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ERROR ESTIMATES FOR SCATTERED DATA INTERPOLATION 
ON SPHERES 

KURT JETTER, JOACHIM STOCKLER, AND JOSEPH D. WARD 

ABSTRACT. We study Sobolev type estimates for the approximation order re- 
sulting from using strictly positive definite kernels to do interpolation on the 
n-sphere. The interpolation knots are scattered. Our approach partly follows 
the general theory of Golomb and Weinberger and related estimates. These 
error estimates are then based on series expansions of smooth functions in 
terms of spherical harmonics. The Markov inequality for spherical harmonics 
is essential to our analysis and is used in order to find lower bounds for certain 
sampling operators on spaces of spherical harmonics. 

1. INTRODUCTION 

The purpose of this paper is to study Sobolev-type estimates for the approxima- 
tion order resulting from using strictly positive definite kernels to do interpolation 
on the unit sphere Sn-I C Rn, n > 2. In this paper, estimates on the rate of 
convergence of interpolants are obtained when the nodes for the interpolation are 
in arbitrary position. Denoting the set of such nodes by X C Sn-1, we call 

(1) h(X) sup inf d(p, x) 
pESn-l Xczx 

the mesh norm of X, where d is the spherical distance on the unit sphere, hence 

d(p, q) = arccos(p . q), p, q E Sn-1. 

We study the interpolation problem in an appropriate Hilbert space H of continuous 
functions on Sn-I, which is defined by an underlying positive definite kernel r,. This 
space is often called the 'native space' associated with the kernel r, in the literature 
on radial basis functions. Our aim is to establish uniform error estimates for the 
interpolant uf = Uf,x,n, which is of the form 

Uf(p) = E c1,(x,p) with cx E C, 
xeX 

and which agrees with f in the nodes X. Employing the associated norm of the 
Hilbert space, our estimates take the form 

(2) Ilf - uf IIco < const haf IIJfH, f E H. 
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The rate Ol in (2) is related to the smoothness of the kernel r, and the smoothness 
of the function f to be interpolated. Thus, these results may be seen as a successful 
extension to S'-1 of related work of Duchon [5], and Madych and Nelson [12]. 

There has been an increasing awareness of the importance of approximation on 
the sphere with obvious applications to meteorology, oceanography and satellite- 
based techniques such as the Global Positioning System (GPS). For a nice account 
of other potential applications, see [8]. 

Over the last several years, there has been much fundamental work done by Free- 
den and colleagues [7] as well as by Wahba [21], [22] concerning approximation on 
S 1. Nevertheless, even though spherical positive definite functions, as introduced 
by Schoenberg [19], have been around for years, cf. Cheney [2], the approximation 
power of such functions on Sn-1 has not been nearly as well understood as on RS. 
For instance, the previously known rates of approximation of a given function f by 
interpolants had been 0(h) regardless of any underlying smoothness assumptions 
[7]. 

In this paper, we use an idea of [6], where rates of convergence of interpolants 
were obtained for S2 in case the interpolation points corresponded to gridded points 
on the rectangle of angles for the parameterization of S2. However, in this paper, we 
are able to utilize specific results about spherical harmonics to extend these rates 
of convergence to the scattered case. The results of Bos et al. [1] on tangential 
Markov inequalities proved very helpful in this respect. 

There are totally different approaches to interpolation and representation of data 
on S2 which mainly use tensor products of polynomial and trigonometric splines on 
the rectangular parameterization of S2. For an account of results in this direction 
the reader might consult [3], [20]. 

The outline of the paper is as follows. In Section 2 we collect results about 
spherical harmonics and the series representation of functions and distributions 
on the sphere. The tangential Markov inequality for spherical harmonics is also 
formulated. It is applied in Section 3 in conjunction with the notion of norming 
sets. We prove the existence of lower bounds for the sampling operator 

T(f) = f x 

in the maximum norm, where X is a finite knot set and f is taken from the space 
of spherical harmonics of maximal degree ?. The lower bound depends on the 
mesh norm of X (Proposition 1). Section 4 gives a brief introduction to strictly 
positive definite kernels on Sn-1 and the underlying native spaces H. The main 
part of the paper, Section 5, starts with the statement of the general error estimate 
due to Golomb and Weinberger [10]. Our main theorem, Theorem 2, gives an 
estimate for the error bound in this theory which depends on the mesh norm and 
the smoothness of the positive definite kernel. Some consequences are given, which 
include Sobolev type estimates of the interpolation error. We finish our paper by 
giving two examples for interpolation on S2, in Section 6. 

