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ON THE ROBUSTNESS OF THE BPX-PRECONDITIONER 
WITH RESPECT TO JUMPS IN THE COEFFICIENTS 

PETER OSWALD 

ABSTRACT. We determine the worst case behavior of the standard BPX-pre- 
conditioner for elliptic problems with arbitrary coefficient jumps along the 
boundaries of the coarsest partition. The counterexamples are also useful for 
other problems. 

1. INTRODUCTION 

Let Q be a (bounded, open, connected) polyhedral domain in Rd equipped with 
an initial partition To = {Qk}IL 1 into L > 2 simplices. We restrict our attention 
to the cases d = 2,3 of practical interest (although the statements below may 
be generalized to d > 3 in a natural way). For convenience we also assume that 
To is quasi-uniform, with simplices of diameter 1. Let {7j}J= be obtained by 
regular uniform dyadic refinement from To. In particular, this means that analogous 
uniform refinement structures are inherited from {f7} to all edges (and faces) of 
the Qk E To, which is assumed without further mentioning. 

Introduce the bilinear form 
L 

a.(U,v) = wk(VU,VV)L2(Qk) u,v E Ho 

k=1 

with positive weights w = {wi,... , wL}. As usual, we introduce the H1 norm and 
seminorm with respect to any subdomain Qk by 

IUI I = ( uL2(Qk) + IU 1,Qk) I,U11Qk 11VUL2(Qk) 

Thus, 

L 

(1) aw(u,U)=EWk u1Qk- u1. 
k=1 

We also need the weighted L2 scalar product 

L 

(2) (u V)O,w = ZWk(U,V)L2(Qk), 
k=1 
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634 PETER OSWALD 

and the weighted L2 and H1 norms 

lU 0,ow = (u,u))/2> IUlll1w = (llUl12,w + 1U12,W)1/ 

corresponding to w. 
We consider the finite element approximatipn of the variational problem associ- 

ated with aw(, ) on Ho'(Q). Throughout the paper, we denote by SO?(T) the set of 
linear finite element functions with respect to a partition T. Thus, 

Vj = SO (Tj) n Ho' (Q) , j 0 . .. , J , 

will be the discretization spaces of interest. The standard nodal basis functions in 
SO(Tj) are denoted by qj,i; the subset of those qj,i vanishing at aQ forms the basis 
in Vj. The problem of determining u E Vj such that 

aL(U,V) = (f,V)H-1xH1 Vv E VJ 

leads to a large sparse system of equations. In the case w, = *.. = WL, one of 
the most popular (and efficient) methods for solving this system iteratively is the 
preconditioned conjugate gradient method with the multilevel BPX-preconditioner 
proposed by Bramble, Pasciak, and Xu [3]. In the weighted case (arbitrary w), 
Dryja, Sarkis, and Widlund [5, 6] have established the optimality of this precondi- 
tioner under special assumptions on w. It is folklore that this method is not robust 
with respect to general w. See [4, 11] for the closely related problem of robustness 
of weighted L2 approximation. However, no definitive results seem to be available 
so far. It is the aim of this note to answer this question. 

As is well-known [12, 14, 7, 9], the above-mentioned BPX-preconditioner is math- 
ematically determined by the additive Schwarz operator 

(3) Fw,JU = PW,,OU + a, , a(0j', ,'i 90j,f 

where Pw,ou E VO solves the problem 

aL (PL,ou, vo) = aL (u, vo) V VO E VO- 

If not indicated otherwise, Ei means summation with respect to all basis functions 
in Vi. The associated subspace splitting (see [7] for the terminology and for a survey 
of basic results on additive Schwarz operators) is 

J 

(4) {VJ; aw} = {VO; aw} + E E{Vj,i; aw}, 

j=1 i 

with the one-dimensional subspaces Vj,i spanned by the individual basis functions 
qj,i. The operator PW,J: Vj -* Vj is symmetric positive definite with respect to 
a,(., .), and the preconditioning power of the BPX-preconditioner is described by 
the numbers 

(5) K (PW j) = -max Amax ax (u,u Amin = i (u2u) 
Amin =07AUEVJ IIJUI12 07AUEVJ IIJU I12 

see [7, Theorem 16]. The triple bar norm is given by 
J 

(6) U 112 inf aw (uo, uO) + ? E aw (uj,i, uj,i)v 
uoEVo,uj,iEVj,i: u=uo+ZJ-1 Ei Uj,i j=1 i 
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a) b) 

FIGURE 1. Exceptional TO: d = 2 

We state the main results of this note separately for d = 2 and d = 3. For 
d = 2, we call a triangulation To exceptional if it is equivalent to one of the two 
triangulations shown in Figure 1. 

Theorem 1. Let d = 2. If To is not exceptional then 

(7) Kj_ SUp s(PW,J) -J2, J -* oo. 
w 

For the two exceptional To, the sharper estimate Kj = 0(1), J -* oo, holds true. 
The constants are independent of J but may depend on To. 

