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ON BEST POSSIBLE ORDER OF CONVERGENCE ESTIMATES 
IN THE COLLOCATION METHOD AND GALERKIN'S METHOD 

FOR SINGULARLY PERTURBED BOUNDARY VALUE 
PROBLEMS FOR SYSTEMS OF FIRST-ORDER 

ORDINARY DIFFERENTIAL EQUATIONS 

I. A. BLATOV AND V. V. STRYGIN 

ABSTRACT. The collocation method and Galerkin method using parabolic 
splines are considered. Special adaptive meshes whose number of knots is 
independent of the small parameter of the problem are used. Unimprovable 
estimates in the LO,-norm are obtained. For the Galerkin method these esti- 
mates are quasioptimal, while for the collocation method they are suboptimal. 

INTRODUCTION 

It is well known that the spline collocation method for a nonstiff boundary value 
problem leads to a priori high-order accuracy estimates in the uniform norm [1]-[3]. 

For the Galerkin method in nonstiff problems the corresponding estimates are 
quasioptimal [4]-[6]. For the investigation of stiff systems it is appropriate to use 
strongly nonuniform meshes [12]-[15]. This circumstance significantly complicates 
the problem. Moreover, for stiff problems, it is difficult to select the principal part 
of a differential operator. To overcome these difficulties, the authors of [7]-[11] 
proposed Petrov-Galerkin type methods involving special bases in the test spaces; 
by means of them it may be possible to approximate solutions very well, not only 
in the center of an interval but also in boundary layers. In the present article 
we use these ideas. For numerical analysis we use C' quadratic splines on meshes 
proposed by N. S. Bakhvalov. These meshes have a little number of knots, but they 
are denser and closer in the boundary layers. This allows us to obtain high-order 
accuracy with small additional computational work. The estimates obtained in this 
article have the same accuracy as analogous estimates for nonstiff boundary value 
problems. It is shown that these estimates are unimprovable, and, for the Galerkin 
method, they are quasioptimal. 

Note that for collocation methods similar ideas are used in the papers by Asher 
and Weiss [12]-[13] and by Ringhofer [14], but they use other meshes and splines 
of high defects. 
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In conclusion we note that our investigation of the Galerkin method is based 
on the remarkable ideas of J. A. Nitsche, F. Natterer, R. Scott, A. H. Schatz and 
L. B. Wahlbin [15]-[18]. 

1. STATEMENT OF THE PROBLEM. 

PRELININARIES AND NOTATION 

Let A\: -1 = t_p < ...< tp = 1 denote any partition of the interval [-1,1], 
and let h, = t+- t,. By Bi,r(t) we denote the B-spline of degree r on the 
partition A\ having support [ti, ti+r?+] . We assume that Bi,r are normalised so that 

z;g=i-r Bj,r(t)= 1 t C [ti, ti+I]. Let S(A, r, 1) be the space of polynomial splines 
of degree r and defect 1 on the partition /\. Throughout this paper E denotes a 
small positive parameter; C, Cl, C2 ... will be used to denote positive constants 
independent of E and the partition /\. 

As usual, Cs[-l, 1] denotes the space of all scalar, vector or matrix functions on 
[-1, 1] which are continuous together with their derivatives up through order s in 
[-1,1]; 11 lcs will be the norm in this space. 

We use the notation I I,IP for the norm in Lp [-1, 1] (1 < p < oo). Using the 
sharp order function, we shall write f(E, m) = *(g(,i,m)) if there exist constants 
Ci and C2 such that, for some Eo > 0 and mo c N, and for every E C (0, 60] and 
m > mo, the estimates 

C If(E,m)I < Ig(E,m)I < C2If(E,m) 

hold. 
If only the first inequality holds, we shall write f (e, m) = 0(g(E, m)). 
On the interval [-1,1] consider now the problem 

(1. 1) L,x = Ex' - A(t)x = d(t), x = (X1,X2, .. . xn)T C Rn, 

(1.2) x1(-1) = ... = xk(-l) = xk+1(l) = - = xn(1) 0. 

Here A(t) is a matrix and d(t) is a vector function of class C3. Suppose that the 
matrix A(t) has eigenvalues VI(t), V2(t),... , vn(t) such that, for any t c [-1,1], 
1I1(t) < V2(t) < ... < Vk(t) < 0 < Vk+?(t) < ... < Vn(t); IVi(t) >_ vo > 0- 

Let the matrix B reduce the matrix A(t) to diagonal form, i.e., 

B - 1 AB = diag (v1 (t), V2 (t), . , vn (t)) 

Represent the matrix B in the corresponding block form 

-13=B,, B12 

B= |B21 B22 

where B1, is a k x k matrix. 
Suppose that det B, I(-1) det B, I(1) det B22(-1) det B22(1) :4 0. 
The following statements are known [19]. 

Lemma 1.1. There exists a constant C and an 6o > 0 such that for all E c (0, so] 
the operator L, has a Green function GE (t, S) satisfying 

(1.3) | <,SiGF(tj()[ < C/?+ exp(-wolt - WO) 

and, for the integral operator associated with G,(t, ,), the following estimates hold: 

(1.4) JIGFlc-c < C, JjGFc.c1 < C/6. 
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Lemma 1.2. There exists an Eo > 0 such that for all E c (0, 60] the problem (1.1)- 
(1.2) has a unique solution x,(t). Moreover, for i = 0, 1, 2, 3, we have 

(1.5) Ex()(t) ?0(1 ?6k(exp(vo(t - 1)/c) + exp(vo(-l - t)/E))). 

Lemma 1.3. The homogeneous system L,x = 0 has the fundamental system of 
solutions (F.S.S.) (1 (t, e), ... (n(t, E) (0 < E < 0o) for which the representations 

(1.6) (i (tI E) = {bi(t) + eXi(t, E)} exp (E j wi(s)ds) v i = 1,2, ... .k 

(1.7) 

(i (tj E) = bi (t) + EXi (t, E)}I exp (-jvi(s) ds) i = k + 1,1 k + 21 . .. n, 

are valid. Here 

(1.8) 11 lx(~i) (t,)lloioc < C/si j I,1 ,3 

and bi(t) is an eigenvector of A(t) associated with the eigenvalue vi(t). 

2. GALERKIN AND COLLOCATION METHODS. 

FORMULATION OF THE MAIN RESULTS 

To construct a suitable partition of [-1, 1] we use the Bakhvalov approach [20]. 
Let a = 1 - (3/vo)Eln(l/E); note that a -* 1 as E -* 0. Define 

g (t) - ft t c[0, a], 
- {a - 3e/vo + (3 /jVo) exp ((vo / (3E)) (t - 1)), t c [a, 1]. 

For t C [-1, 0] we set g(t) = -g(-t). Then g(t) belongs to C1 [-1, 1] and maps 
[-1,1] onto [-b, b] in a one-to-one fashion, where b = a + (3/vo)(1 - e). Let rm be 
any natural number. On [0, b] we set 

fai/m, i =0,1,..m 

T aj+(b-a)(i- m)/m, i=m+?1,nm+2,...,2m. 

Points Tj on the interval [-b, 0] are introduced symmetrically. 
Knots ti of the partition A\ of the interval [-1,1] will be defined by ti = gI (Ti), 

where g-1 is the inverse of the function g. Let h = 1/rm. We shall distinguish three 
cases: 

(at) h << El 

(/) 0 < C1 < ? /h < C2, 

(y) eln(1/E) <h. 

Recall here that hj = tj+- tj. 

Lemma 2.1. In the case (Qy) the following relations hold: 

3E/(vo(j - m + 2)) < hj < 3E/(vo(j- m)), j > m +1, 

(2.1) hj = O(eln(1/E)), j=rm, 
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Proof. For j > m we have 

hj= g-(Tj+) - g-(Tj) 

(2.2) = 3E/Ivo {ln[(j -m + 1)(b - a)/m + 3E/vo] 

- ln[(j -rm)(b - a)/m + 3E/vo]}. 

Hence, in accordance with MacLaurin's formula, we get (2.1) for j > m + 1. For 
j < m these formulas are obvious. The lemma is proved. 

We next define trial and test spaces. For the trial spaces we take 

E = fu = (u I(t),u2(t),. . . ,un(t))T,ui(t) C S(/,2, 1),ul(-1) = u2(-1) 

= Uk(_l) =Uk?1(1) = =Unh(1) = O}. 

For the test space consider F = LEE. It is clear that dim E = dim F = (4m+n1)n, 
independently of E. 

Define the collocation method in the following manner. First introduce colloca- 
tion points 

(i = (ti-I + ti)/21 i = 1, 2, ... ., ml 

(i = (ti + ti+1)/2, i = -1, -2, ... ., -m 

(i = ti_,i = + l,m +2,. ... ,2m + 1, 

(i = ti+1, i = -m - 1, -m - 2, ...,I-2m - 1. 

Let I = {-2m - 1, -2m, .. ., -m - 3, -m - 1, -m,.. ., -1, 1, 2, .. ., m, m + 1, 
m + 3, m + 4.. . ., 2m + 1} be the index set. The collocation method consists in 
finding u(t) C E so that u(t) satisfies 

(2.3) LEujt=~j = d((j)v j C I 

(2.4) L,ult=,+2 = {d(Om+2)}u, v = 1,2, ... k, 

(2.5) {Lu It=$>-m-2} = {d(S-m-2)}J'i v= k+ ..., n 

in case (ar), and u(t) satisfies 

(2.6) L,ult=tj = d(tj), j =-2m, -2m + 1, ... , 2m 

in cases (3) and (-y). 
The Galerkin method of least-square type consists in finding u(t) C E so that 

for each v C F, 

(2.7) (L,u, v) = (d, v). 

