

In the same way we proceed for A3 to first obtain the analogue of the next-to-last 
inequality above: 

A3 = jIhIh(Q 0 Sh h--7 0 (Sh + h)'h)IHI(Dh) 

? c( + logh 1/2 1,hllH/2) |7h 11/2y 11-C4||S||C1 g1h1Co 

+Cjj-|| C3 j|h jjCO hIH1/2+ chl 11-y C31||hll CO hIHI 
? c (1+| loghl 117hl|h |/2 ) log hl j7|h H1H/2j j||jC4jj SjjCIjj h H1/2 

from the inverse estimates (19) and (20) applied to 'h and (h, and since 

h11HH/2 < 211(h||Co 11fhlIH1/2, hI|HH < 211(h||Co jj(h|HH- 

For B3, 

B3 1l)hIh(Y 0 (Sh + 7h))lHI(Dh) 

' 1- 0 (Sh + n7h)I H/2 + chl/2L y 0(Sh + r7h)IHI by (65) 

< 11-Y||CI (||ShI|H1/2 + 11h| H1/2) + ch /2 11_y1c1 (||Sh||H1 + 1?1h|H1H) 
? cj-Y||CI (H|Sh||HI/2 + 11r7h||HH/2) by (19) 

? c(1 + 11?7h||H1/2) 11yHCI l|s || ci 
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For B22, 

B22 = DhIhy( 0 (? Sh + h) (h) Hl(DQ,) 

< '-Y ? (Sh + 71h) hI H1!2 ?2+ ch /2_y (Sh + 7h) h| Hi by (65) 
< J-Y'o (Sh?+7h)||C?o|h1H1!2 + 4 o0(Sh + ?7h)IH1/2 lj(hHlCo 

+chl /2 1Y' (Sh + C 
hh)||C?|h1H1 + 1? ? (Sh + h)IHI jjehJJC? 

by (48) 
? c11Yj|C1 |(h|H1/2 + C||YH|C2 |Sh + 7hjHl/2 ljdhHJCO 

+ch1 /2 (11Y |C1 |(h|H1 + ?Kj0||C2 I|Sh + ||H lH |(h| C?) 

K Cjj-Y jc2(jjSh +?rhlHl2) loghl 1/2 1 hIH1/2 by (19) and (20) 
K c(1 + 17hflH1/2)1 log h|1/2 jj-YC2 |ISIlCl jj(h||H1!2- 

For B21 we have the same estimate with r7p1 set equal to 0: 

B21 < cl log hl 1/2 11|C2 |ISlCl 11hIIH1!/2. 

Finally, 

B1 - |IhIh(QY 0 Sh h) H1(Dh) 

1-Y" Sh hIHI/2 ? ch /2 |? Sh hIHi by (65) 
K 11-"' 0 ShCO hIHI/2 + 1Y"' 0 S/lIH112 |hIC 

+chl/2 (11Y o Shl C|H1 ? I 7 ? 1 h|H 0 |H1 h 

K 
C11-Y0|C2 | h ||C0 11h IH1/2 + C|| Y||C3 ||Sh |H1!2 | C0h Co 

?ch/2 jj-y c2 CC 1SH1 ? ShH1 112 i 

K cl log hl 11YI|C3 ||SIC1 1(h H1!/2. 

Substituting the previous estimates in (100), we get 

E(EK(sh) - El(sh + 7h)) ((h, 
ih) 

<c( 1+ logh1l/2 Jjnh11H1/2) 11nh||H112 11-Y|c2 11S|C 

x I log hl 11'YflC3 |ISIlCl 1(h IH1/2 

+c(l + |loghl 1/2 1h H1/2) loghl 1/2 1|h |H112 ICll C3 S Cl jh 1H1/2 

x (I + 17h HH12) I log hl / 11/2 c2 ||SlCl 11 h IIH1!2 

+c 1 +||h|| 1/2) 112cl1 lC 

x (1 +loghl11hH loghl 11hlH1!2 11C4 ISICI 1hl H1/2 

< ( +looghl 1121h|H1!2) Iloghl 11h IIHI/2 lC4 Cljjh H112! 

