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NUMERICAL INTEGRATION 
OF CONSTRAINED HAMILTONIAN SYSTEMS 

USING DIRAC BRACKETS 

WERNER M. SEILER 

ABSTRACT. We study the numerical properties of the equations of motion of 
constrained systems derived with Dirac brackets. This formulation is com- 
pared with one based on the extended Hamiltonian. As concrete examples, a 
pendulum in Cartesian coordinates and a chain molecule are treated. 

1. INTRODUCTION 

The fundamental problem in the numerical integration of a constrained Hamil- 
tonian system (or more generally of any differential algebraic equation [5]) is the 
drift off the constraint manifold. Geometrically seen, all dynamics happen on this 
manifold. Only it has a physical meaning; the ambient space is an artifact of the 
modeling. The dynamics are not well-defined outside the constraint manifold and 
can be modified, as long as it remains unchanged on the manifold. 

Exact solutions are not affected by such modifications. But for numerical solu- 
tions any change can make a considerable difference. Due to the discretization error 
they typically leave the constraint manifold, and their stability depends decisively 
on the properties of the equations in the neighborhood of this manifold. 

For Hamiltonian systems Dirac [8], [9] proposed modifications of the dynamics, 
although for other reasons. He introduced the total and the extended Hamiltonian, 
respectively, differing from the canonical one by a linear combination of constraint 
functions. On the constraint manifold both coincide and generate the same dynam- 
ics. But the extended Hamiltonian yields more stable equations of motion [15]. 

We study in this article the Hamilton-Dirac equations of motion [8], [9]. This 
approach uses a modification of the symplectic structure of the phase space, namely 
the so-called Dirac bracket, rather than of the Hamiltonian. We will show that it is 
equivalent to a simplification of the equations of motion derived with the extended 
Hamiltonian already mentioned in [15]. 

The basic idea behind the Dirac bracket is the construction of an unconstrained 
Hamiltonian system (or underlying ordinary differential equation) which has the 
constraint functions as first integrals. For the special case of a regular system with 
imposed constraints the impetus-striction formalism [7], [18] achieves the same. In 
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contrast, most index reduction techniques for general differential algebraic equa- 
tions do not preserve the Hamiltonian structure of the system. 

In order to make this article as self-contained as possible we give in the next two 
sections a brief review of the Dirac theory and the Hamilton-Dirac equations. In 
Section 4 we consider the extended Hamiltonian and its relationship to the Dirac 
theory. After discussing the stability of the constraint manifold for three different 
approaches, we demonstrate the ideas developed so far on a simple toy model. 
Section 7 specializes the theory to regular systems with imposed constraints. The 
following two sections contain numerical results for two test problems. Finally, we 
give some conclusions. 

2. THE DIRAC THEORY 

Let q% be coordinates in an N-dimensional configuration space Q. We restrict our 
presentation to autonomous systems, as explicit time dependencies can always be 
treated by considering the time as additional coordinate in an extended configura- 
tion space. The dynamics of a mechanical system described by a Lagrangian1 L(q, q) 
are given by the Euler-Lagrange equations [11] 

(1) dt (dOL OL = ?) i = 1,... ,N. 
dit k04i} Qqi0 

If the Hessian 02L/O04%O4i is singular, some equations in (1) are not of second order 
and the system is constrained. 

Introduction of the canonically conjugate momenta 

(2) 
OL 

leads to the Hamiltonian formalism. For a constrained system (2) cannot be solved 
for all velocities q%. Instead one obtains by elimination some primary constraints 

(3) q$O,(q,p) = O, c = 1_ ._.. A < N. 

The canonical Hamriltonian of the system is given by 

(4) H, (q, p) = p'4 - L (q, q) . 

For an unconstrained system it is obvious that H, can be considered as a function 
of (q, p) only, since 4 can be eliminated using (2). Due to the special form of the 
right hand side of (4), this is also possible in a constrained system, but the result- 
ing H, is uniquely defined only on the constraint manifold. Thus the formalism 
remains unchanged, if we add an arbitrary linear combination2 of the constraint 
functions X [13]. This leads to the total Hamiltonian3 

(5) Ht (q, p) = Hc + u0 v 

where the multipliers u are a priori arbitrary functions of (q, p). 
The standard Hamiltonian formalism is based on the canonical Poisson bracket 

of two phase space functions F(q, p), G(q, p): 

(6) OFF GI OF OG OG OF 
{ G q } qp a9q a9p 

1For simplicity we mostly suppress indices; thus q, q, etc. should be read as vectors. 
2Here and in the sequel the coefficients of "linear combinations" are allowed to be arbitrary 

functions of the phase space variables (q, p). 
3We use the Einstein convention that summation over repeated indices is always understood. 
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This bracket is linear in its arguments, skew-symmetric ({F, G} =-{G, F}), and 
satisfies the Jacobi identity {F, {G, H}} +A {G, {H, F}} + I {H, {F, G}} = 0. It gives 
the phase space the structure of a symplectic manifold. Coordinate transformations 
(q, p) v-- (Q, P) that preserve this structure are called canonical. 

Using constrained variational calculus, one can show that the Euler-Lagrange 
equations (1) are equivalent to the following first order system [13]: 

(7) * +(XOHC OX _ OHC _ ZH 0 =O (7) A-~~ u I Oa, 
OP OP Oq OqI 

The differential part of (7) is not Hamiltonian. However, we can use the Hamilton- 
ian system 

(8) {q, Ht}, I {p, Ht}, I a = O, 

as the right hand sides of the differential equations in (7) and (8) differ only by 
linear combinations of the constraint functions. More generally, the time evolution 
of any phase space function F(q, p) can be written as 

(9) F = {F, Ht}. 

In a consistent theory the constraints ,> = 0 must be preserved by the evolution 
of the system. This leads to the conditions 

(10) ={q= z,Ht} 0. 

The signals a weak equality; it may hold only after taking the constraints into 
account. By a standard argument in differential geometry [13] this implies that the 
Poisson bracket in (10) must be a linear combination of the constraint functions. 
There are three possibilities: (i) it yields modulo the constraints an equation of the 
form 1 = 0; (ii) it becomes 0 = 0; (iii) we obtain a new equation 4'(q,p) = 0. 

