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ON THE CONVERGENCE OF BOUNDARY ELEMENT 
METHODS FOR INITIAL-NEUMANN PROBLEMS 

FOR THE HEAT EQUATION 

YANG HONGTAO 

ABSTRACT. In this paper we study boundary element methods for initial- 
Neumann problems for the heat equation. Error estimates for some fully 
discrete methods are established. Numerical examples are presented. 

1. INTRODUCTION 

Boundary element methods have been applied to initial boundary value problems 
for the heat equation (IBVPHE) (see [4], [5], [8], [15], [20]). The boundary integral 
equations (BIE) derived by using the potential method or the Green's formula 
method are Volterra-Fredholm BIEs of the first kind (V-FBIE1) with weakly or 
strongly singular kernels, or of the second kind (V-FBIE2) with weakly singular 
kernels. Following the usual numerical treatment of parabolic problems (see [11]), 
we can discretize the space variables and the time variable together for solving these 
V-FBIEs numerically. This approach may be the Galerkin method, the collocation 
method, etc. We can also discretize the space variables and the time variable 
separately, which is more flexible in the design of algorithms. For example, one 
may discretize the space variables by using the Galerkin method, the collocation 
method, or the Petrov-Galerkin method, and then solve the Volterra system of the 
time variable by using the Galerkin method, the collocation method, or the product 
integral method. This approach is employed in this paper. 

The mathematical theory of boundary element methods for the IBVPHE has 
been developed only in recent years. Error analysis of the Galerkin method for 
V-FBIEs has been carried out (see [1], [6], [17]). Convergence and stability of the 
collocation method for V-FBIE2 have been established in [18] for the Neumann 
problem of the heat equation on convex domains. As the further work of [18], the 
projection method for V-FBIE2 in the space of continuous functions are studied in 
[7], [19] for non-smooth domains. 

In this paper, we consider the initial-Neumann problem for the heat equation 
(INPHE). Here the solution of INPHE is represented by a single heat potential, 
and thus the unknown density function is the solution of a V-FBIE2 with a weakly 
singular kernel. The right side of the V-FBIE2 is a suitably smooth function or 
the singularity O(t-1/2) as t -? 0+. In [21] we have established the well-posedness 
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theories for the V-FBIE2. Since the kernel has a singularity, the solution of V- 
FBIE2 may not be smooth even if its right hand side is smooth. Therefore, we shall 
make proper variable transformations for the V-FBIE2 according to the properties 
of its right hand side, and we solve the new V-FBIE2s instead of the original density 
function. 

The paper is organized as follows. In Section 2 we recall some of our previous 
results found in [21]. In Section 3 we construct some fully discrete methods for 
VFBIE2s. In Section 4 we derive the error estimates. Finally, in Section 5, some 
numerical results are presented. 

For the sake of convenience, we introduce the following notations from [21]. Let 
Q be a bounded domain in Rnh(n > 2) with the smooth boundary F and 0 < T < oo. 
For m, k E Z+ (the non-negative integer set), denote 

Ck [0,T];Cm(F)) C{ E Ck([0jT];C m(F)): p(i)(0) = 0, j = 0,1,... ,k -1, 

where ck([ 0, T]; Cmm(F)) is the space consisting of functions from [0, T] to Cmm(F) 
which are k-times continuously differentiable (see [14]). Here Cm(F) is the space 
of m-times continuously differentiable functions on F with norm 1 For 
p E Ck([0,T];Cm(1)), we define the norm as follows: 

hollm,k = max sup ho(Am||m 00. 
O<j<k O<t<T 

Equipped with this norm, Ck([ 0, T]; Cmm(F)) is a Banach space with a closed sub- 
space Ck([0, T]; Cmm(F)). Similarly, we define the Banach space Ck([O, T]; Hs(F)) 
(k E Z+, s E R) and its closed subspace Ck ([0, T]; Hs(1)). The norm for these two 
spaces is 

Phols,k,oo= max sup h()ls 
O<j<k O <t<T 

where 1 stands for the norm of Sobolev space Hs(F). 