Here (, ) denotes the inner product in (L2[-1, 1])n. 

In this paper the Galerkin method is considered only in the case (Qy). Recall that 

h = 1/rn. 

Theorem 1. There exist constants C > O, so > O, ho > 0, -yo > 0 such that for 
all E c (0, EO] and h c (0, ho] with h < -yoE the problem (2.6) has a unique solution 
u(t) and 

(2.8) 11xF(t) - u(t)j, + Ellx'(t) - u'(t)ll < Ch2. 

Theorem 2. For every -yl > 0 there exist numbers C > 0, so > 0, ho > 0 such 
that for all E c (0, so] and h C (0, ho] with -yjE < h < E/ly the problem (2.6) has a 
unique solution u(t) and the estimate (2.8) holds. 
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Theorem 3. There exist numbers 60 > 0, ho > 0, -Y2 > 0, C > 0 such that for all 
E c (0, 60] and h c (0, ho] with E ln(1/E) < _Y2h the problem (2.3)-(2.5) has a unique 
solution u(t), and the estimate (2.8) is valid. 

The following theorem shows that, for the collocation method, the estimates 
(2.8) are best possible in order. 

Theorem 4. There exist a constant Ci > 0 and a function d(t) C C3[-1, 1] inde- 
pendent of E and h such that, for sufficiently small E and h, in all three cases (a), 
(3), ('y) the estimate 

(2.9) IIXE(t) - u(t) II, > Clh2 

holds. 

Theorem 5. There exist numbers 6o > 0, ho > 0, -Y2 > 0, C > 0 such that for all 
E c (0, 60] and h c (0, ho] satisfying E ln(1/E) _< Y2h the problem (2.7) has a unique 
solution u(t), and 

(2.10) |x'F(t) - u(t) ll < Ch3. 

Remark 2.1. As will be shown 

inf IIx,(t) -u(t)Illoo = 0(h 3). 
uEE 

Thus the estimate (2.10) in general is unimprovable and quasioptimal. 

3. PROOF OF THEOREMS 1-3 

The proofs of Theorems 1-3 are based on the notion of interpolation projection. 

Definition 3.1. The linear operator P: C[-1, 1] -* F = L,F such that PP = P 
and (Pd)(tj) = d(tj) for any d c C[-1,1] (j = -2m, ... ,2m) is said to be the 
interpolation projection for cases (ar) and (/); in the case (y) the interpolation 
conditions take the form 

(Pd)(%j) = d(Qj) for j c I, 

(Pd) ((m+2) = {d(cm+2) }' i v= 1, ... .,k 

f (Pd) (S_ m-2) = { d(c_m-2)}', v = k + 1, ..., n. 

Lemma 3.1. There exist numbers E0 > 0, ho > 0. -72 > O, C > 0 su'ch that for 
all E c (0, E0] and h c (0, ho], if e ln(1/E) < -Y2h, then the interpolation projection 
P(E, h) exists and 

IIP(E, h) llcc < C. 

Remark 3.1. Analogous statements are true in the cases (ar) and (/). 

Lemma 3.2. Let d(t) C F be the best approximation of d(t) C F in the sense of 
the norm in C[-1, 1]. Then in cases (ca), (/3) and (y) we have IId-d- 00 < Ch2 for 
some C. 

Lemma 3.3. For all E c (0, 60] and h c (0, ho] such that the interpolation projec- 
tion P exists, the collocation problem has a solution u(t) in cases (ca), (/3) and (a). 
Moreover, for i = 0, 1, 

IIx(t) - u(t) Ici < IG IIc-ci(l? + IPIc-c) Id-d -c. 
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It is easy to see that Lemmas 3.1-3.3 and Lemma 1.3 imply Theorems 1-3. 
We outline the proofs of Lemmas 3.1-3.3. The proof of Lemma 3.3 follows from 

the estimates 

xe-u llci = IGPd - G,dllci < IGF llc-Ci |Pd-dllc 

< IG llc-ci (||P(d - d) ?| + ld - d lc) 

and Lemmas 3.1 and 3.2. 
The proof of Lemma 3.2 is based on the approximation theorems of de Boor [21] 

for the space of splines on nonuniform meshes. These theorems and Lemmas 1.2 
and 2.1 imply that there is a function x(t) c E which satisfies 

(3.1) xF(t) -x (t) 093, e Ix'(t) - x'(t)II < Ch2. 

Letting d = Lx, due to (3.1) we obtain Ild - dlloo < Ild - dlloo < Ch2, i.e., the 
assertion of Lemma 3.2. For details of the proof, see [7] and [9]. 

Remark 3.2. The case a = 1 - 2/voe ln(1/E) was considered in [7]-[9]. To establish 
the statements in the case a = 1 - 3/voE ln(l/E) there are no essential changes. 

The proof of Lemma 3.1 is based on the following statements. 

Proposition 3.1. The interpolation projection P exists if and only if there exists 
a basis N1, . . . , Nq (Ni = Ni(t, e, h)) in F such that, in the cases (ca) and (/3), the 
system of linear equations 

q 
(3.2) E ajNj (ti) = fi, i =-2m,...,2m, 

j=1 

has a unique solution; and, in the case (Qy), the system of linear equations 

q 

EZCjNj (i) = fi, i CI, 
j=1 

(3 3) { ct Nj ((m+2) }{fm+2 }, V 1,2, ... . k, 
j~=1 

ZcjNj((-m-2) = {f-m-2} 
v k + 1 ,...,, 

has a unique solution for any collection of vectors fi c Rn. 

Proposition 3.2. Let the basis {Nj (t) } from Proposition 3.1 satisfy the following 
conditions: 

1) EZ=l IlNj(t)IlRn < Ci for any t C [-1,1]. 
2) There exists a constant C2 such that for any collection of n-dimensional vec- 

tors fj with 11 fj 11 Rn < 1, the solution of system (3.2) (or (3.3)) satisfies the estimate 
maxl<j<q Jail %< C2. 

Then for the family of interpolation projections, the uniform estimate IIP lcc < 
C1C2 holds. 
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For proofs of these simple assertions, see [8] and [9]. 
A basis satisfying the conditions in Propositions 3.1 and 3.2 is called an N-basis. 

Thus to prove Lemma 3.1 and Theorems 1-3 it is sufficient to construct an N-basis 
in F = F(e, h). 

Lemma 3.4. There are functions 

Nij (t,e ) = bj (ti+1)Bi+1,1 (t) + bij (t, E) + ?tij (t, e), 

(i = m + io, m + io + 1, ... ,2m - 2; 

(3.4) i= -2m-2, ... ,-mr-io -4;j = k+1,k+2, ... , n), 

(i = m+io - 1,. . .,2m- 2; 

i = -2m - 2, .. ., -m - io - 3;j = 1, 2,..., k), 

in the space F such that 

(3.5) SUPP/lij C [t-2m,t-m-l] U [tm+?it2m], 

(3.6) supp4bij(t,E) C [ti+1,ti+3], 

(3.7) jdtAbij/dt'11Loo[_l1] < C/(1jj -rn)h-v, v = 0,1, 

(3.8) jdt'/1ij/dtflLo[tq,tq+1] ? C/max{(lil - m)3, (Iql - rn)3}h-', v = 0,1 

where io is a sufficiently large number and C is independent of io. 

Lemma 3.4 was proved in [7] and [11], where the estimates (3.7) and (3.8) were 
obtained only for v = 0. We shall prove them for v = 1. As it was shown in the 
proof of a lemma on basis functions in [9], the functions ,uij (t, e) can be written in 
the form btij(t, e) = L i (t, E), where ,ij c [S(A, 2, l)]n, and, moreover, 

(3.9) llKiilloo < C/l(ij - n). 

Consider the function blij (t, e) on an arbitrary interval [tq, tq+ 1]. Represent this 
function in the form 

(3.10) tij (t, E) = Ex'(t, e) - Aq(t) 'ij(t, e) - (A(t) - Aq(t)) Kij(t , 

where 

Aq(t) = A(tq) + A/(tq)(t - tq) + A//(tq)(t - tq)2. 

Taking into account the smoothness of A(t) and the fact that Kij (t, e) is a poly- 
nomial of the second degree on [tq,tq+l], by (3.9) and Lemma 2.1 we have 

(3.A1) |dt - A(tq))t'ij (t, E) < Ch 
(3-11) 

dtv ~~~~~~~~~L. [tq,tq?i] 
q 

? Ce2/((1il - m)(I q - m)) < C/ max{(fil - im), (Iql - m )3} 

for v = 0,1. According to estimates (3.11) and (3.8), for v = 0 we have 

(3.12) 11Ex'(t,e) - Aq(t)Kij(t,6) 1L[tq,tq+1] < C/max{(il - m)3, (jql - mn)3}. 

The function EKij (t, e) - Aq (t)Kij (t, e) is an n-dimensional vector function, each 
component of which is a polynomial of degree < 4 on [tq, tq+ 1]. Using the equiva- 
lence of norms in the space of polynomials of fourth degree on [tq, t4+1 ], by (3.12) 
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we get 

(3.13) (Ej-Aq (tij) < Ch-l /max{ ((ij -m)3, (q ql-r)3}. 

By (3.10), (3.12) and (3.13) the estimate (3.8) follows from v = 1. The estimate 
(3.7) for v = 1 may be proved analogously. The lemma is proved. 

For i =-m-io-2,...,m+?io-2 and j = 1,...,k, put 

(3.14) Nii(t) = Le(Bj,2bj(ti))i 

and for i =-m-io-3,..., ,m+ io-1 and j = k + 1,...,n define 

(3.15) Nij(t) = Le(Bi+1,2bj(ti+l)). 