(i) implies inconsistent equations of motion; they do not possess any solution. 
(ii) is the desired outcome. (iii) splits into two subcases. If / depends on some of the 
multipliers u, we consider it as an equation determining one of them.4 Otherwise we 
have a secondary constraint. We must then check whether all secondary constraints 
are preserved by repeating the procedure until either we encounter case (i) or all 
constraints lead to case (ii). This is the Dirac algorithm [8], [9]. 

The Dirac algorithm is sometimes surprisingly subtle [13]. We consider here only 
a trivial example with the Lagrangian L = -l)2 -V(q1,q2). The momenta are 

P1 = q and P2 = 0. Thus there is one primary constraint function 1 = P2. The 
total Hamiltonian is Ht = Ap + V(q1, q2) + UP2 with a multiplier u. (10) leads 
to the secondary constraint function 0$2 ={$, Ht} -Vq2. Applying (10) again 
yields {X$2, Ht} =-Vq1q2P1 - Vq2q2U = 0. If we assume that Vq2q2 does not vanish, 
the Dirac algorithm stops here, as this condition determines the multiplier u. 

From the point of view of differential equations, the Dirac theory is a special 
case of the general problem of completing a system of differential equations [28]. 
This problem is also closely related to the concept of an index of a differential 
algebraic equation. Essentially, the (differential) index corresponds to the number 
of iterations needed in the Dirac algorithm [27]. 

4Note that as these are weak equations they determine the multipliers only up to linear com- 
binations of the constraint functions. 
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3. HAMILTON-DIRAC EQUATIONS 

Let X, (a = 1,... , K) denote all constraint functions, primary ones and those 
obtained with the Dirac algorithm. They can be divided into two classes by studying 
the K x K matrix of their Poisson brackets 

As C is skew-symmetric, its rank M is even. Let us assume for simplicity that after 
a simple relabeling of the X, the top left M x M submatrix of C is regular (in 
general we must redefine the constraint functions by taking linear combinations to 
achieve this). Then we call the constraint functions X1, . . ., XM second class. 

The Poisson bracket of a first class constraint function 4 with any other con- 
straint function X (primary or higher) vanishes weakly: 

(12) Vx{: 4, X}I 0 

In our case the constraint functions XM+1, ...XK are first class (again we may 
have to redefine them by taking linear combinations). Obviously this classification 
can be performed only after all constraints have been found. 

First class constraints generate gauge symmetries [13]. One example is the fol- 
lowing system, which came up in a study of Chern-Simons quantum mechanics [10]: 

(13) L - (1 3 2)2q q (2+q3q1)2 

It describes a charged particle moving in a plane under the influence of a perpen- 
dicular constant magnetic field. There is one primary constraint function X1 =P3 
generating one secondary constraint function X2 = q2p - qp2. Both are first class 
and essentially generate the rotational symmetry of the system. 

First class constraints lead to arbitrary functions in the general solution of the 
equations of motion; these are under-determined [28]. In the example described by 
the Lagrangian (13), q3 remains arbitrary. In the sequel we will always assume that 
no first class constraints are present. This is no real restriction, as they appear very 
rarely in finite-dimensional systems. Furthermore they can always be transformed 
into second class constraints by a gauge fixing, i. e. by adding further constraints 
removing the under-determinacy. 

Second class constraints signal the presence of unphysical or redundant degrees 
of freedom; as mentioned above, their number M is always even. A trivial example 
is q = P1 = 0. If there are no first class constraints, the matrix C defined by (11) 
is regular (otherwise we take the submatrix of C corresponding to the second class 
constraint functions) and we can introduce the Dirac bracket [8] of two phase space 
functions F, G by 

(14) {F, G}* = {F, G} - {F, Xo} (C 1) {X:, G} 

In the case of our trivial example this means that in (6) we simply omit the differ- 
entiations with respect to ql ,P1. 

The Dirac bracket possesses exactly the same algebraic properties as the canoni- 
cal Poisson bracket (6): it is linear, skew-symmetric and satisfies the Jacobi identity. 
Hence it can be used instead of (6) to define a symplectic structure on the phase 
space. We will show now that, restricted to the constraint manifold, both brackets 
generate the same dynamics. 
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Consider for any function F(q, p) the dynamics defined by 

(15) F={F,Hc} 

We prove in two steps that for initial data on the constraint manifold these dynamics 
are equivalent to the original ones defined by (9). It suffices to show that the right 
hand sides of the respective equations of motion (9) and (15) are weakly equal, as 
for such initial data the trajectories never leave the constraint manifold. 

As our first step we show that the evolution (15) is weakly equal to the one 
generated by the total Hamiltonian Ht using Dirac brackets: 

{F, Ht}* ={F, Ht} - {F, Xo}(C l )a3{Xo, Ht} 

{F, Hc} - {F, x}(C 1) :{X:, Hc} 
(16) + ul ({F, X-} - {F, Xo}(C )3{XX, Xi}) 

={F, Hc}. 

Here in the second line we used the fact that all Poisson brackets involving the 
multipliers u are multiplied by constraint functions, and in the last line the defini- 
tion (11) of C. 

As second step we note that on the constraint manifold the Dirac and Poisson 
brackets generate the same dynamics with Ht: 

(17) {F, Ht}* = {F, Ht} - {F, Xa}(C-1)Y'3{X, Ht} {F, Ht}, 

as after completion of the Dirac algorithm {x:, Ht } is for all : a linear combination 
of constraint functions. We are thus lead to the Hamilton-Dirac equations 

1 ={q,Hc}* = OH - Xa (C- 1)'{$, HX }, 
(18) OHP Ox 

fP ={P Hc}* = _ c + aqa(C-1)013{X 31 Hc} 

For historical correctness one should remark that Dirac did not consider (18). He 
used the total Hamiltonian Ht instead of the canonical Hc. But we proved above 
that the corresponding equations of motion are weakly equal. Computationally the 
use of Hc is more efficient, as it leads to simpler equations. 