2. SOME RESULTS OF [21] 

Consider the following initial-Neumann problem for the heat equation: 

(2.1) u(t, x) = A\u(t,x) + f(t,x), (t,x) E (0,T] x Q, 

(2.2) u(0, X) = uo(X), xEQ, 

(2.3) 9 (t, x) = b(t,x), (t,x) E (0,T] x F, 
&rni(x) 

where nr(x) is the unit outward normal vector to F at x, f(t, x) E Co([0, T] x Q) 
is locally Holder continuous in x uniformly with respect to t, uo E CO (Q), b E 
CO ([ , T] x F). It is well known that the solution of this problem can be represented 
in the single heat potential form (see [10]): 

rtr 
u(t, x) = G(t -T, x -y)o(p(T, y) ds(y) dT + w(t, x), (t, x) E (O, T] X Q, 

where (p(t, x) is the unknown density function, G(t, x) = (47r t)-n/2exp(- xX2/4t)H(t) 
(H(t) is the Heaviside function) is the fundamental solution of the heat operator 
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a -\, and 

w(t, x) j G(t, x - y)uo(y)dy 
Q 

+ /f/ G(t-T,x-y)f(T,y)dydT, (t,x) E (0,T] x Q. 

And p satisfies the following Volterra-Fredholm boundary initegral equation of the 
second kind: 

(2.4) p(t,x) + --jjTG(t - T, - Y>o(T, y) ds(y) dT = g(t, x), 

(t,x) c (0,T] x r, 
where 

g(t, x) = b(t, x)- a ux-) uo(y)dy - f(Tr Y) dy dT. 

As shown in [21], g(t, x) is suitably smooth at t = 0 or has a singularity O(t-1/2) 
as t -* 0+. In the latter case, we may assume that tg(t2, x) is sufficiently smooth 
at t = 0. We further define +b(t, x) = tWo(t2, x) and rewrite (2.4) as 

1 f~~tf G (t2 -T 2)X_y) (2.5) i?(t x) + 2 t a ri(x) ')/(r,y)ds(y)dr = tg(t2, X), 

(t, x) E [ O, T1/2] x F. 

For t > 0, define the following integral operator: 

K(t)q(x) = 2t1/2j 0 G(t, x-Y) q(y) ds a n(x) qyd() 

Then (2.4) and (2.5) can be rewritten respectively as 
rt 

(2.6) p(t) + j(t - T)-12K(t - T)p(T)dT = 2g(t), t e [O,T], 

rt 

(2.7) tb (t) + j 2t(t2 - T2)-1/2K(t2 - T2) V) (T)dT = 2tg(t2), t e [0,T1 / 2, 

where p(t), fb(t) and h(t) denote the abstract functions of t whose values are 
p(t,x), fb(t,x) and h(t,x), respectively. We have the following results for the 
properties of K(t) (see Lemma 2.1-2.2 of [21]). 

Theorem 2.1. Let m, k E Z+, s E R, q E H2k+s(F) or C2k+n(r). Then 
lim K(k)(t)q exists in Hs(F) or C" (F) and 

K(k) (t)q < Clqll 2k-+s, Vt > 0 

or 

K(k)(t)q < Cj qjj2k+,m,oo, Vt > 0, 
7wh, r 

wvhere 
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C is a positive constant independent of t, q (throughout this paper we shall denote 
a generic positive constant by C). 

Remark 2.1. We can also show that K(t) is a linear bounded operator from L?(F) 
to Co(F), and 

11K(t)qJ1o 00 < ClIqJ1o,001 Vt > 0, q E L'(F), 

where I I o,,, also denotes the norm of L' (F). 