It follows from the next result that E" (Ph s) is nondegenerate with nondegeneracy 
constant arbitrarily close to A, provided h is sufficiently small. This will be used to 
establish the appropriate version of (97) in the proof of Theorem 5.4. 
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Remark on the Proof. (See also the Remark preceding Proposition 4.3). Nonde- 
generacy for "interpolants" of functions from the positive and negative spaces for 
E"(s) must be treated separately see the separate treatment of I1 and I2 below. 
In the first case, nondegeneracy follows more or less directly from Proposition 4.3. 
In the second case, the term ||V(V - Vh)L 2(h)' where v h oS and 

Vh = DhI?h aY h h )), must be estimated. The main points are to apply the 

regularity results (34) and Proposition 2.2 to members of the negative space. 

Proposition 5.3. Let s E H n C 2 and -y E C3. Suppose E"(s) is nondegenerate 
with nondegeneracy constant A, as in (13). Let v be as in (12). Then 

- ( )) > ( - chl /21 loghl 1/211_y1123v211s11 
2) 1h2 

for every 'h E Hh- 

Proof. We again denote PhS by Sh and split 

E"(8h-) =h Ell(8h)E ll - E(Sh)(4 ) (47) 

(101) = I1+I2. 

It follows from (87), after discarding a positive term, that 

II > Ell(s)(&,(+) ,~(+))-chl /21 log hl I/2 1_ I 2 311813lsc2g(+) 1I1/2 Ii ? ~ ch1~2 oghh1/ -y C h H1!2 

- E"(s)(jh ) + E"(s) ((( '?) ) (h ' h hh )) 

-ch1/21 log hl 1/2 1 21_Y 11 31 2 g(?) 12 C 02h H1!2 

Using the notation of (13), there exists A+ > 0 such that 

E" (s) ((h+ I +) > A+ gh 1I1/2 

Also 

|(s (h (h )(h (h ) 

- E (s) (() - ' (h + 

? cy 1Y2 21181121 g( 
) 

- h IIHI/2 11h +) h ||H1/2 by (10) 
? ch y1 2 128s1 jj H12 by (36). 

Using (36) again, I, can then be estimated from below by 

(102) I, > A+2 2+|1231/2 -3ch1/2 loghl1/2 11y1123 V21|13 2||jh 112 - h? H1! h~ oh12- c S0 'H1 

With similar arguments, but now keeping all terms in (87) and using the notation 

of (13), we get 

'2 ? A l2 1/2 - ch /21 logh l/2y 1_iY i2V13 s02 jh 112 

(103) - |V(V-Vh) L2(Dh)' 

where, here, 

(104) v = (y os )), Vh = (1hIh (a S(h$)) 
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hrom (101), (102), (103), and using (13), 

? +- ) (S _ chl/21 loghI1/211_|112 3V1s1 02) ' h 11H1/2 

(105) - V(V - Vh) |L2(Dh)- 

It remains to estimate the last term. For this it is important to notice that h 
is a smooth function. We have 

| IV (V-Vh) I I L2 (Dh) 

= oY s4 h )) - (JhIhQy ? Sh H I H1(Dh) 

< J?(7~ ?S (() -(h ))I H(Dh) + HI hIhQ ? Sh (4) - h)) H1(Dh) 

+|J(? o s () h-hhIhy a S(hI SHh(Dh) 

+I 'JhIh((Y as -Y7 a sh) hI HI(Dh) 

- I3+I4+I5+I6. 

But 

13 ? ~yOS(~h-h) )H1/2 
I3 < I-Y o s (6h -(h)H/ 

< |7 O5||1 |(h) -h WIHI/2 

? chII-Y7|C2 ||S C'|-' 'hIIH1!2 by (34). 

And 

14 l Y7 0 Sh 1-!I 
h ( - ))H1 by (65) 

? C ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Y~~~~~~~~~~~~~S~~~~~h -( ~-(- )IH H1/2+h 0 ShHi) ? CII-Y 0 ShIlCl h|( - 1 |HI/2 + h 1/2h g h II HI 

? chII)Y 0C2 II s|| IC1IIh IH12 from (34). 

Also 

I5 ? ch1/21_s/ 0 S (-H1 by (64) 

K ch1/2 I a 
_ 

|C |H1 

K ch /2 I 0-||C2 S C' s V||h ||HI12 by (1 2). 

Finally, 

I6 ? cQy'ao s-a ? Sh) (h |H1!2 + ch / ?h?IS-I 2+? Sh) (Y/a- a h) |IH1 by (65) 

? CII^Y O S-EY ? ShIIC 1 (llTh IH1!2 + h1 /2 
- 

1 by (49) and (51) 

? C11?YIIC31S1CI IIS - ShloC0o,1II(hIIH1!2 by (63) and (12) 
? chlI -yIC3 1181122VII'hIIHI12 from (23). 