The Dirac bracket effectively eliminates the second class constraints, as they 
become distinguished or Casimir functions: the Dirac bracket of any phase space 
function F with a second class constraint function vanishes strongly, i. e. everywhere 
in phase space, as again by the definition (11) of C 

(19) {F, xy}* = {F, X} - {F, Xo}(C 1)'{X, X-} = 0. 

4. THE EXTENDED HAMILTONIAN 

The distinction into first and second class constraints is an intrinsic one, i. e. it 
has a geometric meaning. In contrast, the distinction into primary and secondary 
(or higher) constraints is to some extent artificial and depends on the precise form of 
the Lagrangian L. There might exist an equivalent Lagrangian, i. e. one describing 
the same system, yielding different primary constraints. 

F'urthermore, if one looks at the argument for introducing the total Hamiltonian, 
one sees that one could also apply it to secondary constraints. These considerations 
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lead to the extended Hamiltonian He, which is the canonical Hamiltonian H, plus 
a linear combination of all constraint functions and not just the primary ones. 

This approach was used by Leimkuhler and Reich [15] for the symplectic inte- 
gration of constrained Hamiltonian systems. By calling He extended Hamiltonian 
we slightly abuse Dirac's terminology. He added only the first class constraint 
functions, based on symmetry and not on stab'ility considerations. 

Assuming that all constraint functions X are second class, we make the ansatz 

(20) He = H, + v'X,,. 

Recall that the v should not be considered as new variables but as so far unknown 
functions of (q, p)! Demanding {Xc, He} 0 yields the condition 

(21) {Xo, He} = {Xo, Hc} + {Xo, IV}X3 + {Xz, X}V I ?0. 

If we discard the Poisson brackets with v, since they are multiplied by constraint 
functions, (21) becomes a system of linear equations with the particular solution 

(22) va =-(C-l)'a{xo IHc} 

with C given by (11). Further solutions of the weak equation (21) are obtained by 
adding an arbitrary linear combination of constraint functions to each of the va. 

This suggests the following equations of motion: 

(23) = {q, He}, = {p, He} 

We will see below that they yield the correct dynamics, as (23) is weakly equal to 
the Hamilton-Dirac equations (18). 

The extended Hamiltonian leads to considerably more involved equations of mo- 
tion than the Hamilton-Dirac approach. The multipliers and thus He depend on 
the matrix C-1 also appearing in the Dirac bracket (14). In the equations of mo- 
tion (23) there arise terms from the Poisson brackets of the dynamical variables 
with the entries of C-1, and these terms are typically rather complicated. 

Leimkuhler and Reich [15] considered a simplification which they called the 
"weakly Hamiltonian Dirac formulation". It arises by discarding the terms con- 
taining the Poisson brackets with the multipliers. This is allowed, since they vanish 
weakly. Using the solution (22) for the multipliers, we obtain as equations of motion 

(24) q = {q, He} {q, Hc} - {q, XR}(C-1)a:3XO1 Hc}, 

(p {P,He} {p, Hcl} -p, XOj(C-1)a,3X,81 Hc} 

Thus we recover the Hamilton-Dirac equations (18)! Leimkuhler and Reich claimed 
that they were not Hamiltonian. We can now correct this statement. Although (18) 
is not Hamiltonian with respect to the canonical Poisson bracket, it is with respect 
to the Dirac bracket. 

The above derivation of the extended Hamiltonian He is a special case of a more 
general construction [31]. With any phase space function A we can associate a 
function A* A such that {A*, X} I 0 for all constraint functions X: 

(25) A* = A - X,(C-1) :3{X:, Al. 

Using (22) for the multipliers, we find that He = Hc*. The Dirac bracket of two 
functions A, B is weakly equal to the Poisson bracket of their associated quantities: 

(26) {A, B}* {A*, B*} . 
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5. CONSTRAINT STABILITY 

We discuss the stability of the constraint manifold for three formulations of the 
equations of motion: (i) the classical one (8) based on the total Hamiltonian Ht, 
(ii) the Hamilton-Dirac equations (18), and (iii) the equations of motion (23) for 
the extended Hamiltonian He. We assume that we are given the canonical Hamil- 
tonian H, on a 2N-dimensional phase space and that after completion of the Dirac 
algorithm there are K = 2k second class constraints x, (q, p) = 0. 

Let 17 (q, p) I-, (Q, P) be a canonical transformation such that in the new 
coordinates the constraints are given by Qa = Pa = 0 for a = 1, . . . , k.5 At least 
locally, such a transformation always exists [13]. Independent of which formulation 
is used, the transformed equations of motion can be split into two subsystems: 

KQaA~ uc t (Qi, IPi Qc + Vac(Qi, Pi Pc QA tr(Qi, pi) 
Pb Wbc)(Qi, Pi) Qc + Zbc((Qi Pi) Pc Ps) (Gs (Qi, Pi)) 

The first part of (27) reflects that for all consistent formulations of the equations 
of motion the time derivative of any constraint function must vanish weakly and 
can thus be written as a linear combination of the constraint functions 

(28) MO (q',Pi) X: 

Considering the variables (Qr, Pr) as parameters, the origin is a fixed point of the 
first subsystem of (27) and its stability properties can be used as a measure for the 
stability of the constraint manifold. 

Entering the constraints Qa _ Pa = 0 into the second part of (27) yields a Hamil- 
tonian state space form. If we do not use the constraints, we obtain a perturbed 
state space form, allowing for a perturbation theoretic analysis of the stability of 
the constraint manifold. However, we will not pursue this approach here, but con- 
centrate on the stability of the origin in the first subsystem of (27). 

The stability analysis of a Hamiltonian system differs in several aspects from 
that of a general dynamical system. Its linearization yields a Hamiltonian matrix. 
If A is an eigenvalue of such a matrix, A, -A and -A are also eigenvalues [2]. Hence 
a fixed point can be linearly stable if and only if all eigenvalues are zero or purely 
imaginary and their algebraic and geometric multiplicities are equal [17]. 