In (7) and throughout the paper, stands for a two-sided inequality between the 
expressions, with positive constants that do not depend on the parameters involved. 
Roughly speaking, Theorem 1 states that for the jumping coefficient case the BPX- 
preconditioner has the same worst case behavior as the hierarchical basis method 
of Yserentant [13]. The upper estimate in (7) follows from [4, Theorem 4.5] and for 
the exceptional cases from [5, Theorem 3] (more precisely, by its two-dimensional 
analog, see [6, section 5]). The counterexamples which show the lower bound in 
(7) for the non-exceptional case seem to be new; however, analogous examples have 
been used in [13, 8]. In particular, they show that the result of [10, Theorem 4.2] 
is incorrect for To with interior points. 

The case d = 3 is a bit more complicated. We consider three types of initial 
partitions. We say that To is of point type if there exists at least one tetrahedron 
Qko such that aQk0 n aQ contains no edges and at least one (boundary) vertex. To 
is exceptional if it is equivalent to one of the three initial partitions shown in Figure 
2. All other To are said to be of edge type. It turns out that in an initial partition 
of edge type all Qk should touch the boundary aQ at least along an edge which 
justifies the name. We derive this and further geometric properties of To in section 
2. 

Theorem 2. Let d = 3. For Kj as defined in (7) we have 

2J if To is of point type, 
(8) Kj 2 if To is of edge type, J - oo . 

I 1 if To is exceptional, 

The constants are independent of J but may depend on To. 
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FIGURE 2. Exceptional To: d = 3 - - - 

The upper estimates are essentially known, at least for exceptional To and for To 
of point type, where they follow from [5, 6] and [4], respectively. The counterexam- 
ples for the latter case are similar to those used in [11]. The result on the asymptotic 
behaviour of $j for To of edge type is partly new. Here, the counterexamples are 
inherited from the two-dimensional case. 

The statements of Theorems 1 and 2 have extensions to the case when the 
subdomains Qk are unions of several simplices of To as considered in [4], to other 
element types, other boundary conditions, and fourth order elliptic problems. An 
extension to dimensions d > 4 is also possible. Since these extensions only add 
technical difficulties but do not exhibit principally new phenomena, we omit them 
here. 

Analogous results hold for the worst case behavior of the multiplicative multilevel 
Schwarz iteration associated with the splitting (4) (see [2, 11] for a description of this 
algorithm which corresponds to a simple V-cycle multigrid method). This follows 
from the two-sided estimates for the norms of the iteration operators governing 
the multiplicative method (compare, e.g., [15, Theorem 5.1]) and the fact that the 
deterioration of s(PW,j) is due to the deterioration of Amin while Amax 1 (and the 
corresponding Cauchy-Schwarz inequalities) hold uniformly for all w > 0. Details 
will not be discussed in this note. The estimations of Amin and Amax can be found 
in the next section. 

The asymptotically exact worst case estimate of Theorems 1 and 2 is comple- 
mented by the trivial estimate 

CMaXk k2 
N(PWX J) <C i 2v mink W 

which comes from switching to the case of constant weights (see [7, Theorem 19] for 
the uniform condition number estimate if w, = . . . = WL), and by the results of [5, 6] 
on so-called quasimonotone weights w. The counterexamples are of interest also in 
connection with [4, 11] (see the end of section 3) and with other inequalities for 
(weighted) discrete norms of finite element functions and their traces. For example, 
they may be used to show the asymptotic sharpness of the convergence results for 
various domain decomposition methods based on substructuring. 
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2. UPPER ESTIMATES 

We start by introducing some notation. Let Qj,i denote the (open) support of 
pj,i, and set 

wj,i =max {wk : Qkn Qj,i , A}.- 

Obviously, by the properties of the nodal bases {qj,i} 

J 

U inf (aw(Uo, 0) + E Ewj,i22i L2) 
uoEVo,uj,iEVj,i: u=uo+LL Ei Uj,i j=1 i 

J L 

9+ inf (a(uouo)? Ek E 22 | j ,f 2 L2(Qk)) (9) ~ ~ =U+j iuj,i j=1 k=1 i: Qj,inQk$=0 

(10) inf (aw(uo uo) + Z22J U ,W 
uj EVj: u=4=0u3 j O , 

These equivalent representations (up to constants) of the triple bar norm I I I are 
very convenient. The discrete version (9) will be explored in connection with the 
counterexamples of section 3. As a choice for the uj which realizes the infimum (up 
to constants) in (10), one should think of ue = Qj,wu-Qj1w,u, with Q-, denoting 
the L2,W orthogonal projection operators into Vj. This makes the connection with 
[4, 11] more transparent. Below, the terms in the sum (10) will be further split 
with respect to interior vertices, edges, and faces, so that the weights are constant 
in each group. This leads to the study of a variety of "local", unweighted triple bar 
norms with restrictions on the set of admissible uj,i (a closer look at the restrictions 
to be expected shows that all this is closely related to the study of norms for finite 
element functions with trace restrictions). The following lemma contains the basic 
theoretical result on the BPX-preconditioner in the non-weighted case (see, e.g., [7, 
Theorem 15]). 