With the help of this theorem, we can prove that p E Ck([0, T]; HS(F)) or 

Ck([0,T]; Cmm(F)) and fb E Ck([0,T];Hs (F)) or Ck([0,T];Cm(F)) under some 
conditions (see Theorem 4.1 and 4.3 of [21]). When g E Ck([O,T];Hs(F)) (or 
Ck([O,T];Cm(F))) but g(O) $& 0, we only have that (p(t2) E Ck([O,T];HS (F)) (or 
Ck([O,T]; Cm(F))), while ((t) is only continuous at t = 0 (see Theorem 4.2 of [21]). 
In this case, we let v(t) = (t2) and rewrite (2.6) as 

t 
(2.8) u(t) + j 2T(t2 _ T2)-1/2K(t2 _ T2)U(T)dT = 2g(t2), t E [0, T1/2]. 

3. PRODUCT INTEGRATION METHODS 

In order to find the solution u(t, x) of (2.1)-(2.3) numerically, we shall solve 
(2.6), (2.7) or (2.8) according to the property of g(t) or the smoothness of (p(t). 
Now we state these equations in the following general form: 

t 

(3.1) 0(t) + j p(t, r)B(t,T)4(T)dT= f(t), t E [0, T] 

where p(t, T) (t -T)-1/2, 2t(t2 _ T2)-1/2, or 2T(t2 _ T2)-1/2, B(t, T) = K(t - T) 

or K(t2 -T2), f(t) = 2g(t), 2tg(t2), or 2g(t2), T = T or T- 
Let V be HS(F) or C0(F), Vh(O < h < 1) be a family of boundary element spaces 

and Ph(O < h < 1) be linear operators mapping V onto Vh. Then the semi-discrete 
method for equation (3.1) can be described as follows: find Oh (t) E Co( [0, T]; Vh), 
such that 

rt 

(3.2) Oh(t) +A p(t,T)PhB(t,T)/h(T)dT = Phf(t), t E [0,T]. 

For concrete V, Vh, and Ph, (3.1) may be the Galerkin method, the Lagrange 
collocation method, the spline collocation method (see [2]), and the Galerkin-Petrov 
method, or some other methods. For example, choose V = Ho(F), Vh(O < h < 1) 
to be a family of subspaces of H0(F) and Ph to be the corresponding orthogonal 
projections. Then (3.2) is called the semi-discrete Galerkin method. In the two- 
dimensional case, i.e. F is a closed curve, it is easy to define Vh to be the space 
of continuous piecewise polynomial functions of Lagrange type for a partition of F. 
For F a closed surface, it is more difficult to construct Vh such that Vh c C0(F). 
But we can define Vh to be the space of piecewise continuous polynomial functions 
of Lagrange type and require that the elements of Vh are continuous at all nodes 
of the partition. We refer to [16] for a construction of subspaces Vh of C0(F). Let 
Ph be the interpolation operator from C0(F) to Vh. It follows from Remark 2.1 
that (3.2) is valid for any case of Vh, and we call (3.2) the semi-discrete Lagrange 
collocation method. 
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We now consider discretizing equation (3.2). Since (3.2) is a Volterra integral 
system with a weakly singular kernel p(t, T), we shall adopt the product inte- 
gration method (see [3], [13]). For positive integer Nt, let r = T/Nt, t = nr 
(n = 1, 2,... , Nt). Suppose there are product integration formulas 

(3.3) 
otn n 

p(tni T)B(tn,) 761(,T)d,T = WnjB(tni tj)0(tj) + n(01)) n = nO .. *I* Nt, 
j=o 

where no is a given positive integer, B(tn, tn)q5(tn) = lim B(tn, t)q$(tn). Then the 

step by step method for (3.1) is described as follows: find o)n E Vh (n = no,... , Nt) 
such that 

n 

(3.4) ? ZWnjPh + (tn ,tj)?bj Phf (tn)= 
j=O 

where q$, ... , on, - are the approximate values of (to), . t. , -$(t 1). When Wnn 
are small enough, o5njn = no, ... , Nt) can be found step by step from system (3.4). 
It is not difficult to observe that the precision of the rule (3.3) is one of the main 
factors which determine the convergence rate of the method (3.4). For raising the 
convergence order for the time step r, block by block methods (see [3], [13]) can be 
employed, but we do not elaborate them here. 