As was shown in [8] and [11], the set {Nij} is a basis in F in cases (/) and (a). 
From (3.9) and (3.8) it follows that it is an N-basis. This completes the proof of 
Theorem 2.3. 

Note that in the case (ar) (Theorem 1) the proof of Lemma 3.1 is considerably 
easier and does not require construction of an N-basis (see [9]). 

4. PROOF OF THEOREM 4 

Let b1 (t) = (bi, (t), .. ., bi,n(t)) be an eigenvector of the matrix A(t), associated 
with A1(t), and let ei = (0,... 0,1,0,... , 0) be the unit vector. Put 

n~t - 1 t?1 
(4.1) d(t) = A(t)E bj,j(-1 2 - b1i, (1) 

t 
ei 

2 ~~~2 
i= 1 

Let x, be the solution of the problem (1.1)-(1.2), and u(t) the unique solution of 
the corresponding collocation problem (2.6). We shall prove that the estimate (2.9) 
holds (in the cases (ar), (,3), if E and h are sufficiently small. 

Let 

(4.2) X(t) = E___ - 1,i(l, E)I 2 )ei, 
i= 1 ~ ~ 2 

and 

(4.3) d(t) = LEx(t), 

where (1(t, e) = (i1(t, E), . . ., (1,n (t, 6))T is an element of an F.S.S. of the equation 

L,x = 0 (see (1.6)). From (1.6)-(1.8), (4.1) and (4.3) we conclude that 

(4.4) Ild(t) - d(t)H C3 < CE. 

Let x,(t) = G,d(t) and x(t) = G,d(t) be solutions of the problem (1.1)-(1.2) 
with right-hand sides d(t) and d(t), respectively, and let u(t) and uZ(t) be solutions 
of the corresponding collocation problem in cases (ar), (/), (-y). Take y,(t) = 

-x (t) - x (t) and v(t) = u (t) - u(t). 

Proposition 4.1. For sufficiently small E and h 

(4.5) 11y, (t) - v(t) l oc, < Ceh2. 
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Indeed, y,(t) solves the problem (1.1)-(1.2) with the right-hand side d(t) - d(t), 
and v(t) solves the corresponding collocation problem. Then the estimate (4.5) 
follows from (4.4) and Theorems 1-3. The proposition is proved. 

Rewrite the estimate (4.5) in the form 

(4.6) 11 (E - u) - (x, - u) 00 < CEh2. 

This means that the estimate (2.9) will be proved when we show that 

(4.7) liE(t) - u()l o> Ch2 

From (4.2) and (4.3) it follows that 

(4.8) x(t) = x(t) + ?I(t, )) 

since x(-1) = x(1) = 0. Let us prove the estimate (4.7). First of all we observe 
that, due to (1.6)-(1.8), we have 

((I(tbe))=i (t)exp v (s)ds 
(4.9) dt2 K) l() x j-]I ()dj 

+ 0(E-1) exp {- j w(s) ds} 

Since for -1 < t < tm-2 collocation points coincide with knots of the partition A\ 
in all three cases, we have cu (ti) = A(ti)Tu(ti)+d(ti) (i = -2m, -2m+ 1,... ,m-3). 
Hence on [-1,t-m3], 

(4.10) cu'(t) = R[A(t)Tu(t) + d(t)], 

where R denotes the projection which maps every n-dimensional vector-function f 
into the n-dimensional broken line interpolating f on t-2m,... , t-m_3. From (4.10) 
we have 

1 ~t 
(4.11) U7(t)= U(-1)?+ - R[A(s)TZ(s) + d(s)] ds 

for t C [-1,tm3]. It is obvious that 

1 ~t 
(4.12) xI(t) = xh(-1) + - [A(s)x,(s) + d(s)] ds. 

From (4.11) and (4.12) we obtain 

1 ,t~ 
F(t) - 8Z(t) = ( ( - 1) - tl(-1)) + - /(d(s) - Rd(s)) ds 

(4.13) 16 -i 

+ - ? RA(s) (hx (s) - ii(s)) ds = SI + S2 + S3. 

Assume that the estimate (4.7) does not hold. Then there exists a function 
v(E, h) - 0 as E - 0, h-* 0 such that 

(4.14) 1 | xF (t) - uff(t) 1 1 00< v(E, h) h2 

To be specific, let m be an even number. Put t = tL3/2m in (4.13). Then from 
(4.14) we have 

(4.15) Ul(-1)-u(-1)HIRn < v(E, h)h2 
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and 

(4.16) 111 J RA(s)[- (s) -(s)]ds 

< 
C(tL3/2m + 1)/ew(e, h)h2 < Cv(E, h)h2. 

The last inequality holds since Lemma 2.1 implies that, for -2m < i < -3/2m 
in cases (ar), (3), (a), 

(4.17) Cjeh < tj+j -ti < C2eh, C1 > O,C2 > 0. 

Hence (tL3/2m + 1) < Ce. 

Further, due to the smoothness of d(t) and (4.17), 

1 t-3m/2 
-2 

(4.18) - (d(s) - Rd(s))ds < CE 1(t-3m/2 + 1)(Eh) < C(Eh) 

Let I be the unit matrix and E be the identity operator in C[-1, 1]. Then, by 
(1.6) and (4.8), 

1 t_3m/2 

1 jt3m/2 [A(s) x(s) - RA(s)x(s)]ds 
EJ1 

1 ft3m/2 

= - i (E - R)(A(s)x,,(s))ds 

1 t_3m/2 

(4.19) ? 6 J 1 (E - R) (Vi (s) i (s, E))ds 

i rt 3m/2 

+ (E- R) (A(s) - v,(s)I) 

x ETI,1(sE) )exp ( vi (T, E) dT) 
= Jl + J2 + J3- 

To evaluate J1, J2, J3, let us use the formula for the residual term in linear 
interpolation on [ti,tj+1]. According to this formula, for each function f(s) C 
C2[-1, 1], for s C [ti,ti+,] we have 

(4.20) [(E - R)f(s)]= ( (s--2ti)(s-tj+j), TE [414+1], 

where j is a number of a component of the vector f = (f1, f2, .. ,n). 

Due to (4.2) we have Ix(s)I < C. By virtue of this fact and (4.17), (4.20), for 
f = X, we get 

(4.21) J1 < CEh2. 

Relations (1.7) and (1.8) imply that the second derivative of the function located 
under the symbol (E - R) in the expression for J3 is estimated by C/E. Considering 
this estimate and formulas (4.20) and (4.17), we obtain 

(4.22) J3< CEh2. 

Let us estimate J2. Choose a number j in such a way that bj,j (-1) > C > 0 holds 
for the jth component. Due to the smoothness of bi(t), for any 71 c [-l1it_3m/2] 
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with E small we have bj,j(1,e) > C > 0. Therefore from (1.6)-(1.8) and (4.9) we 
get 

(4.23) -2 [1'1j(l1(?1 ?j > E? c exp vJ (S)dS > CE-2, C > 0, 

for 71 E [ti, t+1] (-2m < i < -3m/2) (since by virtue of (4.17) 71 + 1 < Ce and 
vi (7) < -vo < 0) 

From (4.23) and (4.20), for s C [ti,ti+1] (-2m < i < -3m/2) we have 

(4.24) [(E - R) (vi (s) (i(s, ))] > Ce - t,)(ti+ -S)). 

By (4.24) and (4.17) we obtain 

1 t_3m/2 

1 J 13m/2 [(E - R)(vi (s)(i (s,))V 

1-3m/2-1 ti+ 

(4.25) > ; C C(s - tj)(tj+j - s)ds 
i=-2m 

_c -3m/2-1 (t,+1 - t,)3 Ch 3m00 C ;, (t+l-ti)3> Ch3m> Ch 2 C > O. 
E3 6 2 

However, (4.25) contradicts (4.13)-(4.19) and (4.21)-(4.22). Theorem 4 is proved. 

5. PRELIMINARY RESULTS 

This section is devoted to preparations for proving Theorem 5. 

5.1. On series and finite sums estimates. 

Proposition 5.1. For every -y and 6 (1 < y < 8) there is a constant C(y, 8) such 
that, for all numbers k and s, 

E 1 < C(y,8) 
i _ (1 + ?k - i)y(1? + ji 

- 
sj) - (1 + ?k - s)-y 

Proof. Let k < s. Let us divide the sum in the left side of the inequality into four 
sums, Z1E2ZE3ZE4, in accordance with the change in i: i C (-oo,k] for Z1; 
i c (k, k + [(s - k)/2]) for Z2; i C [k + [(s - k)/2] + 1, s] for 3; and i c [s + 1, oo) 
for E4. We then obtain 

1 1 C(y) C(Qy) 
Lw (1?s-k) _ (1 + Iki)' 

- 
(1 + s - k)8 - (1 + s - k)-(s 

The terms Z2, Z31 Z4 are estimated in the same way. The proposition is proved. 

Proposition 5.2. Let the function F(x) = f (k-x)g(x-s) be monotone increasing 
(decreasing) and continuous on the interval [q, p]. Then 

P-1 (P p \ 

E F(i) < J F(x)dx E F(i) < F F(x)dx . 
i=q q \i=q+1 q 

This is a modification of the Cauchy-MacLaurin criterion. 



694 I. A. BLATOV AND V. V. STRYGIN 

5.2. Some properties of singular exponents on the mesh /\. 

Lemma 5.1. For each -y c (0, 1] and q = m + 1, . . ., j (j > m + 1) the estimates 

(5.1) exp(vo(t - tj)/E) = 0*((q - m)3,l/(j - m)3'), t C [tq,tq+1], 

are valid. 

Proof. Due to Lemma 2.1 we have 
j-1 j13 

tj-t?>tj-tq+1= S hv > I = - ln((j-m)/(q-m)) + ?O(1). - VO w-m?2 vo 

Substituting this in the exponential we obtain (5.1). This proves the lemma. 