Lemma 1. For arbitrary d > 1, let Q, {7E}, {Vj} be as defined above. Then, for 
any u E Vj, 

IIUI12 I o 1112 1112 ||U1112 1112 1112 
HI(Q) '- 0 ~ ' ba U 

where u I JU 1 12 and I I luI l 12 are defined as in (6) and (10), respectively, but with uni- 
form weight w = {1, 1,... , 1}, and 

(12 1 IU 1 
2 inf Z22j I j 

2 (12) Ujj *- i LJ E 2(Q) uj EVj : u=LL1 i = 

J-1 

(13) 1 1 U 1 12 IIUI12 + E 2 ? Ej (U) 2 

j=1 

J 

(14) Ul2 IIQOU12() ? E 22jlQjU -Qj_I12 
j=1 

Here, 

Ej (U) L2v(Q) =inEf I - Vj |IL2(Q) g 
I J 



638 PETER OSWALD 

denotes the best L2 approximation of u, and Qj the L2 (Q) orthoprojection onto 
Vj. The constants in the norm equivalences (11) depend only on the shape of the 
simplices in To but not on u and J. The result also holds if Vj = SO (Tj) n Ho'(Q) 
is replaced by Vj = SO (Tj). 

The equivalence of the triple bar norm (12) with (13) and (14) holds under fairly 
general conditions (a general Hilbert space norm instead of the L2 norm and any 
increasing sequence of subspaces Vj) as long as the weighting factors continue to 
grow at a geometric rate. This will occasionally be used below. Note that the 
summation in (12) and (13) could also include j = 0, without changing the norm 
equivalence. Since Vo contains constant functions, estimates for the H1 seminorm 
can also be deduced for the choice Vj = SO (Tj). 

For general w and arbitrary u E VJ, by locally applying Lemma 1 with the triple 
bar norm (12) to (u - uo) Ik E VJ,Qk- Vj k on the simplices Qk we obtain 

a,(u,u) < C inf (aW(uo,uo) + Zwku - uo 1Qk) UoEVo k 

< C inf {a,(uo,u o) 
UoEVo 

L J 
+ E LOk inf E2 2 j | 11j,k| 2(Q)} ?ZWk 

inf-U 3=IUj,Qk 
L2(Qk)} 

k=1 Uj,k EVj,Qk U lUOIQk =Z41 Ui3Qk j=J 

J 
< C inf (aw(Uo, uo) + E 22i IIUj 112 w) 

ujEVj :u=uo+_4 U1j j 
= Cju ~~~?C u = 
=Cl I UI I 1,wv < Cl I IUI112 

compare (10). From these inequalities we have 

Amax < C v 

independently of the weights w and J (see (5) for the definition of Amax) Since 

|I 0j, I 12 < awq(0j,i, I j,i) 

for any basis function of level j > 1 by definition of the triple bar norm, we arrive 
at 

Lemma 2. For Amax as defined in (5) we have 

(15) Amax 1 I 

with constants depending on To and d but independent of w and J. 

The remainder of this section consists of proving robust lower estimates for Amin 

which together with Lemma 2 lead to the upper estimates for $j in Theorem 1. In 
most cases, these bounds follow from the following estimates for L2,W orthoprojec- 
tions which have essentially been obtained in [4]. 

Theorem 3. Let d = 2,3, and denote by Qj,, : VJ -) Vj the orthogonal projection 
with respect to the L2,W scalar product (2). Then 

(16) 

aQjuQ2 fJ-) + 22j II?1,Qj d1 -2, < Ca,(u, u) 
J - j 

_ 
I Q~~u) ? 22j u - 

L2,w (Q) ? u. 2 (Jj), d =3. 
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with constants independent of j = O, ... , J - 1, U e VJ, J, and w. If d = 3, and T0 
is of edge type, then (16) can be replaced by the improved estimate 

(17) aw (Qj, u, Qj, u) + 22j I - Qju1 L2(Q) < CJaw (it, t). 

Except for (17), Theorem 3 is contained irl [4, Theorem 4.5]. As observed in [4, 
Remark 3.1], the estimate for aw(Qj,wu, Qj,wu) follows from the L2,W error bound 
for Qj,w. The proof of (17) will be given at the end of this section. 