Furthermore, no asymptotically stable fixed points exist. A stable fixed point is 
never hyperbolic, and the Hartman-Grobman theorem cannot be applied. Actually, 
linear stability is neither sufficient nor necessary for nonlinear stability. The only 
simple criterion for nonlinear stability is the theorem of Dirichlet [29]: if the eigen- 
values are as above and the Hessian of the Hamiltonian with respect to all canonical 
variables is definite at the fixed point, then it is nonlinearly stable. Otherwise the 
stability can be only established with a normal form computation [2], [29]. 

For the Hamilton-Dirac equations (18) the stability analysis is easy. According 
to (19) the constraint functions X> are distinguished functions 

(29) Xa = {X, Hc}* = . 

Hence the constraint functions are first integrals of the flow generated by (18), and 
in (27) the matrices U, V, W and Z vanish. This implies that the origin is stable. 
Obviously, there is no need to distinguish between linear and nonlinear stability. 

5For the remainder of this section we adopt the following convention: indices a, b, c always run 
from 1 to k, indices r, s from k + 1 to N, and indices i, j from 1 to N. 
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This result has the following geometric meaning. The constraint functions X 
foliate the phase space into disjoint submanifolds Me defined by x, (q, p) = E, with 
constants e. Exact solutions of the Hamilton-Dirac equations (18) lie completely 
on the submanifold M, determined by the initial data. The equations do not "see" 
the values e; especially e = 0 is not distinguished.6 Numerical errors are neither 
damped nor amplified by the dynamics. They lead to different values E, and without 
further errors the trajectory would stay on the submanifold Me. 

For many constraint functions this result implies that the constraint mani- 
fold M0 is orbitally stable7 though not attractive. For example, if the subman- 
ifolds Me are compact, there obviously exists a constant upper bound (depending 
only on e) for dist(X, Mo) with X E Me. The same holds for the important (for 
applications) case where the constraint functions X are quadratic. 

In order to study the equations of motion derived with the total and extended 
Hamiltonian, respectively, we denote by Hc, Ht and He the Hamiltonians trans- 
formed by 1, by Ac, At alnd Ae their Hessians with respect to the variables (Qa, Pa) 

evaluated at the origin, and by J (_? -k) the K x K symplectic matrix. For 

the classical equations of motion (8) it is not possible to make any general state- 
ments. Linear stability is decided by the eigenvalues of Bt = JAt. However, 
(numerical) experience shows that usually the origin is unstable. Otherwise the 
drift off the constraint manifold would not be a serious problem. 

In the approach based on the extended Hamiltonian the precise form of the 
relevant matrices depends crucially on the chosen solution of the linear system (21) 
for the multipliers v. Leimkuhler and Reich [15] showed for the special case of 
the pendulum (see Section 8) that the origin is a center if the v are determined 
using (22), whereas for another choice of v it becomes a saddle point. In principle, 
one could use the stability analysis as a guideline for choosing the precise form of 
the multipliers. But this seems hardly feasible in practice. 

Using (22) for the multipliers, we find that 

(30) MO =-X>, (C-1)'-q{X_, Hc}} 

(as above, C,> {x= , X0}) and in the transformed coordinates (Q, P) 

(31) 
Ub=- a Vab =-aaQb Wab = C Zaj =Ut 

Evaluated at the origin, the block matrix (W V) becomes Bc = JAc. 

Thus the stability depends not only on the choice of the multipliers v but also on 
the precise form of the canonical Hamiltonian Hc. Recall from Section 2 that Hc is 
uniquely defined only on the constraint manifold. We can add arbitrary linear 
combinations of the primary constraint functions to it, and such modifications 
change the matrix Bc. The Hamilton-Dirac equations are less sensitive to such 
changes; they affect only the second and not the first subsystem of (27), and thus 
only the perturbed state space form but not the stability of the constraint manifold. 

6This is also evident from the fact that the Dirac bracket depends only on the derivatives of 
the constraint functions and not on the functions themselves. 

7A manifold M is called orbitally stable for a dynamical system z = f(z), if for every e > 0 
there exists a 6 > 0 such that for any solution z(t) satisfying dist(z(O), M) < 6 the inequality 
dist(z(t), MA) < e holds [12]. 
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6. A THEORETICAL EXAMPLE 

We demonstrate our theoretical results on a simple system defined by the La- 
grangian L = 1(j1)2 - V(q1 - q2), where we assume that the function V satisfies 
V(O) = V'(O) = 0 and V"(O) :& 0. Later we will further specialize to V(x) = Ix2. 
We showed back in Section 2 how the Dirac algprithm works for such a system: there 
is one primary constraint function Xl = P2 and one secondary 2 = V'(qI - q2). 
The total Hamiltonian is 

(32) Ht = -P + P1P2 + V(ql - q2). 

Since {01, 2=2} V"(ql - q2), the Dirac bracket is defined by 

(33) {F, G}* = {F, GI {F, q1}{2, G} -{F, q2}{1, G} 

It is also straightforward to determine the extended Hamiltonian 

(3)He = 2 +P1P2 ? V(q1 - q2) - [V'(ql 
- 

q2)] 2 
2 V// 

(ql ~~~~- q2) 

The canonical transformation IF may be taken as 

(35) Ql V'(ql - q2) Q2 = ql P ,= - 2 
P2 pl P2 

In order to decide the stability of the origin for the first subsystem of (27) we need 
the Hessian of the total and the extended Hamiltonian, respectively, with respect 
to Ql and Pi evaluated at the origin. After some straightforward applications of 
the chain rule one finds that 

(36) At ( O) -V"(O)) AeO -V"(O)) 

At is indefinite; thus we cannot apply the criterion of Dirichlet and obtain no infor- 
mation about the nonlinear stability for the classical formulation. In contrast, Ae is 
definite (independent of the sign of V"(0)), and thus for the extended Hamiltonian 
formulation the origin is even nonlinearly stable. 