Lemma 5.2. Let functions gi(t, e), g2(t, e) C C3[-1, 1] be such that for some , c 
(0,1] 

Idtgl(t, E)/dt,l < Ce- exp(vo(t - tj)/E), t C [t'+1, tj], 0 < i < 3, 

jd2g2(t, E)/dtzi ?< CE- exp(ivo(tj - t)/e), t C [tjp 1], 0 < i < 3. 

Then there exist functions Z1 (t, e), Z2 (t, e) c S(A\, 2, 1), approximating gi and g2, 
such that 

dZ - gi) 

(5.2) ~~dti Loo [tq ,tq+l] (5.2) 

<(j - m)3'c(q - m)3-i3" (i= 0 1;m + 1 < q < j -1) 

and 

(5-3) d|(Z2 - g2) < (_ai (i = 0, 1; q > j). 
dt . L.o[tq,tq?i] (q - M 

Proof. By virtue of an approximation theorem of de Boor [21] there is a function 
Zl(t,E) such that for m + 1 < q < j - 1 and i = 0, 1 

dti Ch391 j L [tq-i,tq+21 

< C(E/(q - m))3-e3 exp(vo(tq - W-10. 

But, according to Lemma 5. 1, exp(vo (tq - tj) /E) < C(q -_m)3K/(j - m)3,, implying 
(5.2). The estimate (5.3) is obtained similarly. The lemma is proved. 

5.3. Properties of N-bases in trial spaces. Let us study the functions Nij from 
Lemma 3.4. Let bp(t) be an eigenvector of A(t) and let 

n 

(5 -4) ~~~~~~Ni j ,a,j (t) bp (t). (5.4) 'j = y 
p=1 

Lemma 5.3. The representations 

(5.5) -yp'3 (t) = 8jpBi+1,i (t) + 'ij (t, E) + ?ij (t, e) 

are valid, where 8qp is the Kronecker symbol, j,p = 1,... , n, t E [tm+i?+2, 1] U 

[-1,t-m-io-21, and i changes on the index set from Lemma 3.4. In addition, D 

and Aiiij satisfy formulas (3.5)-(3.8). 
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Proof. Let the vectors bp(t) be such that (bq(t), bp(t)) = 8qp for each fixed t (here the 
inner product is considered in Rn). From (5.4), by simple computations, one can 
show that -yij (t) = (Nij (t), b(t)). Hence by virtue of continuity and smoothness 
of bp(t) and by formulas (3.4)-(3.8), we get the lemma. 

Denote the length of the B-spline support in the representation (3.4), (3.14), 
(3.15) of the function Nij by Zij. Let L? = -ed/dt - AT(t) be the formal conjugate 
operator of L. 

Lemma 5.4. There exists a constant C such that for any x(t) E (L,o[-1, 1])n, 

liXiloo < 1, 

(5.6) L(x,LNij)l < Cmax{LLij,}. 

Proof. Let Lij < Ce. Consider the case in which Nij has the representation (3.4) 
(the representations (3.14) and (3.15) are considered similarly). We have 

(x, LANij)l < IIL*Nijlll < 11L*Bi+11bj(ti+1)JJ1 + ||L*)bij(t)JJ1JJLiij(t,F)J1. 

F'urther, by virtue of (3.7) and the inequalities IIBi+ 1, | 1 < CLij and IIB'1||1 < 

C, we have 

(5.7) IL*Bi+,,lbj (ti+,) ||1 + |L?ij |1i ? C(< + Lij) 

and, due to (3.8), 
s 

tp?1l IIL*pijlll < IEp' - llH A(t)pijIlRn dt 
Ip?m?+1 tP 

(5.8) < >m max{(pl -M)3, (Jil-M)3} 

+ z Chp 

IPI>m+l max{(lpl - n)3, (Jil - n)3}- 

FRom (5.7) and (5.8) the estimate (5.6) follows for Lij < Ce. In the case Lij > e, 
the representation (3.14) or (3.15) holds for Nij, the term 6ij is missing, and the 
term containing the B-spline is estimated similarly to (5.7). This proves the lemma. 

Lemma 5.5. For anyp andq with m+?io ?p < q < 2m-2, and forj = 1,2,...,rn, 
the estimates 

q 
L* E Nj < Ce ln((q -Tn)/(p -in)) 

V=P 1 

are valid. 

Proof. We have 
q q q q 

L> E Nvj (t) = E Bv+l ?,(t)ej (tv+ ) + L* E bVj (t) + L* E pVj (t) 
v=p v=p v=p v=p 

Further, by virtue of Lemmas 3.4, 2.1 and the above relation, we have 

q 

E Bv+?,i(t) -1 for t E [tp+2,tq+1l, 
v=p 
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and 

q 

|L*E Bv+ 1 1 (t)e-j (tv+ 1) || |BIP+ 1, (t) e- (tp+l 1) l 
v/=p1 

< C(E +tq+2 - tp+1) < CE ln((q -m)/(p -m)). 

Next, according to (3.6), (3.7) and Lemma 2.1, 

q 

L* ZJvj (te) 1 
V=P ~~~~1 

q q 

?6L ZJV((t,) ?0 JY3(t, C) 

? +2 q 1 2 qq2 1tK+1 

* 6 EjjVjjjv(t )lR-dt+ C c E Ivllvi s|R-dt 

K=m v=p+ K t=P K=p v=p 

q?2 

ec=m+l =p+ 

* CE ln((q - m)3/ (p - m)) 

Finally, 

q 

2m1 

baes {Nij / (t e, (Ni(t e) =d ?p Coreov)r, 2~m?1 JtK q- 2m-m?1 tV+ 

K=M+l K 
1/=p K=M+~ K v=p 

2m-1 q CE 
? S S max{(/ -mT)3,(V -mT)3} 

2m-1 2m-1 CE 

<5.9) max{(-T) 3,( (V - Tm)3 

?Cs 5=12mC2 

The lemma is proved. 

5.4. Properties of bases which are biorthogonal to bases {Nij }. 

Lemma 5.6. In the space F there are bases I{Aij(t)}I which are biorthogonial to the 
bases { Nij} (i.e., (Nj Ap,) = 6&j 6p); moreover, 

n 2m-2 

(5.9) Aij (t) = 5 5 -y Nps, 
s=1 p=-2m-2 
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where 

(5.10) yL j C/((l ?, Lp) 

(5.11) 81 < C/((i ? Pi-)5/2(LijL 1/2) 

This lemma was proved in [11]. 

Lemma 5.7. There exists a constant C such that for every i, j and v with 
-2m--2 < i < 2m-2, 1 < j < n, -2m < v < 2m-1, and for every t E 

[ta, t,+,], the following estimates hold: 

(5.12) |1Aij(t)||Rn < C/(Lij(1 + i - v|)2), 

(5.13) |1Aij(t)||Rn < C/((Lij max L>s)1/2(l + ji -v)5/2). 
1<s<n 

Proof. Applying Lemma 5.6, we have 
n 2m-2 

I|Aij(t)||Rn <? 2 -Y p' I I INps(t) Rn 

(5.14) s=1 p=-2m-2 
n v 

< c 1 7pis I{JBp(t)j + jj[uPS(t)|Rn-}, 
s=1 p=v-2 

where Bp (t) denotes a B-spline of the first or second degree in the corresponding 
basis function representation. 

F'urther, due to (5.10), Lemma 3.4 and Proposition 5.1, 

n 2m-2 n 

S J = YpS Sj -I Y IIIps (t) I IRn= 

s=1 p=-2m-2 s=1 m+io<IPI<2m 

n 

? C/L ijE E 1/(( + p - il)2 max{(lpl - m)3, (IIVI- m_ + 1)3}) 
s=1 m+iO<IPI<2m 

K C/(Lij max{(1 + ji -m)2, (1 + I IVI-ml)3}) < C/(Lij(1 +i _- V)2. 

The similar estimate of the first term in (5.14) follows from (5.10). Using a 
similar argument, the estimate (5.12) can be proved. 

Using (5.1), we can prove (5.13) in the same way. The proof is completed. 

Lemma 5.8. 

(5.15) IlAijIll1 < C. 

Proof. Lemma 3.4 implies that JINp.11, < CLps. Hence by (5.10) we have 
n 2m-2 

11Ai11<E E 1'ltYi INs1 IlA?j5l>1< 411Np.911 
s=1 p=-2m-2 

n 2m-2 

? CE E Lpq/((1 +?i -pI)2 max{Lps, Lij}) 
s=1 p=-2m-2 

n 2m-2 

? CE 1/(1 + ji _ pI)2 < C. 
s=1 p=-2m-2 

The lemma is proved. 
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Lemma 5.9. 

(5.16) IG,AijKlloo < Cmin{1/F,1/Lij}. 

Proof. From the inequalities IIQG(tj()Ijo < Ce and JINp,lLp.11, < C and Lemma 
5.6 we get 

n 2m-2 

|IG? Aij(t) II Rn < 2 -y 9 I I I 1G? NpN (t) ||Rn 

s=1 p=-2m-2 

n 2m-2 

< C / L II GF (Nps /Lps) I IRn/(l + Ii- pl )2 
s=1 p=-2m-2 

n 2m-2 

< C/FE E IINps1LpsIIj1(1 + Ii _pI)2 < CF. 

s=1 p=-2m-2 

By virtue of Lemma 1.1, IGII|-+L|L < C, and hence 

IIG,Aij(t)II3 < C|AjiIc < C/Lij. 
The lemma follows from the last inequalities. The proof is completed. 