Together with (10), Theorem 3 immediately gives 

J 

a||U1 2< C(ao(Qo,gu, Qou) + 22jllQjw-_Qj_,wU1L2,(Q)) 
j= 

J 

? C(aw(Qo,wu, Qo,wu) + 2 2j a - Qj,wUL2(Q)) 

j=O 

? Caw(u,u) J < Caw(,u,u){ 
E J 0 2( -)) 2j, 

where the first case applies to d = 2 and to T0 of edge type if d 3, and the 
second to general T0 if d = 3. For the exceptional domains of Figures 1 and 2, one 
observes that any weight w is quasimonotone in the terminology of [5, 6], which 
gives a better 0(1) bound by applying [5, Theorem 3]. We arrive at 

Lemma 3. For Amin as defined in (5) we have 

(18) (Am1ill) -1 < C P J 

where the first case applies to the five exceptional To, the second to all remaining 
initial partitions for d = 2 and to all To of edge type for d = 3, and the third to To of 
point type for d = 3. The constants in (18) depend on T0 and d but are independent 
of w and J. 

The results of Lemma 2 and 3 imply the upper estimates for $j in Theorems 1 
and 2 in all cases. It remains to provide a proof of (17). To this end, we need some 
geometric properties of initial partitions To which will be useful also in connection 
with the construction of counterexamples in section 3. Let Fk = a0k n aQ and 
notice that Fk either is empty or decomposes into closed connected components 
which represent single vertices (point components) or unions of > 1 edges (edge 
components) or unions of > 1 faces (face components) or, finally, unions of edges 
and faces (mixed components). The latter two types appear only if d = 3. 

Lemma 4. a) Let d = 2. Then any T0 satisfies at least one of the following 
properties: 

(ae) To is exceptional. 
(A3) There is at least one triangle Qk for which Fk contains a point component 

{P}. 
(-y) T0 consists of at least 4 triangles Qk that all share a single interior vertex P 

of T0 while the opposite edge is on &Q. 
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FIGURE 3. Illustrations for the case that (3) is violated 

b) Let d = 3, and let To be of edge type. Then each rk contains at least one 
edge. Moreover, at least one of the following properties holds: 

(6) There is a tetrahedron Qk with two interior faces that meet at a boundary 
edge. 

(e) There is at least one interior edge with 4 or more tetrahedra Qk attached to 
it. 

Proof. Let d = 2, and assume that (p) is not satisfied. This means that for all 
boundary triangles Ik consists of one edge or the union of two edges; see Figure 
3 a). Now observe that, when starting at any boundary triangle and moving to 
its neighbors, we arrive after finitely many steps at one of the situations shown in 
Figure 3 b) (a "chain" of triangles with no interior vertex which is of exceptional 
type, Figure 1 a), or satisfies (p), i.e. contradicts our assumption) or in Figure 3 
c) (a triangulation with one interior vertex which is exceptional, Figure 1 b), or 
satisfies (-y)). This proves the statement. 

Now let d = 3. Assume that To is not of point type. Thus, any boundary 
tetrahedron (Fk #& 0) contains at least one boundary edge. But this immediately 
implies that there are no interior tetrahedra Ik = 0 in To. Thus, all Qk are boundary 
tetrahedra, and Ik contains at least one edge. 

Suppose that (6) does not hold. A moment's reflection shows that then for any 
Qk the set Ik is the union of one or more faces. Assume next that To possesses 
at least one interior vertex, which we denote by P. In this case To represents the 
three-dimensional analog of the triangulation of Figure 3 c), since for any Qk with 
P as a vertex, the boundary set Fk must be the face opposite to P. Thus, To 
is either exceptional, Figure 2 c), or satisfies (e) (to see the latter, consider the 
triangulated boundary of Q and observe that (e) is equivalent to finding one vertex 
of this boundary triangulation with at least 4 triangles attached). 

On the other hand, if there is no interior vertex then Ik is the union of at least 
2 faces for all k. The case of 4 faces in some Fk, i.e., rk = 'Qk, contradicts the 
connectedness of Q or L > 2. If some Ik contains 3 faces then the only reasonable 
partition (satisfying all other requested properties) is the exceptional one of Figure 
2 a). Thus, we can assume that Ik is the union of exactly 2 faces for all k. Once 
again, starting with any of the Qk and going from neighbour to neighbour through 
interior faces, we see that in this case To is characterized by having exactly one 
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interior edge, with the Qk "winding" around it. Again, this results in an exceptional 
partition (L = 3, Figure 2 b)) or a partition satisfying (c). D 

We come to the proof of (17). The following notation is used: Qj,Q}k QiJ I Qj,e 

denote the (unweighted) L2 (Qk), L2(f), L2(e) orthoprojections from VJ,Qk, VJf 

S?( (TJ) (VJe=-S(TJ) into VJ,Qk, V Vi,e corresponding to the tetrahedra Qk 
of To, their faces f, and edges e , respectively. For arbitrary u C Vj, let u?j Vj be 
defined at the nodal points P of T by 

Qj,Qk U(P), P E int(Qk), 

uj(P) _ Qj,fu(P), P E int(f), 
Qj,e U(P), P E int(e), 
O, otherwise. 