Although it is possible to solve the equations of motion exactly for arbitrary 
functions V, we specialize now to V(x) = 2x2. The classical equations, of motion 
are computed using F = {F, Ht}: 

(37) q1 = Pl + P2, q2 = pl, P1 =-P2 q -q 

We solve this system for some initial point (ql, q2,P1o, P20). Denoting the constraint 
residuals at this point by p P20 and = qO - q2, we can write the solution as 

ql(t) q + (plo + p)t, 
q2(t) ql + (plo + p)t + 2 (p-()e-t - l(p+()et, 

(38) Pi(t) Plo + p -2 (p - ()e-t - ($Det, 

P2(t) = - ( )e- (p + O)et 

This implies that for p + ( 7 0 the constraint residuals grow exponentially and the 
constraint manifold is unstable. For general V we can conclude that the constraint 
manifold is linearly unstable. This also follows from the fact that the eigenvalues 
of Bt are ?1. 
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The Hamilton-Dirac equations are very simple for this system. They are com- 
puted using F {F, Hc}* with the Dirac bracket (33): 

(39) 41 = 42 = P2 pl = p2=? 

Taking the same initial point as above, we find the solution 

ql (t) = q +plot, PI (t) = Po, 
q(t) = ql + ( + plot, P2 (t) = p. 

The constraint residuals remain constant and the constraint manifold is orbitally 
stable but not attractive, in accordance with our results above. 

The equations of motion for the dynamics F = {F, He} defined with the extended 
Hamiltonian (34) are identical with the classical ones (37) except for the sign of the 
forces. But this sign drastically changes the solution: 

(41 q(t) = ql + (plO + p)t: PI(t) = plo + p + ( sint - pcost , 

q2(t) = ql + (Plo + p)t - psint - (cost, p2(t) --sint + pcost. 

The constraint residuals do not grow, but oscillate. The origin is a center of the 
first part of (27); the eigenvalues of Be = JAe are ?i. Again this implies that the 
constraint manifold is orbitally stable though not attractive. As mentioned above, 
this holds even for general V. 

If we consider the full solution instead of only the constraint residuals, we see 
that the difference between the position coordinates in (41) for different values 
of p grows linearly. In the Hamilton-Dirac equations even this difference remains 
constant. They represent the most stable formulation for a numerical integration 
among the three considered. 

This example also demonstrates well the effect of a redefinition of H,. Instead 
of using H, = 2p2 + V(ql - q2) we take H= 2 (P +P2 )2 + V(ql - q2 ). Obviously, 
Hc and Hc differ only by a multiple of the primary constraint function 01 P2. 
The multiplier u must now satisfy u 0; thus we set Ht = Hc. For V(x) =x 
the classical equations of motion are 

(42) 1 =2 =P1 + p2, Pl =-p2= q -q 

Although the constraint manifold is still unstable for these dynamics, the residuals 
grow now only linearly and no longer exponentially, as the general solution is 

(43) q1(t) - ql + (Plo + p)t, Pi (t) = Plo + (t, 
q2 (t) =q1+ +( +(PloA+p)t, P2(t) =p- (t 

Using the standard choice (22) for the multipliers, for the extended Hamiltonian 
we obtain He = (pl +p2)2+V(ql-q2)_ [V'(ql -q2)] 2/V//(ql -q2). In the quadratic 
case the general solution is the same as for the total Hamiltonian Ht; only the signs 
of the terms (t in the momenta change. Hence, the constraint manifold is now 
linearly unstable for the formulation based on the extended Hamiltonian. 

7. REGULAR SYSTEMS WITH IMPOSED CONSTRAINTS 

For applications the most important case of a constrained system is described 
by a regular Lagrangian Lo and subject to k externally imposed holonomic con- 
straints O, (q) = 0. In principle, this situation cannot be treated within the Dirac 
formalism, as it covers only singular Lagrangians. Therefore one introduces La- 
grange multipliers A' and considers the Lagrangian L = Lo + A-O,. In contrast to 
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the multipliers u in the Dirac theory, the A must be considered as additional dy- 
namical variables and not as undetermined functions. Now L is obviously singular, 
as it does not depend on the "velocities" A. 

For the Hamiltonian formalism we must introduce canonically conjugate mo- 
menta 7r, for the A'. The primary constraints are simply given by 7r = 0. If we 
denote by Ho the Hamiltonian for the regular System, the canonical Hamil-tonian of 
the constrained system is H, = Ho - AP,; the total one is Ht = H - + u'7rO,. The 
Dirac algorithm yields the secondary constraints 0, = 0 and the tertiary constraints 
0a = lo{q, Ho} = 0. The next step determines A: 

(44) {'/a, Ho} - Ao{fo/, q/3} = 0 

The fifth and last step yields u = 0. 
This rather long derivation can be shortened by not introducing the total Hamil- 

tonian Ht and the momenta 7r. Starting with H, and imposing 0 = 0 as primary 
constraints leads to equivalent results, as in the end 7r = u = 0. The standard 
approach is to take the Hamiltonian equations of motion for H, and augment them 
by the constraints to get the following differential algebraic equation (see (7)): 

(45) q = aHo p =OHO _ OHo a 0__ ? 
(45) OP 

p 
~~Oq 4?A' aqY0 

By differentiating the last equation in (45) twice, one can derive exactly the same 
equation (44) for A as in the Dirac theory. With Qao {=$I, '/} it has the solution 

(46) Aa (Q-1)a'os Ho}. 

The main problem in using Dirac brackets is the inversion of the matrix C of the 
Poisson brackets of the constraint functions. For a larger number K of constraints 
one can no longer do this symbolically. Thus one must numerically invert a K x K 
matrix at each evaluation of the equations of motion. In our special case we have 
K = 2k, and C can be partitioned into four k x k submatrices: 

(47) C= (~_Qt S) 

where Q is as above and SO{ {= /o, / I }. The inversion of such a matrix can be 
reduced to the inversion of one k x k matrix plus two matrix multiplications, as 

(48) C1 QO)- 

The Hamilton-Dirac equations now take the following form: 

OHo _ (Q - 1) ao 0V)c? 