5.5. Some properties of the Green function in the problem (1.1)-(1.2). 

5.5.1. Expansion of the Green function in the eigenvectors of the matrix A(t). Let 
b,(t) be the eigenvectors of A(t), and expand GE(t, () in the following way: 

n 

(5.17) GE(t,j) = Z/3v(t I)e[ e )T 
v=l 

Lemma 5.10. The estimates (v= 1, 2,... , n) 

(5.18) -q >( (t < + exp(-voIt- j/e), q = 0, 1 

hold. 

Proof. This follows from Lemma 1.1, the relation 0,(t, () = (G?(t, (), b*(Q)) (see 
the proof of Lemma 5.3) and the smoothness of the vector bVV(). 

5.5.2. On spline approximation of the Green function. Let tE [t8,t8+11 C [tm+io+2 11] 
We shall construct two specific spline approximations of the function G, (t, () as a 
function of ( when t is fixed. 

Lemma 5.11. There is a matrix function Zi(t) such that: 
1. For each fixed t, the rows of Z1 (t) are elements of the space F. 
2. max(C[t,,t,+l] |lZ1(t,) - Ge(t,j)|Rnxn < C/(e(v - rn)2), s < v < 2m - 1. 
3. suppZj(t, ) c [t*, 1], where t* = ts5[(s-m-1)/2] (t is fixed, ( changes). 
4. IIZl(t)IO < C/E (-1 < t,i ? 1). 

Lemma 5.12. There is a matrix function Z2(t, () such that: 
1. The rows of Z2(t, s) are elements of the space F for every fixed t. 
2. maxtC[t,,t+?] |1Z2(t,j) - G? (t,j) Rnxn < C/(e(s - m)2), m + 1 < v < s. 
3. supp Z2(t, () C [tm+1, t*], where t* > t,; t, is a knot such that either t* = 1 

or t* - = O*(E). 
4. 1?Z2(tI O < C/E (-1 ? t,i ? 1). 
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Let us prove Lemma 5.11. The proof of Lemma 5.12 is similar. 
Consider an arbitrary row gE(t, () of the matrix G, (t, () for some fixed t. For 

this row let us consider the problem LE6 (Q) = [g, (t, ()]T with boundary conditions 
(1.2). The solution 6,(t, () of this problem may be estimated as follows: 

||I6? (t, () 1l Rn = j| X G, ((, T)g g(t, T)dT| 

< 2 exp(-voj| - TF/&) exp(-voIt - TI/F)dT 

? (1+1 It Iexp - v0 
It T 

? C(%)/eexp(-svoIt - 41/E) 

for every s E (0, 1). Analogous estimates are also valid for 9i 6(t, 0)/&j, j 1, 2, 3. 
Letting s = 2/3, from Lemma 5.1 we get that there is a spline 6,,m(t, () defined 

as a function of ( on (t,+?, 1] and satisfying (for i = 0,1) the inequality 

(5.19) t6EIt(t,1) - , ? - j+(c - r)2 V > S. 

Continue the functions 6,m on the interval [-1, 1] in such a way that the quantity 
Fjj6,,mjjoo + II6,,mIIoo is controlled. With this aim in mind, take a point t* = 

tA 

(,u = s - [(s -rm - 1)/2]). It is easy to show that ts - t* = Q* (E). Let t** be a closer 
knot to the middle of interval [t*, ta]. Then t** - t* = 0*(E) and ts - t** = 0* (E). 
By using t, t**, and t, we construct "patch-functions" (see [7]) Z1 (t) and Z2 (t), 
parabolic splines and for which 

i)(t*) =0 (i,j = ol1), 

Z1(tO) = 0, Z(tl) = 1, Z2(tl) = 1, Z2(t2) = 0 

From estimates obtained in [7] it follows that 

(5.20) IIZ(i) (t) IIoo < CEi, IZ2 (t) 11 < CE- (i = 

For t E [t*,ts] we put 

(5.21) 6m (t, ) = 6e,m (t, ts+O) Z2 () + 6 ,m (t, tS+0) Zi ()- 

The continued function is sewn smoothly into the point t, and vanishes with 
its derivative at the point t*. Obviously it is possible to consider this function as 
defined in the whole interval [-1, 1], if we put 6,,m(t) = 0 for t E [-1, t]. From 
estimates of gE(t, () (see Lemma 1.1) and the definition of 6E,m(t, () it follows that 

(5.22) 1I 46$,M2(t,t.S+0)IIRn < C/1+'. 

From (5.20)-(5.22) we obtain 

(5.23) <|??mt CF.I[*)S 
Now let Zj(t, ) be the matrix whose rows are the vectors L,&E,m(t, ). Then 

from (5.19) and (5.13) we let Lemma 5.11. 
Let us establish two estimates on the approximation of the functions G,(t, ) 

and Zp(t, ). 
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Lemma 5.13. The following estimates hold: 

(G?(, (t Zl(, (t Aij (()df 
(5.24) Rn 

?(iM 3/2 (1 + Ii j 1)3/2) 

fort E [tS,t?+11, m+io + 2 < s < i + 2; and 

(G, (t, ) Z2 (t, I )) Aij (() (5.25) j ( Rn 

c~~~~~~~~ 
E (i rn)3/2 (1 + li -S)3/2) 

for t E [tS, t?+1], m + io + 2 < i + 2 < s < 2m - 1. 

Proof. Let us prove (5.24). The estimate (5.25) is established in a similar way. We 
have 

(G, (t,) -Z (t Aij 
t 

(5.26) < (G,(t,) - Zl(t,) 11 Rnxn Aij()Rnd 

+ / | G, (tj( -Zl (ti O) 11 Rn Xn 11 Aij (() || Rn<d( 

F'urther, due to (5.13), 
t 

II11G,(t, () - Z1(t, 0)||RnX n II Aij (4) I1 Rn<d 
(5.27) 1 

< |Gg(t,0||Rnxn ||Aij (() II< + 11 Zl (t, ) || Rnxn Aijj() 11 Rnd<, 
-1 -1 

it 
Ij G,s(t 1,^RnXn I IAij (4, 1IRnd 

-1~~~~~ 
(5.28) < exp(-vol - ?||i()|Rd 

c tJm Jtm+1 Jt 
\ m tm+l 

Since 61 ln ?1 <K 1/m and t E [tm?+, 1], we have exp(-voj( - tI/F) < Ce2 for 
E C [1, tm]. Thus, according to (5.15), 

(5.29) 1/6 J exp(-volt- K)IAiAj(Q)HRnd< < CE. 

F'urther, due to (5.13), 
if 

/tm?l1 

exp(-voj| - tI/F)IIAjj(() IRnd < CIIAjj(() IL,, [tn, tn + 

(5.30) Jt 
C(i-rM)1/2 C 

1 lnFI(i- M)5/2 - (?(i-rn)2)- 
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Now applying Lemmas 5.1, 5.7, 2.1 and Proposition 5.2 we obtain 

111? exp(-vol -t/)|>j , |Rnd 
? tnz S p 

C ex -vj - 
tjxp(jjAjj-tl/?)R- >i(, | n 

p=+ +1 

C s h (p-rn)3 (p-rn)1!2 (i-rn)1!2 

p=m?l + ( -)3(1 ? Pi- 

(5.31) C s ?(p -m)3(p -m)1/2(i -m)1/2 

?p=m?l (p - rn)6(s - rn)3(1 ? li - p)/ 

C (i-r)5/2 1 
< 

pl)5//2 ( ip)/ 

C (s-rnM)1!2 1 

< C l(s _ m)/(l + i _ s)5/2, s - m < i - , 

E t1/(1 + i _ 5)3/2) S - m > i - s, 

< C/(E(1 + i - s)3/2). 

By means of property 4 from Lemma 5.11 and (5.13) we get analogously 

re t ?jZ1(t, ) hRn xjAjj()jRd || j Z1(t, 1)Rnxn fAjj(d)fRfd 

S 

(5.32) < 
S 

E ((p - m)(i - rn))1/(1 ? j - 

P=/ p 

?c(i Tn)l1!21 <- (1 i - p)5/2(p -rn)1/2 

< C(i-n)1/2 1 < C 

E (S-M)1/2 __ (1 + i-p)5/2 - E(1 + i-S)3/2' 

where s' = s-[(s - m - 1)/2]. 

From (5.27) and (5.32) we obtain the estimate 

t 

JI,(t, )-Zl (t, ) 01Rn x n| jAi j (() ||Rn 

(5.33) -1 

K (1/(1+ ?-S)3/2 + M/(i-r)3/2). 
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Due to property 2 from Lemma 5.11, estimate (5.11), Lemma 2.1 and Proposi- 
tion 5.1, we have 

jG1 ,G(tj,) - Z(ti0)|Rnxnj1Aij(,) ||Rn < 

2m-1 (i- )1/2(v-rn)1/2 
V (V-m)3 V-r n /(1 + ji-v|)512 

(5.34) ~~C(i-rn.)1/2 2m1 1 
C(i-m)l/E (V )/2 (1 + ji -v1)5/2 

- ?(i-rM)2- 

From (5.33) and (5.34) we obtain (5.24). The lemma is proved. 

5.5.3. On decomposition of the matrix Zp(t, ~) in the basis functions of the space 
F. Since each row Zp(t, ,) (p = 1, 2) is an element of F, it may be decomposed in 
the basis {NiT3}, i.e., 

n 2m-2 

(5.35) Zp(tj() = (t)NT 
j=1 i=-2m-2 

where the aP (t) are column vectors. Let us study the coefficients ap (t). 
Lemma 5.14. Let t E [ts I ts+i1 C [tm+io+2, 11. Then 

(5.36) acPi(t) = /j(t,ti+2) ( ?+0 ( m +0 - rn 

(if s < i + 2, then forp = 1; if s > i + 2, then forp = 2), where i3j(t,) is the 
function from (5.17). 