It is straightforward (see [4] for quite analogous considerations) that 

||?l-?lU||L2(Qk) 2(?- Qj,Qk L2(Qk) + IlQj,QkU - (Q)) 

< C(| | 1-Q)Q,CU11II 
2 (QC)+ 2-i _ 

Ujfi 1-1; 2 L) 
f C19Qk 

K C( u - Q, ?Q L2 (QU) f 

+2-i E jx 1Qj,f U 1 | 2 (f+ | |Qj,f U _ 
Uj 1 1 2 ( 

fCAQIc ~ C&~ 

?2~ 5 (E QII Q -Q,,f UU L2(f) ? Q U - U L2 (f))) 

f C19Qkce0 CQcP0 

? C(QIUU-QQjQQukQ u L2(Qk) + Qjk L2(f) 

f C19Qk 

+2 i5Qj,e(U - Qj,f U)IL2(e) ? 2 5 5 Qi e u(P)) 
fCQsk eECf eC&Qk PC9e 

C(IU2k Qj,Qku 2L Qj,Qk2(k L2(f) 

+2 2j S S U _ Qj,f U112(e ? 2 2j 5: lQj,eUI12() 
f C09k eE&f eC&9Qk 

The first three terms (associated with the projections Qj,Qk and Qj,f) can be 
estimated by C2-2jl u2 and CJ2-2jI U1 in a standard way, using the results 
in [4] or Lemma 1. We leave the details to the reader. Only for estimating the 
terms IlQjQe,U12(6) e E &Qk, we need that T0 is of edge type. By Lemma 4, there is 
another edge e' of Qk such that u _ 0 on e' (if e = e', the above integral vanishes). 
Let 

VI = QI,Q}kU VO = QUQ7k (measQk) j dx 
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and ul = (vi-v-1) - , il = (Vi - vi-1)e. With this notation, 
J 

IIlQjeUIIL2( < IIl2ll2e < C(-2Q+J,11|| ) Q L,6 (e ? 2 L(e) ?(?k ? UI e) 
1=1 

J J 

< C(l -ZfIiL2(eI') JZ L2(e)) 
1=1 1=1 

J J 

K CJ(>3 IIL2(e') + E IIUXIIL2(e)) 
1=1 1=1 

J 

K CJ> 221 V -Vl- 11L2(_ ) < CJ2 < 
CIU1 

1=1 

compare the equivalence with (14) in Lemma 1 for the last estimation step. Taking 
all estimates together, we arrive at (17), which also completes the proof of Theorem 
3 and Lemma 3. 

3. COUNTEREXAMPLES 

The proof of the sharpness of the bound (18) for Amin requires the following 
technical result (see [7, p.89/90] or [9, p.11]) for partial results). Since there might 
be other applications, we formulate it for general d > 1 although it essentially 
reduces to a one-dimensional result. Let us fix any simplex Q* from To and its 
vertex P (for the following to be formally correct, it should be assumed that all 
(open) faces of Q* attached to P are in the interior of Q). The basis function 
0j,i E S?(T) satisfying qj,j(P) = 1 will be denoted by 9j,p, j = 0,... , J. For later 
convenience we set 

Ip,Q* = (j, i) : /jpi E Vj, Qj,i n Q* 7# 0, qj,i (P) = O 

and Vj* = span{0j,i: (j,i) E Ip,Q*}, j = 0,... ,J. For ease in understanding 
the technicalities below, the reader may restrict his attention to the case where To 
consists of one simplex Q, = Q = Q* and Vj = S0(Tj). In that case Ip,Q* contains 
all index pairs but those corresponding to the 9j,p, and Vj* = {uj E Vj uj(P) = 

o}. 

Lemma 5. Let d > 1. For any 
J 

Up = Zcjq5,p 

j=o 

we have 
J 

(19) J~~~~u 12,Q IIUPI12 Q (dj-2i(). (19) Up jjpj 5 2i(2 

j=o 

If in addition up(P) = 0, then 

(20) 
J 

Up | PI= I uf ,iI 5 2 2j iI U ( 
2 E a 5 22i (d) 
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a 5 
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C~~~~~~~~~~~~~~~ 

1~~~~~~~= 
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a) b) 

FIGURE 4. Illustration for a) iip, and b) up and up - vspiP 

where 
j-1 

1=0 

Proof. Without loss of generality, let Q* be the simplex with vertices 

P = (O,O,... lo), Pi=(II,O,... I,O), P2 = (1,1IO, ... I,O), ... I,Pd = (1,1,... ,1) . 

Obviously, UP( t tX, X2, no tXd) = i Jp(xi), where pi is a univariate linear spline 
function with respect to the partition 0 < 2 d-J1) < ... < a 1 determined 
by the values 

J 
iip(O) = aj?i = Sci, iiip(2ij) = aj, j = 1,.. J, iip(l) = ao = 0 . 