It is easy to construct various step by step methods by choosing V, Vh, Ph, and 
the quadrature rule (3.3). For instance, we use the product Euler rule or the prod- 
uct trapezoidal rule in (3.3) and the Galerkin method or the Lagrange collocation 
method in (3.2). Then (3.4) is called the Euler-Galerkin method, the trapezoidal 
Galerkin method, the Euler-Lagrange collocation method, or the trapezoidal collo- 
cation method. In addition, we can define the Euler spline collocation method, the 
Euler-Petrov-Galerkin method, etc. 

We conclude this section with some remarks on computational aspects. We 
first consider how to evaluate PhB(tn,tj)q$j in (3.4). It is sufficient to compute 
PhB(tn, tj)X for a basis function x(x). When j = n, we have 

B(tn tn)x(x) = lim B(tn,t)x(X) = A(x)X(x), x EF, 
t--tn- 

where 

A(x) _ J (7r)n/2D2(()(A-1(()r)2r n(x) exp(-_ ,q2)dr, 

A(()=- ([Du(()]T D()) /2 

y 5 (?;E {K (E Rn - I:J {t- .I < 6} 1, ~E R n-I , x = v(S)) is the local 
coordinate of a neighbourhood of x E F. It needs to be pointed out that A(x) 
is independent of the choice of a. When j $r n, the kernel of B(tn, tj) is smooth. 
Noting that the support of X is quite small, we can reasonably compute PhB(tn, tj)X 
(j = 0, 1 ... , n) by using numerical quadrature of low order. Now we consider the 
computation of Phf (tn) in (3.4) and w(t, x) in the integral expression of the solution 
u(t, x) of (2.1)-(2.3). They all contain two integral terms. Since the first integral 
terms have smooth kernels, we can compute them by using the standard numerical 
integrations. If we decompose the Q into Dx, = {y E Q: y - xl < } and 
QX,b = Q \ Dx,6 (8 is a small positive number), then each second integral term can 



552 YANG HONGTAO 

be evaluated through computing a proper integration on Qz,, and an integration 
with a weakly singular kernel on Dx,8. Using coordinate transformations, we can 
simplify the integral on Dx,8 into an easily computed one. 

4. ERROR ESTIMATE 

Using the discrete Gronwall inequality (see [12], [13]) and Theorem 2.1, we can 
prove the following error estimate for (3.4). 

Theorem 4.1. Suppose that E C 0([O,T]; V) and Ph(O < h < 1) are uniformly 
bounded in h. Let M1 = SUpo<h<l llPh l, where 11 11 denotes the norm of space 
HS(F) or C0(F). Let M2 be the positive constant in Theorem 2.1. Suppose that 
there exists a positive integer m such that 

min(n,j) min(nj,j>+-1) 

M1M2 E lwnjI < a < 1, M1M2 E lWnjl < a < I, 

j=jm-1 i=iv 

for n = no,... ,Nt, v = O, 1,... ,m-1, where j = [vNt/m], v = O, 1,... ,m, 

jo < nO < jl. Then on$(n = no, . .. , Nt) can be found from equation (3.4) step by 
step. In addition, the error estimate 

11?)(tn) ?h 1 

< (1- 
m 1 max (||(I-Ph)0(tn)| H+ Mij86n(0)l) ?+E 5 (tj) -$h 

- n<Art<N j=OI 
holds for n = no,... , Nt. 

Proof. Let ehn = ?/(tn) - h/. Then, from (3.1), (3.4) and (3.5), 
n 

en + - w PhB (tjt) eh = (I - Ph) 0 (tn) - 

j=O 

Thus, from Theorem 2.1, 
n 

ehn ?1 < M1M25E |wnjl ej +jj (I-Ph)q5(tn) j+M1 jjn(q)j 
j=O 

The estimate follows from the discrete Gronwall inequality. D 

Assume that Vh has the approximation property: 

liv-Phvllo < Chllvlls v Vv E V Hs(F), 

for the Galerkin method or 

(4.1) liv - Phvllo,O < Ch' jvjjj,, Vv EE C(F), 

for the collocation method, where 0 < s < k or 0 < 1 < k, k is a positive integer. 
Then we immediately have the following corollaries by using Theorem 2.1 and 4.1. 