Proof. To be specific, let s < i + 2. For ( E [tm+io+2, 1] we have 

n 2m-2 

(5.37) Z, (t,j) = (t)NT 
j=1 Kc=m+io 

since Nj = 0 for K < m + io and ( E [tm+io+2, 11 (see Lemma 3.4). 
F'urther, in accordance with Lemma 5.11, 

(5.38) Z1(t,j) = Ge(t,j) + 0(1/(E(i - M)2), E e [tv)tv+11, V > S + 1. 

Substitute ( = t, in this representation and apply (5.37). Then 

n 2m-2 

(5.39) 5 5 cj(t)N (N ) = Ge(tjtt) + 0(1/(?(V-m)2) 
j=1 ,C=m+io 

for v = s + 1, s + 2, .. ., 2m. To simplify (5.39) we use the decompositions obtained 

in Lemmas 5.3 and 5.10, and write 

n n 

N (t) = 5y'i(t)eq(t), GE (t, tv) =E 5 q(t,tv)eq(tv)- 
q=1 p=l 
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Substitute these decompositions in (5.39) and equate the coefficients of the vectors 
eq(tv). In accordance with (5.5) we get 

2m-2 

(5.40) S (6vn+2 ? %j (tv) + p,Ij(t,))a, -(t) = Bj(t, tv) + 0(1/(&(v - M)2), 
Kc=M+io 

v= s+1,s+2,...,2m, j = 1,2,...,n. 

Since Lemma 5.11 yields IIZ1(t,)IIRnxn < C/I, from (5.37) we then obtain 

2m-2 

(5.41) > (6$V+2 + (Icj (tv) + ?,j (tv))a,j (t) = 0(1/?), 
,c=m+io 

v=mn+io+2,...,s, j= 1,2,...,n, 

in a similar way. 
Let us consider (5.40), (5.41) as a system of linear algebraic equations with 

unknowns a1 j (t). From Lemma 5.3 it follows that for sufficiently large io the matrix 
of this system has its inverse matrix bounded uniformly in 6 and m. Therefore, 
since G (t,) Rn x n < C0/, we have 

(5.42) max Ila j(t)IlRn < C0/. 
v,j;tC[ [1,1 

By virtue of Lemma 5.3, the values (,j) and 4yj (ti) satisfy the relations 

(5.43) 

,lij(tv)l < Cmin{1/( -_ M)3, 1/(v - M)3}, I?,j(tv) = 0(1/(r -M))6U,,+2. 

Finally, transform the system (5.40) in the following way. Move the terms with 
number s = m + io, . , s - 2 to the right-hand side and use the estimates (5.42), 
(5.43). As a result we get 

2m-2 

6v+2(l + 0(1/(ri - m))a ij(t) = i3 (t,tv) + 0(1/(E(V - m)2) 

for v = s + 1, s + 2.. ., 2m. This is a system with a diagonal matrix. Solving this 
system, we have 

a,j (t)= /3J(t,t,+?2)(1 + 0(1/(ii - m)) ? 0(1/(M( ) - m)2))). 

Hence (5.36) holds. The proof is completed. 

6. PROPERTIES OF THE FUNCTIONS G,Aij(t) 

The two statements below play an important role in the proof of Theorem 5. 

Lemma 6.1. The following formulas are valid: 
1?. For--m < i < m -3, t E [ts,ts+il, and -2m < s < 2m -1, 

(6.1) I|GEAij(t)llRn < Or ((1 ? is) 2+ (n- )3/2) 

2?. For lil > m + io, t E [ts,ts+11, and s E [-2m,rm + io + 1] (i > 0) or 
s E [-m - io - 2, 2m - 1] (i < 0), 

(6.2) lGEAiJ(t)llRn < ~:E ((1 + ?i - s1)2 ? (lil - M)3/2) 
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Lemma 6.2. For jil > m + io, t E [t, t,+1], Isl > m + io + 2, and i > s we have 

(6.3) 

GEAiJ(t) = i3j(t,ts) (1 ? ? (ji i m) ? 10 (jil -rm)2 ? (1 + ji -s)3/2)) 

where the 3j (t, () are defined on [-1, 1] x [-1, 1], and 

(6.4) 1IRn < 1i exp(-volt - W/), q = 0, 1. 

6.1. Proof of (6.1). Let t E [tS,tS+1]. In accordance with (5.12), the relation 
Lij = 0*(1/m) and Lemma 1.1 we have 

(6.5) 

JIGEAij(t)llRn = GE(t A)AijQ<)de = E GE(t, A)Aij Q)d| 
1 ~~~Rn v=-2mrLnR 

?<i=m (1 + i - l)2 exp-vt - 

i=- 2rn im)2P 
2m-1 

< Cm E (1 + ji - m2 exp(-volt - t,1/6)(1 - exp(-voh,/F). 

If v changes from -m to m, then all values exp(-volt - tj1/6), except maybe a 
single one, would have been of order 0(62) due to the condition 6I ln 6I <? 1/m. If 
vl> m+1, then 

1 - exp(-voh,/6) < Ch,/1 < C/(jvj - m). 

From these facts we have 

(6.6) 

jGFAjj(t)11Rn < 
(I + ji ?Cm)2 + (i E (1 + ji- v)2 ve-v m 

-rn-i~ ~ ~ 
VM+ 

-m-1 1 exp(-volt - 
tVI/6) ? S 

1/(1 + ?i - v1)2 IvI - m 

Cmn (2m-1 1-mn-i 

- (1I + i -1)2 ( Cv- i)3(V-m) +IVI -m)(i-v)2 

F'urther, 

2m-1 1 2m-i 2m-1 

+1 (v-i)2(v-m) v=m+l v=2m-i+l 

Cln(m-i) C z ( v 
(n - i)2 v=2rn-i n- T)2 - (m- lil)3/2 

The second sum in (6.6) is estimated analogously. Thus from (6.6) we get 

|1GEAij||Rn < CTn(1/(1 + ji -s1)2 + 1/(rn -il)2). 

This concludes the proof. 
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6.2. Proof of (6.2). To be specific, let i > m+ io and t E [tS, tS+11 C [-1, tm+io+21 
(the other case is considered in a similar way). By virtue of (5.9), (5.10) and 
Lemma 5.1 

2m - t1 vR 

JIG,Aij(t)IIRn v= m st G, (t,I ) Aij (~)d< 

2m-1 n 

(6.7) 
< 

E L (1 + ji - v)2 exp(-volt - (116)< 
v=-2m s=1 t, 

C 2m1 1 
(1 +i - v M)2 (E[mt?i] exp(-Volt - /6). 

First consider the case when t E [t-m-io-2,tm+io+2]. Since 61 In 1 <K 1/m, due 
to Lemmas 5.1 and 2.1 we then have 
(6.8) 

0(62), for all v except maybe v = s- , 

max exp(-volt-(/6) ? Ss(1 1, iftf t E [ttml 
0(1/(1 ? v,, - mnl)2), if t E [tin, tm?io?21, 
0(1/(1 + v - ml)2), if t E[t m-io-2it-ml- 

Therefore from Proposition 5.1 we have 
2m-1 1 

6 _____ (1 ? |i - m)2 max exp(-volt - W/6) 

c -m-io 1 1 

(6.9) E V E (1 + I- V|)2(1 + IV - m)2) ? (1 + i-iS)2 

2m 1 N 

? S (1 + ?i v)2) 

((1 + ?i - Sl)2 (1 + Ii ml)2) 

From (6.8) and (6.9) we have 

IIGEAij(QIIRn ? E ((1 ? sl)2 ?(1 + |i-ml)2) 

which yields the estimate (6.2). 
Now let t E [-l,t_m-io-2]. In this case we have 

(6.10) |lGsAij(t)HIRn < j GE(t, )AijQ )d< + j G,(t ,)Ai( -Q)d 

Since ILijI > h2m_1 > Cm/6, by virtue of (5.11) one gets 

ft-MG C m t-m-1 C 

G, (t ~AijQ~d - m< / ~ j IjGs(tj0)IRnxnd < 

The second term in (6.10) may be estimated from the inequality 

|IGe(t, )0IRnxn < C/Fexp(vo(Q - t)/E) < C62 
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for g E [t_m, 1] (compare (6.8)). This concludes the proof. 

6.3. Proof of Lemma 6.2. To be specific, let i > m + i and s > m + io + 2. In 
the case s < i + 2 we have 

(6.11) GEAiJ(t) (GE(t, )-Z1(t, ))Aj(Q)d ?+j Z1(t,A)Aij(Q)d(. 

Due to Lemma 5.13, 

(6.12) 

] (GE(t 4, - Z1(t,4))AQ R)d n ? (IiI M)3/2 (1 + Ii s1)3/2 

F'urther, according to the definition of Aij(t) and (5.35), (5.36), 

(6.13) 

J Zi(t,J)AijQ()dc = c41(t) = Oi3j(t,ti+2)(1 + O(1/(Iil -_M)) + O(1/((QiI -_m)2). 

The relations (6.11), (6.13) and (5.17) imply formulas (6.3)-(6.4). Lemma 6.2 is 
proved. 

7. PROOF OF THEOREM 5 

7.1. Galerkin projection. Let D = {x E (C1[_1, 1])n: xl(- 1) = * =xk(-1) = 

xk+1(1) = ... = xn(1) = O} be the domain of definition of the operator L,. Let 
x E D and f = LEX. Then x is the solution of the corresponding problem (1.1)-(1.2) 
for d = f. 