Op Op 

(49) OHo _ (Q -)Ia4 0c1 
fool H/l 

Oq 0qVI~U 

+ [(Q-t SQ- 1) CO $'c + (Q- 1) aI 03a O > 

Taking (46) into account, we see that they differ from (45) only by some terms 
multiplied by /. Thus both formulations are weakly equal. Note that the position 
constraint functions X do not appear explicitly! 

We cannot apply here the results of Ascher et al. [3] on the stabilization of dif- 
ferential algebraic equations. They subtract the constraint functions multiplied by 
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some matrix from an underlying differential equation. If the product of this matrix 
and the Jacobian of the constraints is positive definite, the constraint manifold is 
asymptotically stable for the resulting flow. The Hamilton-Dirac equations can be 
understood within this general scheme, but the result does not hold, as the matrix 
product is not positive definite. We got weaker stability results. But this was to be 
expected, as we still have a Hamiltonian system, whereas the approach of Ascher 
et al. destroys this property. 

For the extended Hamiltonian we make the following ansatz: 

(50) He = Ho- AO + ,lt+ . 

For A we recover the result (46); for ,u we obtain 

(51) Ha = (Q-1)Q%pa 

Thus ,l vanishes weakly and could be taken as zero. But then He = Ht, and 
we get as equations of motion the classical ones (45) plus terms (a/Qq)q, and 
(OAa/Op)>a, respectively (compare (7) and (8)). 

The multipliers A depend on derivatives of the momentum constraint functions b. 
Since they occur in the extended Hamiltonian He, we need three differentiations of 
the original constraint functions 0 to set up the equations of motion, as opposed to 
the Hamilton-Dirac equations where two differentiations suffice. 

8. NUMERICAL EXAMPLE I: THE PENDULUM 

A classical example of a constrained system is the planar pendulum in Cartesian 
coordinates. For simplicity, all constants like length, mass, etc. are set equal to 1. 
The Lagrangian of the underlying regular system is Lo = 2 (X2 + p2) _ y. We add 
the constraint function X = I (X2 + y2 _ 1) with a multiplier A to get the Lagrangian 
for the pendulum, L = Lo + I A(X2 + y2 - 1). The canonically conjugate momenta 
are just the velocities: Px = x~, py = y. Checking whether the evolution generated 
by the Hamiltonian Ht = 2(PX + Py) + y - \(X2 + y2 _ 1) preserves the primary 
constraint 0 = 0 yields a secondary constraint b = {q0, Ht} = xpx + ypy = 0. Then 
the Dirac algorithm stops, as the next step only determines A. Since {,b} = 

2 th2 ia tefr 
x + y2, the Dirac bracket takes the form 

(52) {F,G}* ={F,G}? 2 + 2 ({F, O}{, G} - {F, Of}{, G}) 

By taking Dirac brackets with the Hamiltonian Ho = (p2 + p2)/2 + y of the 
underlying regular system we finally arrive at the Hamilton-Dirac equations, 

(53) X=Px+/ tX, YPY+AY, PX =Ax-ApX, py =Ay-tpy-1, 

where A, ,u are given by 

(54) A = _P8 
+ XY 

V 
t P2 + YPy 

We compare this formulation with the one based on the extended Hamiltonian 
He = Ho - AO + ,w-V with the multipliers A, ,ll again given by (54). This corresponds 
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FIGURE 1. Integration and energy error (pendulum) 

to the choice (22) for the solution of (21). The equations of motion are 

x = (2- 2+y2)pX+ 2,ix, y=(2- 2f+2) PY+2I1 

(55) PX = A X 
2-2,utpx-2,u2x, 

x2+y 

*y = Y _ 2itpy - 2p2 - 2I( +2+ ) P AX2 + 2Y pj~2 pj2yX2+! 

They differ from (53) only by linear combinations of constraint functions. As ex- 
pected, they are more complicated and thus more expensive to evaluate. 

In order to show the necessity of stabilizing the constraint manifold we compare 
these two formulations with the classical equations of motion (45): 

(56) x = Px, Y Py, PX = Ax , AY = Ay -, 

with A again given by (54). 
We integrated numerically all three formulations with the classical fourth order 

Runge-Kutta method for the following initial data: xo = 1, y0 = 0, p0 = 0, 
= -2. For these values the pendulum rotates clockwise with a period of T 3.31. 

We integrated over the interval t E [0,100], i. e. roughly over 30 periods, with 
a constant step size of h = 0.1 T/33. Figure 1 contains logarithmic plots of 
the integration and the energy error; Figure 2 shows the position and momentum 
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FIGURE 2. Position and momentum constraint residual (pendulum) 

constraint residuals. class, dir and ham label the curves for the classical equations 
of motion (56), for the Hamilton-Dirac equations (53) and for the equations (55) 
derived with the extended Hamiltonian, respectively. The integration error was 
estimated by comparing with the solution of the state space form f = -sin p 
computed with h/10. 

Since the amplitude of our pendulum is 1 and its maximal momentum about 2.45, 
the computed values can surely be considered as useless if the integration error ex- 
ceeds 1. Thus the Hamilton-Dirac equations are the only formulation where the 
numerical integration does not clearly break down before the end of the consid- 
ered interval. With the extended Hamiltonian one obtains reasonable results until 
approximately t = 70; with the classical formulation until about t = 30. 

The stabilizing effect of the extended Hamiltonian and of the Dirac bracket, 
respectively, shows not only in the lower absolute values of the errors but also in 
their growth. Both formulations show a quadratic growth of the integration error 
and a linear growth of the energy error. Taking into account only the time where the 
classical formulation yields reasonable results, its integration error grows cubically 
and its energy error quadratically. For the Hamilton-Dirac equations the constraint 
residuals grow linearly; for the extended Hamiltonian, even less. In the classical 
formulation the position constraint residual shows a quadratic growth, whereas the 
momentum constraint residual also behaves linearly. 
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TABLE 1. Phase error (pendulum) 

y(2T) y(4T) y(IOT) y(20T) y(30T) 
class 9.66 10-3 7.28 .10-2 9.22 10-1 2.16 10-1 3.05 10-1 

ham 5.75 10-3 1.77 10-2 8.98 10-2 3.17 10-1 6.21 *10-1 

dir 8.28 10-4 2.63 10-3 1.39 10-2 5.18 10-2 1.13 10-1 

As already mentioned in Section 5, in the case of the pendulum with our choice 
for the multipliers A, ,u, in the extended Hamiltonian the origin is a center of (28). 
This can be observed in the figures, as the curves are always very "shaky" for this 
formulation. The different stability properties of the various equations of motion 
can also be clearly seen, if one chooses inconsistent initial data. The Hamilton-Dirac 
equations do not notice the inconsistency but produce a solution with the same 
behavior as in the figures, however now with respect to the manifold 0(x, y) = C 
and 0b(x, Y,PX,PY) = p defined by the initial data. In contrast, the solution of the 
equations of motion for the extended Hamiltonian tries to reach the true constraint 
manifold but effectively oscillates about it. 