Corollary 4.1. Let 0, the solution of equation (3.1), belong to Cl ([ 0, T]; Ho ()) )n 
Co ([ 0, T]; Hm (1F)). Then for small enough r, the error estimate for the Euler- 
Galerkin method 

110(tn) _qonlo < C [115(to) -q55|| + h81[h 118s,o,oo + Enr (11010,1, oo + 11,1120K 2oo)] 

holds for n = 1, 2,... , Nt, s = min(m, k), where En = tn or tn when p(t, T) 

(t -T)-1/2 or 2t(t2 _ T2)-1/2, 2T(t2 - 72)-1/2 
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Proof. From Theorem 4.1, it is enough to estimate 1(q5) llo By Theorem 2.1, we 
have 

I IB (tn) T) 0(,T) -B (tn i tj) ?) (tj) lo <- Cr l)l2,0,Oo 

for t2 < T < tj+3. Hence, 

|B (tni T) 0(,T) -B (tn, tj) 0)(tj) 110 <I |B (tni IT) 0)(tj) B (tn) tj) ?> (ti)110 

+ IIB (tn, T) (Q(T) - 0(tj)) IO <? Cr(1 1|12,0,oo + 11)110,1,) 

Thus, 

|| (q) 0 1 E p (tnT) (B (tn,T)/ ) -B (tn, tj) q (tj)) 

rtn 

< Cr p (tn,T) dT(II0II2,O,oo + 11011o,i,oo) 

< Cenr(Iq$112,,00 + 110110,1,oo). 

Analogously we can establish the error estimates of the other methods. 

Corollary 4.2. Let /, the solution of equation (3.1), belong to C1([0, T]; co(F)) n 
C0([O,T];Cm(F)). Then for small enough r, the error estimate for the Euler- 
Lagrange collocation method 

11$(tn) -0 hr| 0O, <? C [ |(to) - 0h 1| ,, + h'lql$fli,o + Enr (1H011o,i + 110112,o)] 

holds for nr= 1, 2,.. , Nt, where 1 = min(m, k), En is as in Corollary 4.1. 

Corollary 4.3. Let ?, the solution of equation (3.1), belong to C?([ O, T]; Hm(F)) n 
C1( [O , T]; H2 (F)) n C2 ([ 0, T]; Ho (F)). Then for small enough r, the error estimate 
for the trapezoidal Galerkin method 

0(tn)_ o-n 11o < C[ (to) - |0 A-+ hsH,o,+ oo0|O 

+ Enr2 (110114,0,oo + 11H112,1,oo + 11/110,2,oo) ] 

holds for nr= 1, 2, ... , Nt, s = min(m, k), En is as in Corollary 4.1. 

Corollary 4.4. Let /, the solution of equation (3.1), belong to C?([ (), T]; Cm(r)) n 
C1 ([ ,T]; C2 ()) n C2([ O T];CO (F)). Then for small enough r, the error estimate 
for the trapezoidal Lagrange collocation method 

115(tn) -on1l0,00 < C[ 11S(to) 
- 500 O0, + h' q1011,o 

+ Enr2 ( q1 14,0 + 11S112,1 + 11S110,2)] 

holds for n 1, 2,... , Nt, where I = min(m, k), En is as in Corollary 4.1. 

Remark 4.1. onom Theorem 4.1, we can obtain that the convergence rate of the 
method in [15] is 0 (r + hk+l), which was conjectured in [15]. 
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TABLE 5.1. Maximum errors as a function of r and t 

t 3.0 5.0 ___ 

r ME Rate ME Rate 
1/4 1.122236E-03 1.760125E-03 
1/8 5.182028E-04 1.1147 6.786585E-04 1.3749 
1/16 8.559227E-05 2.5979 1.029372E-04 2.7209 
1/32 2.878904E-05 1.5719 3.659725E-05 1.4919 
1/64 5.960464E-06 2.2720 6.794930E-06 2.4292 