Let Pm be the orthogonal projection of (L2[-1, 1])n onto F(e, m). It is easy 
to show that the Galerkin problem (2.7) for d = f is equivalent to the problem 
PmLEXm = Pmf or LExm = Pmf. Hence xm = GePmf = G,PmL,x. The operator 

Qm= G,Pm?L, D -* E is called the Galerkin projection (see [4]). Obviously 
Q= Qm. 

Error estimates for the solution of problem (2.7) are closely connected to an 
estimate of the norm of projection Qm. Namely, the following statement is true. 

Lemma 7.1. The following estimates hold: 

|x- Qmxlloo < (1 + WQmIloo)IIx - miool 

where 

IlQmHloo = |lQmLOO-*LOO = sup IIQmXIIOO, 
xED: JIxIK?<1 

and xr is the best approximation of x in E in the sense of L00[-1, 1]. 

Since QmxiSm = xm, the proof is evident. 
Since x? satisfies (1.5), one can easily obtain lxe - 

z?II00 
< C/mr3 through de 

Boor's approximation theorem analogously to Lemma 5.2. Hence, by means of 
Lemma 7.1, we conclude that it is sufficient to prove the estimate 

(7.1) Qmlloo < c 

uniformly in E and m. 
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7.2. Representation of Galerkin projection and preliminary estimates. 
Considering 

n 2m-2 

QM = G,PmL, and Pmy = E E (yNij)Aij(t) 
j=1 i=-2m-2 

we have 
n 2m-2 

(7.2) QmX = E E (LeX, Nij)GeAij(t)- 
j=1 i=-2m-2 

Since we need to bound the norm of Qm, we shall further consider JJxJJ" < 1. 
Integrating (7.2) by parts, we get rid of the derivative of the function x. As a result 
we obtain 

(7.3) 

Qmx = Z[(X' , LNij) + 6,(x (- 1), Nij(- 1)) + ?b,(x (1), Nij(1))]G,Aij(t), 
i'j 

where q$ and +b, are bilinear functionals, bounded uniformly on e, by means of 
which the terms outside the integral are expressed. 

From estimates of the function Nij (see Lemma 3.4) we obtain 

(7.4) 
b,(x(- 1), Nij(- 1)) < C, ?b,(x(1), Nij(1))| < C, i = -2m - 2, 2m - 2, 

(75) 1b,(x(-1), Nij(-1))l < C/(2m + 2 -il)31 

Ib,(x(1), Nij(1))I < C/(2m + 2 - lil)3, i & -2m - 2, 2m - 2. 

Due to Lemma 5.9, IJeG,AijlI < C. This fact and (7.4), (7.5) lead to 

(7.6) E e(0,(x(-1), Nij(-1)) + b,(x (1), Nij(1)))G,Aij < C. 

i,j 00 

From (7.3), (7.4) it follows that, if the bound 

n 2m-2 

(7.7) E >E (x, L*Nij)GEAij(t) ? C 
j=1 i=-2m-2 2o 

holds for arbitrary x E (L0o[-1, 1])n with llxllc, < 1, then it would be sufficient to 
prove the estimate (7.1). 

7.3. Proof of (7.7). We first notice that, by (5.6) and (5.16), every term in the 
sum (7.7) is bounded uniformly in ? and m. Thus it is sufficient to bound each of 
the expressions 

m-3 

(7.8) 1= E (xv LgNij)GAij(t) 

and 
2m- 2 

(7.9) 12 = >3 (x,L*Nij)GEAij(t) 
i=m+io 00 
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(the estimate of the sum Z i--2 can be obtained through a similar argument 
as for (7.9)). 

We first consider I1. Let t E [tsIts+1]. According to (6.1) and (5.6) we have 

m-3 c m-3 

E (x, LENij, GeAij (t)) < ?f E IIG,AijJ(t)H|Rn 
i=-m Rn i=-M 

m 1 

< C L: (1?i-sI)3/2 ? 0C 

i=-M -S)/ 

and hence 

(7.10) I, < C. 

Now let us bound 12. If t E [ts,ts+1] C [-1,tm+io+21, then 12 can be bounded in 
the same way as I1 by (5.6) and (6.2). Let t E [ts, tts1] C [tm+io+2, 1]. In this case 
by (7.6) and (6.3)-(6.4) we have 

(7.11) 

(X,)LNij) (j(tJTi+2) (1+0(1) + Q rn)2) 

t~~~~( + lii Tn)2 /) Ir 1 

+ ~ ~ ~ ~ ~ ~ ~~~~~+( ( (ji) (1 +Slim3/22 

z=m+to Rn t=m+to Rn~~~~~~R 
2m-2 1 2m 

? 
2m 

z /3J(t,ti?2) 
2- 

< C + Cim? (x)LN+j)i|j(t,ti+2) 
i=m+iO 7, Rn=M+iO 

2m-2 
12M- 

2 

F<thr C 'm exp(-VOlt -ti+21/e) ? (XLN )jtji2 

F'urther, due to Lemma 5.1, we get 

2m-2 1 

E i exp(-volt - ti+21/6) 
i=m+io 

< imi (9 m) 2 s- (S M)3 <) C (S - m) 
3 (i M- 

Thus, to complete the estimation of 12 it is sufficient to bound the last expression 
in (7.11). For every j = 1, 2, ...,n 

2m-2 s-2 

|E (XILE*Njj)Oj(tjti+2) <| (XILE*Nij)3j (t ti+2)| 
(7.12) i=m+io Rn i=m+io Rn 

2m-2 

| (XIti+2) 
i=s-1 Rn 
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To bound each sum in the right-hand side of (7.12), use Abel's transformation 

q q-1 

(7.13) E(Ai+l - Ai)bi = Aq+lbq - Apbp - EAi(bi+l - bi). 
i=p i=P 

To estimate the first sum put bi = j (t, ti+2); then 

s-2 

Ai =-(x,L*N>j) (i=m+io0m+io+1,...,s-2; p= m+io,q=s). 

Then, by virtue of (7.12) and (7.13), 

(7.14) 
s-2 

||(x,L LNij) 1j (t I ti+2) | 

i=m+io Rn 

< |(XILE E Nvj) Oj(t,rn+io+2) ?+ KX(x,L*Ns-2j)13j(t,ts)11Rn 
v=m+io Rn 

+ j x L3E Nvj (0j3(t,ti+2)-0 /(t,ti+1)) 

i=m+io v=i Rn 

Further, due to Lemmas 5.1, 5.5 and estimates (6.4), 

i(X L? Nvj) i (t, tm+io+2) 
V=m+io Rn 

(7.15) C< x( Le E Nj) exp(vo(tm+io+2 -t)/e) 
V=m+io 

< ?ln(s-m) < C, 

(7.16) 11 
(X?LNsj)13(t,ts) 

|| < C||x|| < C, 

- in- 

| xi L*E Nvj (j3i(t, ti+2) - 13(t, ti+ 1))l 
S=m+io V=i Rn 

< C |E |( LE E Nmj )h- (1l/? ) exp (-vSol|t- ti+2 I /?) 
71=m+io V=i Rn 

(7.17) < Ciixiioo, 

||E i (--2lim )exp(-VOlt -ti+21/6) 

i=m+io Rn 

c 
s-3 

< ( )3 E3ln((s-Tn-2)/(i-Tn))(i-n)2 < C 
i=m+io 

(the last step in (7.17) is made by means of Proposition 5.2). 
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From (7.14)-(7.17) the estimate for the first sum in (7.12) follows. The second 
sum is estimated in the same way by setting 

i-i 

b 3i =j(t, ti+2), i i= (X,?Ii) 
V=S-1 

i = s-1,s,...,2m-1, p=s-1, q =2m - 2, 

and making calculations analogous to (7.14)-(7.17). This completes the proof of 
Theorem 5. 

8. NUMERICAL EXAMPLES 

To confirm the theoretical results we consider the following examples. 

Example 1. 

(8 1) EX 3 1)X (-1) x = (x, x) 

(8.2) x1(-1) = x2(1) = 0. 

The exact solution of the problem (8.1)-(8.2) may be written in the form 

x (t) = Ci exp(2t/6) - C2 exp(-2t/6) + 0.5, 

x (t) = 3C, exp(2t/6) + 3C2 exp(-2t/6) - 0.5, 

where 
C, = (exp(2/ ) - exp(-2/6))/(2(3 exp(4/6) + exp(-4/6))), 

C2 = (3 exp(2/6) - exp(-2/6))/(2(3exp(4/6) + exp(-4/6))). 

Example 2 ([23]). 

(8.3) ex = A(t, A)x + f(t, El A), X = (X, x2)T x 1(_1) = X2(1) 0, 

A(t, A) = E(t A) (-1 ) E-1(t, A), 
(8.4) ~~~~~~~sin At Cos AtN 

E(tj,A) = E (tA) cosAt -sinAtY 

Example 2 differs from the example considered in [23] only by inessential vari- 
ation of the boundary conditions. Analogously with [23] (see (7.1)) we write the 
solution of the problem (8.3), (8.4) in the form 

x(t) = E(t, A)41(t, A)s + xP(t), 

where E(t, A)b(t, A) is a fundamental matrix of a homogenous system (8.3) (see 
[23]) and xp(t) = (exp(t), exp(-t))T. A constant vector s should be chosen in such 
a way that x(t) satisfies the boundary condition (8.4). As in [23], we set A = 7r/4. 

The results of the numerical computations for Examples 1 and 2 are presented 
in Tables 1-6. For e and m the corresponding cell contains the quantity 

ee,m =max max maxI x~(~+kt? tX)10 - (tj + k(tj?1l i=1,2 -2m<j<2mO<k<10 M(tj + k(t+lk-?t)/10)0 + t)/10) 

in the upper part of the cell and the observed rate 

VE,m = log2(eE,m/2/eE,m) 

in the lower part of the cell. 
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The numerical results for the collocation method are given in Tables 1-4. Ta- 
bles 1 and 2 contain the results for Examples 1 and 2, respectively, for the algorithm 
in cases (a) and (A); the analogous results for case (-y) are presented in Tables 3 
and (4). The numerical results for the Galerkin method are presented in Tables 5 
and 6. The symbol "-" means the observed rate becomes negative. 