Another important aspect is how much of the periodicity of the solution is main- 
tained during the numerical integration. Table 1 contains the numerical values of 
y after several revolutions. The correct value would be zero for our initial data. 
Phase portraits of the numerical solutions (not shown here) also clearly demonstrate 
that the classical formulation leads only for a rather short time to an acceptable 
approximation of the true solution. 

In a comparison one must also take the computational costs into account. Using 
the Hamilton-Dirac equations requires only about 5% more computing time than 
the classical formulation, whereas the extended Hamiltonian needs almost 65% more 
time. The difference in computational efficiency becomes even larger with a variable 
step size. Using a fifth order Runge-Kutta-Fehlberg method, the integration of the 
equations of motion derived with the extended Hamiltonian needs between 50% 
and 100% more evaluations of the equations than the Dirac bracket approach for 
the same prescribed precision. 

9. NUMERICAL EXAMPLE II: A CHAIN MOLECULE 

As a larger example we consider a problem in molecular dynamics already used 
by Leimkuhler and Skeel [16] in the context of constrained dynamics. It consists of 
a planar chain molecule with N = 7 atoms. The bonds between them are assumed 
to have a fixed length. This condition yields the constraints. The interaction of the 
atoms is described by a Lennard-Jones potential 

(57) V = 0.1 E(r- 12 - 2r -6), 
j>i 

where rij denotes the distance between atom i and atom j. 
One global energy minima of the molecule is the hexagonal structure shown in the 

left part of Figure 3. We took this as initial configuration in our computations. At 
the ends of the chain we started with initialvelocities of equal amplitude (vo = 0.25) 
but opposite direction; the remaining atoms are initially at rest. The emerging 
dynamics can be split into a rigid body rotation of the whole chain and small 
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FIGURE 3. Global energy minimum and motion of end atom 

vibrations of each atom around its equilibrium position. The right part of Figure 3 
shows the motion of an end atom of the chain. 

Integration methods for differential algebraic systems are often based on back- 
ward differentiation formulae. As Leimkuhler and Skeel [16] reported, this approach 
leads to physically unacceptable solutions. Such methods were originally developed 
for stiff systems. After a short time they completely eliminate the vibrational de- 
grees of freedom of the system and yield a pure rigid body rotation. This entails a 
significant violation of energy conservation. 

We have chosen this model in order to demonstrate that the Dirac bracket ap- 
proach can be reasonably applied even for larger systems. Actually in this example 
it is still easily possible to perform all necessary calculations by hand, based on 
our results in Section 7. We did not try to do this for the method of the extended 
Hamiltonian, as it would lead to very complex equations of motion. 

If we denote the coordinates of atom i by (xi, yi) and its momenta by j4, jy, the 
underlying regular Hamiltonian is 

IN 
(58) Ho = Z(pix)2?+ (pi21 +V(x,y) 

with V given by (57) and r?. = (xi _ Xj)2 + (yi _ yj)2. The constraints are 

(59) ~ = 2 [(AXo)2 + (Ayoa)2 _L2] = o0 

ba =zAx%Ap?A + Ay/Apy =0, 

where L stands for the length of the bonds, and where we have introduced the 
shorthand Axxa = xo- x+ and so on. 

Computing the entries of the matrices Q, S defined in Section 7, we obtain for Q 

0,+ 0,31= 260,[(AXo)2 + (Ayo)2] 

(60) - &0+?,0 [Ax/A\xI3 + AyeAyI3] 

- 6a,/3+1 [AXI3?AXa + AyI/Aya] 

and for S, respectively, 

{fba, +b:} = 6a+1,3 [AxaAp3 - AX13Apx + AyaAp%O - AyO Ap]j 
(61) - [x\if\P- AxaApx + /y'3APy -/\YaAP%] 
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Both matrices are tridiagonal, as we have a chain structure or "nearest neighbors 
constraints": 0, 0, involve only data of the atoms ai and ai + 1. The inversion of 
such matrices has a linear complexity and can thus be done very fast. 

The Poisson brackets of the coordinates with the constraint functions are 

{x2 loa 0, {Px j4, I } = (6a+-l x 1 
(62) {PX q$} =-{X ) f} = - )AXa, 

and corresponding expressions for y,py. Finally, we calculate 

{b, Ho} = (Apa)2 + (Apc)2 

(63) - Axa - a+ - Ay a - aya+_ 

(60)-(63) contain all expressions needed to set up the equations of motion (49). 
The evaluation of the potential and the two matrix multiplications have a complex- 
ity quadratic in the number N of atoms. All other operations are linear in N. Thus 
the Dirac bracket could be applied without problems to much larger molecules. 

We integrated the system for the initial conditions described above with the 
classical fourth order Runge-Kutta method for the interval t E [0, 200]. As one 
can see from the right part of Figure 3, this corresponds roughly to 5/4 periods of 
the rigid body rotation of the molecule. Figures 4 and 5 show the results for the 
constant step size h = 0.1. As for the Hamilton-Dirac formulation of the pendulum, 
the integration error grows quadratically, all others errors about linearly. 

Comparing with Leimkuhler and Skeel [16], we find that, at least regarding en- 
ergy conservation, their approach using the RATTLE algorithm [1] leads to better 
results. Their energy error remains more or less constant over the full integration 
interval t c [0, 200]. The explanation is simple: RATTLE is a symplectic integra- 
tor [24]. 