1=0 

Figure 4 a) illustrates the notation for J = 4. Since uplQ* is constant along 
hyperplanes xi const and vanishes at the (d - 1)-dimensional face x. = 1, we 
have 

J 
Up 2 11 - aj)22i(d-2) Up 2 2 Z(aji? 

j=0 

Now, denote 

bj= 2-1(aj?l - aj) =21lcj ? 2 2Cp_l ?... ? 2-J-lc1o I b-, = 0, 

and observe that 2bj - bj c, j = o,.. I J. These formulae give 
J ~~~~J 

j=0 = 
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for all d > 1, which leads to (19). 
To establish (20), we first remark that 

J-1 
(21) IIU112Q -IU12j j U 2 

(21) EjL2(Q)?Z2( L2(Q*) Vu E VJ 
j=l 

where 

Ej (u)L2(Q*) = inf * UI- Vj` IL2(Q*) 
v rCV? 

i '3 

are the best approximations of u in the L2(Q*) norm with respect to Vj*. The proof 
of (21) is the same as for the corresponding norm equivalence of Lemma 1; cf. [7, 
Theorem 6] and the remarks after Lemma 1. 

We use (21) for u = up E VJ* and the fact that aj+1 = up(P) = 0. Let v*p E VJ* 
denote the unique function which coincides with up for x1 > 2-i. We have the 
following trivial estimates: 

J 

Up11 ( Z -dI 2 
II1PIL2(Q*) 

2 2-lal2 
1=1 

and 

Ej (tU)L2K(Q* 
v L2(Q*) = - P L2(Q*) 

J 

< 2(11up 12 + Iv;pj*'II (-~) C dIa 2 
< 2(1XPIL2 (Q*) + I)L2 (Q*)) < C E 2 al 

1=j 

where Q*= {x E Q*: x1 < 2-i}. This leads to the upper estimate 

J-1 J J I J 
U ? C,22JZ2-d a2 < CZ2-d aZ22i < CZ2(d2 )ia 

j=o 1=j 1=1 j=1 j=1 

On the other hand, we have 

Ej* (Up )2L = E (up - VjP)2(2 ) > c2 -di(aj+l - aj/2)2 , j = 1,.. ., J -1 

where we have used the fact that up -v* p is constant along hyperplanes x1 = const, 
is piecewise linear with respect to xi, vanishes for x1 > 2-i and x1 = 0, and takes 
the value aj+1 - aj/2 at x1 = 2-i-1. See Figure 4 b) for an illustration in the case 
j=1,J=4. Thus, 

J J-1 J 

UPI 112 > c(E2-dla2 + Z2-(d-2)j(aj+l -aj/2)2) > C2 (d2)ib 2 

1=0 j=1 j=1 

where this time b1 = a1 and bj = aj - ajp/2, j = 2,..., J. Since the matrix 
transforming the vector a with components aj = 2-i(d/2-1)aj into the vector: 
with components 

p = 2-j(d/2-1)bj = T 2-d/2a , 
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is strictly diagonally dominant, with the identity matrix as diagonal part, we get 

J 

Up 1 > cZ>C > cZa2 > cE2-(d-2)ja2 
j=1 

which together with the already established ulpper estimate gives (20). El 

Lemma 5 will be used to construct functions u with large II u 112 compared to 
a. (u, u). Let us first consider d = 2. According to Lemma 4 it follows that for a 
non-exceptional T0 at least one of the conditions (p) or (Qy) is satisfied. If (Qy) holds 
then there are two triangles /\ = Q1 and / = Q2 from To with Q1 n Q2 = {P}, 

where P is an interior vertex. Figure 3 c) shows such a situation. 
We set w1 = W2= 1, and Wk = c for k > 3, where c is chosen sufficiently small 

to essentially eliminate the influence of all other triangles. Set 

[J/2] 2[J/2] 

u =O?, UlA = (E oj,P - E 9j,P)IA; 
j=1 j=[J/2]+1 

outside U /A' any extension to a function in Vj will do. By Lemma 5, (19), for 
sufficiently small c we have 

(22) a. ,(u, 2) 1lUl1, 

j=1 

On the other hand, by the property (9) of the triple bar norm . * and the 
definition of I - III p,Q* from (20), we have 

U1112 > c inf (a- (uo,uo) + IIU ? 112Q + J ?112P + II Iip)2 ) 
U=Uo+Up+UPII 

where u0 E Vo, 

J J 

up = 
E xjj,p, E = -uO (P) _ xo, 
j=1 j=1 

and 

ii = E E ~~~Uj, i 
j=1 i: 0j (p)=0 

To see this inequality, collect the terms in (9) into groups corresponding to whether 
1) (j, i) is associated with a cj,p (the sum of these uj,j gives up), 2) (j, i) E Ip,A, 
3) (j, i) E Ip,A,, or 4) (j, i) is one of the remaining indices. After this, apply (19) 
to the sum of terms in group 1) and neglect all terms from group 4). This gives 
the above estimate from below (the terms corresponding to groups 2) and 3) give 
exactly the triple bar norms for ii associated with (P, /\) and (P, A'), respectively). 