TABLE 5.2. ME as a function of h and r at t = 5.0 

r h=1/4 h=1/8 h=1/16 
1/4 2.339792E-02 7.428646E-03 1.580477E-03 
1/8 1 9.186625E-03 5.038381E-03 1.470089E-03 
1/16 7.557869E-04 2.408266E-03 7.539988E-04 
1/32 - 3.575206E-03 4.023314E-04 3.551245E-04 
1/64 5.920649E-03 8.140802E-04 4.255772E-05 

5. NUMERICAL EXAMPLES 

We present some numerical results for the trapezoidal Lagrange collocation 
method (TLCM). In all examples, Q is the unit disk andr = {x c R2: IxI = 1}. 
The parametric representation of r is x = (cos 2irO, sin 2irO) (0 < 0 < 1). r is 
decomposed into Nx segmental arcs. Vh consists of corresponding piecewise linear 
functions, where h = 1/NX. All calculations were performed on a Great Wall 386 
computer in single precision. 

Example 5.1. We investigate TLCM for (2.6). First, let the exact solution of 
(2.6) be p(t, x) = 1.0. Note that p is independent of the 0 coordinate. This is 
reflected in numerical results; therefore, we can observe the rates of convergence 
with respect to the time step r for a fixed spatial step h. Rom Table 5.1, we find 
the average rates of convergence are 1.889 and 1.964 at t = 3.0, 5.0, respectively, 
where h = 1/8 and ME is the maximum norm of the error. 

Second, let the exact solution of (2.6) be p(t, x) = cos 27rO. In Table 5.2, we 
display the maximum errors as a function of the time step r and the spatial step 
h at t = 5.0. These results indicate that the MEs are smallest when r = h/4. 
This implies that the time step length should be chosen smaller than the space step 
length. The same phenomena occur in the next example. In Table 5.3, we give 
the rates of convergence for each pair of spatial steps (here we choose r = h/4). 
The results show quadratic convergence, which is consistent with the expected rate 
O(h2 + r2). 

Example 5.2. Let the solution of (2.4) be p(t, x) = t-1/2 cos 27rO. In this example, 
we find +(t) = t(t2, x) from the equation (2.7) by using TLCM. Table 5.4 shows 
that the maximum errors become small as the time step decreases for a fixed spatial 
step. In Table 5.5, we set r = h/4 and present the rates of convergence for two 
pairs of spatial steps. The results show that the rates are faster than the theoretical 
rates O(h2 + r2). 
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TABLE 5.3. The rate of convergence 

t h=1/4,1/8 h=1/8,1/16 
1.0 1.9252 1.9145 
1.5 1.9909 1.8930 
2.0 2.0602 1.8456 
2.5 2.1474 1.7652 
3.0 2.2875 1.6406 

TABLE 5.4. ME as a function of h and r at t = 5.0 

r h=1/8 h=1/16 h=1/32 
1/8 3.097606E-01 2.967817E-01 2.935145E-01 
1/16 7.920551E-02 6.844246E-02 6.573260E-02 
1/32 1.350176E-02 5.002975E-03 2.866507E-03 
1/64 8.301258E-03 2.146482E-03 5.843639E-04 

TABLE 5.5. The rates of convergence 

t h=1/4,1/8 h=1/8,1/16 
2.0 2.5364 1.3891 
3.0 2.8014 4.3346 
4.0 3.0487 2.2154 
5.0 3.1448 2.6531 

Remark 5.1. We also observed the same numerical results in the experiments of 
solving (2.8) by using TLCM. 

Example 5.3. In this example, we consider the approximation of the solution of 
(2.1)-(2.3). We first compute the approximations of p(t, x), to(t2, x) and p(t2, x) 
from (2.6), (2.7) and (2.8), respectively, and then we use the representation formula 

rt 
(5.1) u(t, x) jj G(t- , x-y) d(r, y) ds(y) d-r + w(t, x), (t, x) c (0, T] x Q 

or 
(5.2) 

u(t, x) = 2ff G(t _ T2, X _ y)TSO(T2 , y) ds(y) dr + w(t, x), (t, x) c (0, T] x Q 

to recover approximation to the solution of (2.1)-(2.3). The integrations in (5.1) 
and (5.2) are computed by using the trapezoidal rule. Recalling the observations 
made in Examples 5.1 and 5.2, we choose r = h/4 in all examples. 