If we now put together the estimates for 13, I4, 15 and 16, we get 

(106) IV(v - Vh) I I L2 (Dh) < ch/| 7 |C3 c | |C h H1!2 

This together with (105) proves the proposition. 0 

The next result gives the main error estimates for discrete maps Sh which are 
stationary for Eh. As remarked at the beginning of this section, the proof uses 
Lemma 5.1. The necessary estimates were established in Propositions 4.2, 5.2 
and 5.3. 
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Theorem 5.4. Assume -y C C4. Let s be a monotone nondegenerate stationary 
point for E, with nondegeneracy constant A as in (13). 

Then there exist positive constants ho and co depending on II-Y||C4 and 

1Y'I-y IIL-, and A in the case of ho, such that if 0 < h < ho then there exists 
Sh E Hh which is stationary for Eh and satisfies 

(107) s - ShIIH1/2 < co0A1h. 

Moreover, there exists co = co(II-YIIc4, 11 1-Y I-1 1L?, A) > 0 such that Sh is the unique 
stationary point for Eh satisfying 

(108) ||s-ShIIHI/2 < ?cologhl. 

Proof. We will apply Lemma 5.1 with X =Hh, X = Hh, Y Hh (the dual space 
of Hh), f = E' and xo = PhS- 

Note that 

Eh:Nh 3 Hh- 

hRom Propositions 4.2 and 2.1, since E'(s) = 0, 

(109) IIE'(PhS) IH' < clh 

where c1 = CI( I-yIc3, 11 IY'I-1 ||L). 
The derivative (E')' of E' is a map 

(E')' :1h -- L (Hh I Hh) 

and is naturally identified in the usual way with E" via 

(110) K((E')'(th),Ih),Ih) = E"(th)((h,Ih) 