It is well-known that such methods often give superior performance in long time 
integrations, especially with respect to energy conservation. Since almost all known 
symplectic integrators preserve only the canonical Poisson bracket, it may appear 
that they are not applicable in the case of a modified bracket structure like the 
Dirac bracket used in the Hamilton-Dirac equations. 

We hope to discuss this problem in more detail in the future, but we want 
to comment briefly on some preliminary experiments with a canonical symplectic 
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integrator: the implicit midpoint rule. The nonlinear equations that arise were 
solved with a simple functional iteration to a tolerance of i0-5. 

Although the implicit midpoint rule is only second order, as opposed to the 
fourth order scheme used so far, it conserved the energy for the same step size 
better, by almost an order of magnitude. The error growth is less than linear; the 
constraints residuals improve by more than an order of magnitude. If the step size 
is halved, the energy error becomes smaller by more than an order of magnitude 
and remains almost constant about i0-4 over the full integration interval. 

A partial explanation might be given as follows. On the constraint manifold 
the Dirac bracket represents the symplectic structure induced by the canonical 
Poisson bracket [13], [30]. For small constraint residuals a canonical symplectic 
integrator thus defines in good approximation a symplectic mapping for the Dirac 
bracket, too. But for other methods for the symplectic integration of constrained 
systems the situation does not differ much, as they require the solution of nonlinear 
equations [14], [22]. In a numerical computation they are also only approximations 
of symplectic mappings, if these equations are not solved exactly. 

The implicit midpoint rule preserves quadratic first integrals, if the nonlinear 
equations that arise are solved exactly [6]. In our example the constraints and the 
energy are defined by quadratic functions. The constraints are first int,egrals for 
the Hamilton-Dirac equations. Thus it is not surprising that we find small errors. 

We may expect that the higher the precision with which the nonlinear equations 
are solved, the more the implicit midpoint rule behaves like a true symplectic inte- 
grator for the Dirac bracket. First numerical tests seem to confirm this conjecture. 
In the case of the pendulum one observes, for example, much smaller phase errors 
compared with Table 1. 

10. CONCLUSION 

There exist two basic strategies for dealing numerically with differential algebraic 
equations. One can modify the equations; this leads to stabilization and index 
reduction techniques. Or one designs special numerical schemes like projection 
methods. Obviously, these two strategies are complementary and can be combined. 
In this article we studied the first approach for the special case of constrained 
Hamiltonian systems. 
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There have been attempts to stabilize general differential algebraic equations [3]. 
However, no systematic solution with a solid theoretical foundation has emerged 
so far. A classical example for the problems encountered is the Baumgarte stabi- 
lization [4], where the choice of the parameters is to a large extent still a question 
of trial and error. In physical problems like Hamiltonian mechanics the differential 
equations possess special properties. In this article we exploited the symplectic 
structure of the phase space to derive stable equations of motion. 

The constraint manifold is always stable for the Hamilton-Dirac equations. In 
contrast, its stability for the classical formulation or for the one based on the 
extended Hamiltonian depends on choices made for the canonical Hamiltonian or 
the multipliers. This was demonstrated by the toy model in Section 6. The neutral 
stability obtained with the Dirac bracket is in some sense the best that one can 
achieve in a Hamiltonian formulation of the equations of motion. If the constraint 
manifold was asymptotically stable, the theorem of Liouville on the conservation of 
phase space volume [2] would imply an instability within the constraint manifold. 

The Faddeev-Jackiw formalism [25], a first order approach to constrained dy- 
namics, uses an extended phase space and modifies the symplectic structure there. 
Although the modified structure coincides with the Dirac bracket on the original 
phase space, the equations of motion that arise differ from the Hamilton-Dirac 
equations. But in numerical experiments both approaches lead to almost identi- 
cal results even for long integration times. This clearly indicates that the physical 
properties of the Dirac bracket are the cause of the observed stability. 

For systems with a large number of constraints the efficiency of the Dirac bracket 
approach depends crucially on the matrix C which must be inverted at each evalua- 
tion of the Hamilton-Dirac equations. As the example of the chain molecule demon- 
strated, this inversion can be significantly simplified by exploiting special constraint 
structures like "nearest neighbors constraints." Note that for the Hamilton-Dirac 
equations it suffices to invert numerically, whereas the extended Hamiltonian ap- 
proach also needs derivatives of C1 to set up the equations of motion. 

For regular systems with imposed constraints there exists a comparatively cheap 
way to exploit much of the stability of the Hamilton-Dirac equations without 
really using them [26]. We noted already in Section 7 that for this class of sys- 
tems the classical Hamiltonian equations of motion (45) and the Hamilton-Dirac 
equations (49) differ only by terms multiplied by the momentum constraint func- 
tions ~b. If we perform at each step a momentum projection in order to exactly 
maintain these constraints, the two formulations are equivalent and we can ignore 
the additional terms, which are rather expensive to evaluate. For most systems 
occurring in applications the constraint functions +b are linear in the momenta p. 
Thus the projection requires only the solution of a linear system, and is rather 
cheap. 

The constraint functions become first integrals for the Hamilton-Dirac equa- 
tions; for the equations derived with the extended Hamiltonian they represent only 
weak invariants. For a higher degree of constraint preservation one may thus use 
a special scheme for maintaining invariants. Moan [19] recently constructed ex- 
plicit Runge-Kutta methods preserving quadratic first integrals. Among them is a 
second order method with three stages that applied to the chain molecule yields, 
with fewer evaluations, better results than the classical fourth order method. For 
general constraint functions one could use the discrete gradient methods proposed 
by Quispel et al. [20], [21], although their construction appears rather expensive. 
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Finally, we note that Dirac brackets can be generalized to infinite-dimensional 
systems. Thus this approach could also be useful for problems in electrodynamics, 
continuum mechanics, etc., like the impetus-striction formalism [7],[18]. Salmon [23] 
showed for example that the semi-geostrophic equations for a rotating fluid often 
used in meteorology or oceanography can be derived using Dirac brackets. 
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