Let the solution of (2.1)-(2.3) be as follows: 

u(t,x) = exp(-I x - xo/4t)/t, t > 0, xC Q, 

where xo = (2,0). Note that g(t,x) = b(t,x) - u9'(t,x) c C??([O,oo] x r) and 
&kg(ox) -~~~~~~~~~~~~~~9nx 
tkg((?x) = O(x c r, k C Z+). It follows from Theorem 4.1 of [21] that p C 

C??([0, oo] x r) and ak (o,x) = O(x C F,k c Z+). In Tables 5.6, 5.7, and 5.8 
we display the relative errors at spatial points: (pcosO,psinO), 0 = 0.0,7r/3, 
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TABLE 5.6. (2.6) Relative errors for h = 1/16, r = 1/64 

p 0.4 0.8 0.9 
t 0=0.0 0 =r/3.0 0=0.0 0 = ir/3.0 0=0.0 0 =r/3.0 

1.00 7.8545E-03 1.9240E-03 1.5063E-02 5.2012E-03 2.3323E-02 1.2674E-02 
4.00 1.2377E-03 3.3090E-04 2.7337E-03 I 0670E-03 5.3365E-03 3.1666E-03 
9.00 1.5695E-05 3.9414E-04 6.2017E-04 1.2354E-03 2.0804E-03 2.4730E-03 

TABLE 5.7. (2.7) Relative errors for h = 1/16, r = 1/64 

- p 0.4 0.8 0.9 
t 0=0.0 0 r/3.0 0=0.0 0 = r/3.0 0=0.0 0 = r/3.0 

1.00 8.3564E-03 2.2616E-03 4.3554E-03 8.0790E-03 1.6939E-02 5.1543E-03 
4.00 1.4543E-03 5.4921E-04 2.2609E-03 2.9718E-03 6.3862E-03 3.0470E-03 
9.00 9.0003E-04 9.8474E-04 1.4544E-03 1.7754E-03 5.2465E-03 3.4341E-03 

TABLE 5.8. (2.8) Relative errors for h = 1/16, r = 1/64 

p 0.4 T 0.8 0.9 
t 0 =?0.0 0 =r/3.0 T 0=0.0 0 =r/3.0 0=0.0 0 = ir/3.0 

1.00 8.2792E-03 2.1636E-03 4.3083E-03 8.1672E-03 1.6897E-02 5.2410E-03 
4.00 1.2414E-03 3.2656E-04 2.4639E-03 3.1935E-03 6.1878E-03 2.8280E-03 
9.00 1.3839E-03 1.4778E-03 1.9264E-03 2.2671E-03 4.7834E-03 2.9486E-03 

p = 0.4,0.8,0.9. The numbers (2.6), (2.7) or (2.8) in these tables mean that the 
corresponding integral equation is solved. 

The results in Tables 5.6, 5.7, and 5.8 indicate that the convergence is uniform 
in Q x (0,T]. In fact, let q be the approximate solution of (3.1) and iu(t,x) be 
defined by replacing X with X in (5.1) or (5.2), we then have 

Ju(t,x) - ii(t,x) < C sup q0(t,x) - q(t,x), Vt>0, xC Q. 
O<t<T 

xCF 

Moreover, in all of three examples we have the same convergence rates. We also 
observe that the computing times of three examples are almost equal, although the 
number of time steps for (2.6) is 3 times the number of time steps for (2.7) and 
(2.8). Recall that to(t2) is always suitably smooth, but p(t) and (t2) might be 
only continuous. Therefore, in the practical realization, we suggest first finding 
to(t2) from (2.7) and then recovering u(t, x) by using (5.2). 
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