for all th E Hh and (h, 7h E Hh. hRom Propositions 5.3, 2.1 and 2.2, since 
h1/2 loghl1/2 -* 0 as h --* 

~~~ ~~~ ~ 3A 12 

(l l l) ~~E" (Ph 8)(h (h (h- ) j4||h |H 

for all (h E Hh, provided 0 < h < ho = ho( l-' c4, 11 IYI-1 IL-,A). But 

h- 
IIH1/2 < h - IIH1/2 + 'Rh - h(h H1/2 + jjh - IIh H1/2 

(112) < (1+chv)II(hIIH1!2 

from (36) and (34), and since C - H1!2 = hH!/2. Hence from (110), (111) 
and (112), 

(113) ((E') (Ph8)v I 
h)(h h) > A lhll2Ilh-h |H/ 

for all ( C Hh, provided 0 < h < ho for a new ho with the same dependencies as 
before. Thus for each 'h C Hh with jjthIIH1/2 = 1, the map ((Eh)'(Phs), fh) (C Hh) 
has norm > A/2. It follows, since Hh and Hh have equal finite dimension, that 
(Eh)'(PhS) is invertible and 
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Next note that from (110) and Proposition 5.2, by the symmetry of the second 
derivative, 

jj(E')'(phs) - (E')'(phs + 'nh) L (H',Hh) 

< C2 (1 + I loghl 1/2 hH11/2) I loghl ll7hl H112 

for all nh C Hh, where C2 = C2(j-y |C4, || 1 IL) from Proposition 2.1. 
We can now choose so - o(jj-Y jc4, 11 ||LO,A) so that I log h I JhjH1/2 < 6o 

implies 

A 
(115) jj(E')'(Phs) - (E') (Phs + h/h) IL(H L Hh) - < j 

By further restricting ho, again with the same dependencies, we can ensure that, 
see (109), 

(116) 0 < h < ho implies c1h < A 
o Iloghl-1. 

FRom (109), (114), (115), (116) and Lemma 5.1 with a = A/2, / A/4, 6 = clh 
ande = 6ollog hl-1, it follows that for 0 < h < ho there is a unique Sh C )h which 
is stationary for Eh and such that 

(117) 1Sh -PhS 1H1/2 < 6o0loghj-1. 

Next apply Lemma 5.1 with a = A/2, / = A/4, 6 = clh ande = 4c,h/A. Note 
that 6 = (a - )E (= clh). Moreover, if 0 < h < ho then e < o0 log h I from (116). 
It follows that the unique stationary Sh as in (117) satisfies 

(118) 1Sh -PhS||H1/2 < KOh 

where co = 4c1. 
Since 

||S-PhSI|H1/2 < ch3/2 11S|H2 < ch3/2 1S0C2 < ch 3/2 11-yC3, 

we may replace Phs by s in (117) and (118), after further restricting ho, E0 and co 
if necessary. 0 

Remark. Suppose u =(y o s): D -* R is harmonic. Then 

|lU jH1(D\Dh) < chjjU11H1(aD) from (70) and (71) 
K chI -y Ici IIs Ic from (57) and (59) 

K ch, 

where c = C(jK Y0jC2). Thus the contribution to |u||H1 (D) from the boundary strip 
D \ Dh is 0(h). This is consistent with the order of approximation in the following 
theorem. 

Theorem 5.5. Assume -y E C4. Let u be a nondegenerate minimal surface span- 
ning F with nondegeneracy constant A as in (13). 

Then there exist positive constants ho and co depending on 117| C4 and 
Il 1-Yl-I IL-, and A in the case of ho, such that if 0 < h < ho, then there is a 
discrete minimal surface Uh satisfying 

(119) u - UhIIH1(Dh) < coA1h. 
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Moreover, there exists 6o = -o(IIy I I C4, Iy'l L-,A) >0 such that if u = (-y o s) 
and Uh = (hIh(-Y ? Sh), then Uh is the unique discrete minimal surface satisfying 

(120) ||s h 
- 

|IHI/2 < ?ollogh|. 

Proof. Let 

U = a( s 0 S), Uh = (hIh(Y 0 Sh), 

where s and Sh are as in Proposition 5.4. We begin with ho, eo and co as in 

Proposition 5.4. 

Now 

IU - Uh H1(Dh) 

= 1a(D(os)0- JhIh(Q 0 
Sh)1H1(Dh) 

< J?(yoYs))-'JhIh(QYOPhS) H1(Dh) + |'hIh(-Y0phS--Y?Sh) H1(Dh) 

(121) A+ B. 

But 

(122) A < chjj-y jC2 Cs2 

by the estimate (77) for I, in the proof of Proposition 4.1. 

Also, 

B < c(1 + loghl 1/2 1h -PhSlIH1/2) 18h -PhSlIH1/2 11-YI C2 llsllcl 

by the estimate for A1 in the proof of Proposition 5.2, with Sh and nh there replaced 

by PhS and Sh - PhS, respectively. Hence 

(123) B < coh from (118) 
-A 

provided 0 < h < ho, for a new ho and co with the same dependencies. 

It follows from (121), (122) and (123), possibly again with new co and ho with 

the same dependencies as before, that 

(124) IU - UhIH(Dh) < 
co 

h 

if 0 < h < ho. 
Now 

(125) IU 
- 

UhIIH(Dh) < c( IU h H1(Dh) + IU 
- 

UhjL2(&Dh)), 

as follows easily by integrating along rays (c depends only on n). It is routine to 
estimate U - Uh L2 (&Dh). Let 

fUh = 'hIh (Y ? PhS). 

Then 

IU - UhjL2(&Dh) I U - ih IL2(&Dh) + llUh - UhjL2(&Dh) 

< ch 21i|C2 11811S2 2+ lhUh -UhjjL2(aDh) 

(126) cch2 117YIC2 118112 2+ D 
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from the argument used to estimate I2 in the proof of Proposition 4.1, with Uh 
there replaced by Uh. Moreover, 

D IlIh(-Y OPhS-Y ? Sh) |L2(aDh) 

< IlIh;D(-yoPh8s-?Ys0h)|L2(aD) by (21) as IV7r? < 1 

< jj-YOPhS--Y?Sh11L2+ Chjjyo Phs- ?Y Sh IH 

? C11YIlCI ICPhS-Sh1jL2+ Chjj y7C2 C1 S Cl IlPhS-Sh HI 

by (60), (62) and (23) 
? C11-y IC2 lsICI IlPhS - Sh JL2 by a standard inverse estimate 

(127) < - h from (118) 
A 

with a new co but with the same dependencies, for 0 < h < ho. FRom (124), (125), 
(126) and (127) it follows that if 0 < h < ho then 

IIU-UhIIHI(Dh) < Kh, -A 

where co= Co( -7jjC3, 11 1Y'l-' ||L) and ho = ho( 1-y1C31 11 1Y'l-' ||L, A). 
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