The important observation is that ii = u - up - uo when restricted to either /\ 
or /\' is essentially (up to a Vo-perturbation) of the form EJ>o cj0j,p which allows 
us to apply (20). Let us consider /\ first. If Q, R denote the other two vertices of 
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/\, and if u0 takes the values xO,y,z at P,Q,R, respectively, then 

[J/2] 2[J/2] 

= E (1 - xj)qj,p - E (1 + Xj)qj,p - XOOO,P -YOO,Q- Z0,R 

j=1 j=[J/2]+1 

~~~~~U 
,A _Up, A 

By (21) we have 
J-1 

11i12A- 11ftI12 ) +E 2 2jEj*(UP,A)L2( 
- 2 

2 ?A + 2 A 

j=1 

Since ii coincides with the linear function uo on the set /\\supp 91,P, we also have 
2 2 2 Z 12-2 < Ciq2 

and 

|p,A 11 
2 

< 2( 11||I2 + IIYO,Q + ZOO,R 112 < CII2?II?2 
Up, L2 (A) - L2 (A) Yv, ~ORL2 (A)) ? L2 (A 

Altogether, again using (21) this gives 

I I Iij I 2p/ (X2 + y2 + Z2) + I I 1lp,/ I1 12p/- 

For /', the same consideration leads to 

I-IIl 2 (X2+ -2 + Z 2) + 11 Up'A, 1 2 

where 
J 

uP' = - ZXj0j,p . 
j=o 

After all, looking at the discrete representations (20) for d = 2, one immediately 
obtains the following lower bound for any choice of xj satisfying EJ>o xj = 0 (and, 
therefore, for any choice of u0 and up): 

J J 

Il 12'A + I I aj12 A, > CE(d2'A +? i2'A) > cZE(&j,A - 2a ) 
j=1 j=1 

[J/2] 2[J/2] 

?- Z95 E j,p - E cj/J,pj2' = CIIU1112pA > Cjl 
j=l j=[J/2]+1 

Here, Qj,A resp. dj,A stand for the values aj corresponding to the restrictions of ii 
to /\ resp. to /', and it is stressed that djQ- j,A/ are exactly the aj corresponding 
to uIA. The computation of the latter is simple, and gives the lower bound of order 
J3. Note that a similar function u* = EJ 1 qj,p has been used in [13, 8] to prove 
the asymptotic exactness of the condition number estimates for the hierarchical 
basis method of Yserentant. Thus, after all, we have shown that for some function 
u E VJ and a specific set of weights 

(23) u 2 > cJ2au(U'U) , Amin < CJ2 

The same argumentation works for the case (p); see Figure 3 b). Let /\ = Q, 
be the triangle with boundary vertex P (and such that the edges of /\ emanating 
from P are in the interior of Q). Then w1 = 1 and Wk = c, k > 2; ulA is the same 
as above and will be suitably extended to some u E VJ. Once again, (22) holds for 
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c small enough, and since there are no up and u0 components associated with a 
boundary vertex (i.e., xj = 0 for all j), we have 

IIIUIII2 > CIIIU1112 , > CJ3 

as before. 
The case d > 3 is similar to the case d = 2. However, if To is of point type, the 

counterexamples are much simpler (see also [11]). Indeed, if Q, is a tetrahedron 
with vertices P, P1, P2, P3 and such that {P} c IF c {P, Pi, P2, P3}, then we set 

W, = 1, Wk = 6, k > 2, Ul1 =l -9j,p -9j,p1-9J,p2-9j,p3, 

plus suitable extension to a function u E VJ which is sufficient to show the result 
of Theorem 1. For c sufficiently small, the function satisfies 

a(U,u)- 2-J 

which can be verified by direct calculation. On the other hand, as above we obtain 

I I U112 > Cl9oI1p _- J,P ,112iQ > C. 

Again, (20) is the essential ingredient for carrying out the computations. This gives 
the necessary examples in Theorem 1 for To of point type: 

(24) U | | 112 > c2 a,(u,u) A >min < C2 

It remains to consider To of edge type. According to Lemma 4 (6), (c), the 
situation is very much the same as in the case d = 2. For example, if (6) is satisfied 
for Q, with boundary edge e, then the crucial counterexample is obtained as follows. 
Let P be the midpoint of e and define bj,p as the unique function in Vj vanishing 
at nodal points outside e and satisfying 

Oj,Ple = ?)1,Ple 

Now 

[J/2] 2[J/2] 

W1 = 1X Wk = e v k > 2 Ul1=Z E j,P - E )j,P 
j=1 j=[J/21+l 

etc. gives the counterexample. Roughly speaking, this is the same example as for 
d = 2 in the case (p) of Lemma 4 but "stretched" along e. The details are left to 
the reader. 

The above examples are extremal in many other problems. For example, the 
examples show the sharpness of the logarithmic factor in the estimates obtained by 
Bramble and Xu [4, Theorem 4.5] for d = 2; see (16) for the formulation of their 