Our numerical examples show that the observed rates of convergence for the 
collocation method tends to 2 uniformly in E and m with 1/(em) < const in cases 
(a) and (3), and in E and m with em < const in case (-y). Note that, for E < 1/m 
in cases (a) and (3), and for 1/m <? E in case (-y), errors of evaluation strictly grow. 
This means that different values c/m need to be applied in different algorithms. 

The observed rate for the Galerkin method is close to 3 uniformly for small E. 

TABLE 1 

\\ f 4 8 16 32 64 128 

2E -1 3.51E - 2 7.35E - 3 1.73E - 3 4.24E - 4 1.05E - 4 2.62E - 5 
2.25 2.08 2.03 2.01 2.007 

1E- 1 4.68E-2 9.33E-3 2.19E-3 5.38E-4 1.33E-4 3.31E-5 
2.33 2.09 2.03 2.01 2.008 

3E-2 5.60E-2 1.08E-2 2.58E-2 6.27E-4 1.55E-4 3.85E-5 
2.38 2.06 2.04 2.02 2.008 

IE- 2 5.88E-2 1.12E-2 2.69E-3 6.54E-4 1.61E-4 4.01E-5 
2.40 2.05 2.04 2.02 2.009 

IE- 3 1.71E-1 1.13E-2 2.74E-3 6.66E-4 1.64E-4 4.08E-5 
3.92 2.05 2.04 2.02 2.009 

IE-4 1.84E + 0 1.14E-2 2.75E-3 6.67E-4 1.65E-4 4.09E-5 
7.34 2.05 2.04 2.02 2.009 

IE-5 1.88E + 1 8.54E - 2 2.75E - 3 6.67E - 4 1.65E - 4 2.009 
7.79 4.96 2.04 2.02 2.009 

IE- 6 |1.91E + 2 8.67E -1 6.04E -3 6.67E-4 1.65E -4 4.09E- 5 1E - 6 
~~~7.78 7.17 3.13 2.02 2.009 
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TABLE 2 

I S \ | 4 8 16 32 64 128 

2E - 1 3.51E - 2 7.35E - 3 1.73E - 3 4.24E - 4 2.39E - 4 4.51E - 2 
2.29 2.08 2.03 0.83 _ 

1E - 1 4.82E - 2 9.33E - 3 2.19E - 3 5.38E - 4 1.33E - 4 3.31E - 5 
2.33 2.09 2.03 2.01 2.008 

3E - 2 5.60E - 2 1.08E - 2 2.58E - 3 6.27E - 4 1.55E - 4 3.85E - 5 
2.23 2.06 2.04 2.02 2.008 

1E -2 5.89E - 2 1.12E - 2 2.69E - 3 6.54E - 4 1.61E - 4 4.01E - 5 
2.40 2.05 2.04 2.02 2.009 

IE - 3 6.02E - 2 1.13E - 2 2.75E - 3 6.66E - 4 1.64E - 4 4.08E - 5 
2.41 2.05 2.04 2.02 2.009 

1E-4 6.03E - 2 1.14E - 2 2.75E - 3 6.67E - 4 1.65E - 4 4.09E - 5 
2.41 2.05 2.04 2.02 2.009 

1E-5 6.03E - 2 1.14E - 2 2.75E - 3 6.67E - 4 1.65E - 4 4.09E - 5 
2.41 2.05 2.04 2.02 2.009 

1E-6 6.03E - 2 1.14E - 2 2.75E - 3 6.67E - 4 1.65E - 4 4.09E - 5 
2.41 2.05 2.04 2.02 2.009 

TABLE 3 

m S \ | 4 8 16 32 64 128 

2E - 1 3.74E - 2 8.23E - 3 2.03E - 3 5.OOE - 4 1.24E - 4 3.10E - 5 
2.18 2.02 2.02 2.01 2.004 

1E - 1 4.10E - 2 8.46E - 3 2.07E - 3 5.06E - 4 1.25E - 4 3.12E - 5 
2.28 2.03 2.03 2.01 2.006 

3E - 2 4.33E - 2 8.44E - 3 2.05E - 3 4.99E - 4 1.23E - 4 3.06E - 5 
2.36 2.04 2.04 2.02 2.008 

4.40E - 2 8.39E - 3 2.03E - 3 4.94E - 4 1.22E - 4 3.03E - 5 
IE-2 

2.41 2.03 2.04 2.02 2.009 

IE - 3 1.76E + 0 8.37E - 3 2.02E - 3 4.91E - 4 1.21E - 4 3.01E - 5 
7.71 2.05 2.04 2.02 2.009 

1E-4 1.92E + 2 9.38E - 1 1.27E - 3 4.91E - 4 1.21E - 4 3.01E - 5 
7.68 6.02 4.69 2.02 2.009 

IE - 5 2.OOE + 4 LOlE + 2 1.34E + 0 1.96E - 2 3.27E - 4 3.O1E - 5 
1E - 7.63 6.23 6.10 5.90 3.44 

1E-6 OO 1.04E + 4 1.39E + 2 2.12E + 0 3.29E - 2 5.16E - 5 
OO 6.23 6.03 6.01 9.23 
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TABLE 4 

\\ 1 4 8 16 32 64 128 

2E -1 3.42E -2 2.59E -2 4.68E -2 6.68E -2 1.19E -1 1.64E + 0 
0.40 

1E-1 3.97E-2 8.40E-3 3.07E-3 4.45E-3 5.29E-3 5.98E-3 
2.24 1.45 _ _ 

3E2 4.29E-2 8.43E-3 2.05E-3 4.99E-4 1.23E-4 7.06E-5 
2.35 2.04 2.04 2.02 0.80 

IE- 2 4.35E-2 8.39E-3 2.03E-3 4.94E-4 1.21E-4 3.03E-5 
2.38 2.05 2.04 2.02 2.009 

IE-3 
4.46E - 2 8.37E - 3 2.02E - 3 4.91E - 4 1.21E - 4 3.01E - 5 

2.42 2.05 2.04 2.02 2.009 

1E-4 4.48E-2 8.36E-3 2.02E-3 4.91E-4 1.21E-4 3.01E-5 
2.42 2.05 2.04 2.02 2.009 

1E-5 4.48E-2 8.36E-3 2.02E-3 4.91E-4 1.21E-4 3.01E-5 
2.42 2.05 2.04 2.02 2.009 

1E-6 4.48E-2 8.36E-3 2.02E-3 4.91E-4 1.21E-4 3.O1E-5 
2.42 2.05 2.04 2.02 2.009 

TABLE 5 

S \ | 4 8 16 32 64 128 

2E -1 1.18E -3 1.49E -4 1.85E -5 2.28E -6 3.12E -7 4.61E -8 
2.99 3.01 3.02 2.87 2.66 

1E-1 1.73E-3 2.13E-4 2.66E-5 3.32E-6 4.08E-7 5.21E-8 
3.02 3.00 3.00 3.02 3.23 

3E -2 2.66E-3 2.88E-4 3.47E-5 4.25E-6 5.26E-7 6.47E-8 
3.21 3.05 3.03 3.01 3.02 

1E-2 3.62E-3 3.88E-4 4.28E-5 4.78E-6 5.76E-7 7.05E-8 
3.22 3.18 3.16 3.05 '3.03 

IE-3 5.21E-3 6.04E-4 6.87E-5 7.64E-6 8.26E-7 9.11E-8 
3.11 3.14 3.17 3.21 3.18 

IE-4 6.15E-3 7.40E-4 8.82E-5 1.04E-5 1.21E-6 1.39E-7 
3.05 3.07 3.08 3.10 3.12 

1E-5 6.76E-3 8.25E-4 1.00E-4 1.22E-5 1.46E-6 1.75E-7 
3.03 3.04 3.04 3.06 3.06 

1E-6 7.18E- 3 8.83E -4 1.08E-4 1.33E-5 1.62E 1.98E-7 
3.02 3.03 3.02 3.04 3.03 
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TABLE 6 

[ \ \ | 4 8 16 32 64 128 

2E-1 5.66E-3 5.80E-4 9.53E-5 1.21E-5 1.52E-6 2.92E-7 
3.29 2.61 2.98 2.99 2.38 

IE-I 7.31E-3 9.58E-4 1.23E-4 1.56E-5 1.96E-6 2.46E-7 
2.93 2.96 2.98 2.99 2.99 

3E-2 8.56E-3 1.13E-3 1.43E-4 1.82E-5 2.28E-6 2.85E-7 
2.92 2.98 2.97 3.00 3.00 

1E-2 8.93E-3 1.22E-3 1.54E-4 1.96E-5 2.44E-6 3.05E-7 
2.87 2.99 2.97 3.01 3.00 

IE-3 9.10E-3 1.25E-3 1.59E-4 2.02E-5 2.53E-6 3.14E-7 
2.86 2.97 2.98 3.00 3.00 

1E-4 9.11E-3 1.26E-3 1.59E-4 2.03E-5 2.53E-6 3.13E-7 
2.85 2.99 2.97 3.00 3.01 

1E-5 9.11E-3 1.26E-3 1.59E-4 2.03E-5 2.53E-6 3.09E-7 
2.86 2.99 2.97 3.00 3.03 

1E-6 9.12E-3 1.26E-3 1.60E-4 2.04E-5 2.62E-6 3.27E-7 
2.86 2.98 2.97 2.96 3.00 
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