result in the notation of our paper. Alternatively, for d = 2 (16) reads as follows: 

(25) Ej(U) 2 (Q) inf jIU _-Vj1 
2 < C2 2j(J - j)a(u, u) V U E Vj, 

where the constant C is independent of w, j = 0, 1.... , J - 1, and J. 

Theorem 4. Let d = 2,3. Suppose that the initial partition To is not exceptional. 
Then the L2,<, orthoprojections Qj,G, cannot be uniformly bounded, with a constant 
independent of w and J. More precisely, the robust, w-independent estimates (16) 
and (17) are asymptotically sharp with respect to J for d = 2 (estimate (16) or 
(25)) and d 3 (with To of point type (estimate (16)) or edge type (estimate (17)). 
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We leave this as an exercise. For d = 3 and partitions of point type, see [11]. 
To obtain the worst case estimate for d = 2 (and To of edge type if d = 3), use the 
same examples as above, and estimate the best approximations Ej(U)L2, (,(Q) from 
below (on /\ and z', as shown in the proof of Lemma 5) for j J/2. Note that the 
statement of Theorem 4 also shows the asymptotical sharpness of the logarithmic 
term in Theorem 4.7 of [4] if To is not exceptional. 

We conclude with another inequality which is of interest in the theory of nonover- 
lapping domain decomposition algorithms for two-dimensional problems but also 
demonstrates the fact that certain non-integer Sobolev norms are not additive with 
respect to the domain of definition. Let d = 1, and set Q _ I = [-1,1], II = [0,1], 
12 = [-1,0]. Let 7 be the uniform partition of I with stepsize 2-k, and let 
Vj(I) = SO (7) be the spaces of linear splines. 

Theorem 5. We have the estimate 

(26) IIU 1H1/2(I) < CJ(IIUIIH1/2(Il? + IIXIIH1/2(I2), u E VJ(I) 

where the factor J cannot be improved asymptotically. 

Proof. The upper estimate is well-known. We provide the counterexamples and 
sketch the proof of the lower bound. Let 9j,o denote the nodal basis functions in 
Vj (I) associated with the origin x = 0, and set 

f [J/2] 2[J/2] 

U 1 E 0ji'?- E 0i)?) X E I1, 

I S=1 j=[J/2]+1 
ol X E 12. 

Obviously, u E Vj(I) with u(0) = 0, |u|H1/2 (I2) = 0, and 

J 

(27) 
ujlGjl)'=J j 2 inf Z j Il L2(I) <CJ . 

The last estimation in (27) follows if one takes uj,i1 = Oj,o for 1 < j < [J/2], and 

Uj,ii = -0j,0 for [J/2] < j < 2[J/2]. The norm equivalence is contained in [7, 
Theorem 15]. 

On the other hand, the norm equivalence in (27) applied to the interval I implies 
the existence of a decomposition u = EJ u, uj E Vj (I), such that 

(28) U1 IH1/2(I) Z u1 j IL2(I) 

j=o 

Set xj = uj (0), ii0 = EJ0 xj95j,0, and introduce, in analogy with (20), the following 
triple bar norms: 

I U 
2 inf 11)j 2 k =12 U 

, Ik 
=l E |n 

L 
1jJk IL2(Ik) 

=1,2. 
Uj,Ik EVj (Ik) :Uj,Ik (O)=O, U=j?= UjI j=0 

A moment's reflection shows that the inequality from below in (28) implies 

H1/2(I) ? c( OJ ) 2Olil 
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by the triangle inequality (note that I I Ilo,I = I l 111o ll o,ij by symmetry). Now, 
the triple bar norm of functions of the form ul1 = EJ1 cjqj,o (EJ 1 cj = 0) can 
be expressed by a formula almost identical to (20) of Lemma 5, with (d - 2) in the 
exponent replaced by (d - 1). This corresponds to the change of the factors 22j in 
the decomposition norms for the H1 case to the factors 2i in the H1/2 case. Since 
for our u we get aj min(j, J - j), this leads to a lower bound of 

H1/2(I) ? C U ? 

and proves the assertion. D 

The example also shows that extension by zero does not lead to a bounded 
extension operator for H1/2 spaces. Indeed, the above function u is zero on [-1, 0] 
and can be considered as the extension by zero of ii = u [0,1] (since ii is in VJ(0, 1) 
and satisfies ii(0) = ii(1) = 0, it also belongs to 

H1/2(0, 1) n Ho'(0, 1) c ft1/2(0o 1) = {f = gj[0,1] 9 E H 1/2 (R), suppg C [0, 1]} 

which is another, smaller space of interest in applications to interface problems and 
boundary integral equations). Thus, the H1/2 norm of this particular extension 
operator is > cJ, even when restricted to Vj (0,1) n HO' (0, 1), which shows its 
unboundedness on all of H1/2(0, 1) and H1/2(0, 1). 
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