2. PREREQUISITES 

2.1. Spherical harmonics. As our main analysis tool we use an orthonormal basis 
of L2 (Sn-1) which consists of spherical harmonics. For the reader's convenience, 
we describe some basic facts here, and refer to the book [14] for a more elaborate 
description. 
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Let Hf be a homogeneous polynomial in R n of degree f which satisfies AHf = 0, 
where A? is the Laplacian. Then the restriction Y. = HeSn-l is called a spherical 
harmonic of order ?. The dimension of the space Ve of spherical harrmonics of order 
f on Sn-I will be denoted by N(n,m); hence 

(3) N(n, 0) = 1, and N(n y) = 2 f+n,-2 ( I for ->31 

see [14, p. 4]. The space Ve is known as the eigenspace of the Laplace-Beltrami 
operator on Sn-1 for the eigenvalue 

A> = f(f+n -2), > 0. 

Different eigenspaces Ve and Vm, f 5$ m, are orthogonal with respect to the usual 
inner product, 

(f, g) j_ f (p)g(p) dS, 
Sn-1 

with dS the surface element of Sn-1. The space of spherical harmonics up to order 
f is given by 

j=o 

and has the dimension N(n, ) = N((n + 1, ). Let 

{Yt,k; 1 < k < N(n,r)} 

be an orthonormal system of eigenfunctions of Ve. Then the famous addition the- 
orem (see [14, Thm. 2]) states that 

(4) E Ye,k(P)Ye,k(q) = ,^ e(n; p q), p, q E Sn-l, 

where P(n;.) is the Legendre polynomial of degree f in n dimensions, normalized 
by P(r(n; 1) 1. (With this normalization it is a multiple of the Gegenbauer 

polynomial 0(Th2)/2.) The constant wn-I denotes the surface area of Sn-I. 

2.2. Functional and distributional spaces. The collection of orthonormal func- 
tions 

(5) {Yt,k; ? > O, 1 < k < N(n,r)} 

is complete in L2(Sn-1). With the coefficients 

fe,k J _ f(p)Y.,,k(p) dS, 
Sn-1 

for any function f E L2(Sn- ) its associated (Fourier) series 

cx N(n, ) 

(6) f = E E fe,kye,k 
?=O k=1 

converges in L2 (Sn- 1). Such expansions (as in the case of periodic functions) can 
also be defined in a wider sense, namely for distributions on the sphere. Since Sn- 

is compact, these distributions are the series (6) with tempered (i.e. polynomially 
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bounded) coefficients. The Sobolev space HS(ST-l) with real parameter s consists 
of all distributions f such that 

co N(n,4) 

2lf = E (1 + A>)Sf1k12 < xo. 
e=o k=1 

For more details we refer to [11, ? 1.7]. 

2.3. Markov inequality. The restriction of any spherical function Y. of order f 
to a great circle (which is a geodesic of the sphere) is a univariate trigonometric 
polynomial of degree less than or equal to ?. Hence the classical Bernstein inequality 
[4, Section 4.1] implies 

JDTYt(p)j l< ? f ?jVe0 

where DT denotes any unit tangential derivative at p and the maximum norm is 
on Sn-1. This is a simple case of the general Markov inequality for polynomials on 
compact smooth algebraic submanifolds of Rn without boundary [1]. We will use 
it later in its integrated form 

(7) JY(p) -Y(q) I < f d(p, q) IIYII CoD p, q (E Sn-1, y EV 

3. NORMING SETS IN C(Sn-1) 

The following notion from Banach space theory will be very useful. 

Definition 1. Let V be a normed linear space with dual V*. Given two subspaces 
W c V and Z c V*, the set Z is called a norming set of W if there exists some 
c > 0 so that 

sup z(w) >cw for all w E W. 
zeZ, IIzII=1 

By an application of Markov's inequality, we can find the following result for the 
normed space C(Sn-1). 

Proposition 1. Any knot set X with mesh norm h(X) < 1/(2f) gives rise to a 
norming set Z = span{86; x E X} of Vf, with constant c = 1/2. Moreover, 
there exists a norming set of Ve in C(Sn-1) of cardinality < const .n-1, where the 
constant is independent of ?. 

Proof. It suffices to prove the first part of the proposition, since then the second 
part follows by standard covering arguments. Hence let us assume that X is given 
as in the assumption of the theorem, and let Y E Ve, IIYIl , = 1. Then IY(p)l 1 
for some p E Sn-1. Hence we can pick x E X so that d(p, x) < (1 + e)/(2V), where 
e > 0 can be arbitrarily small. Markov's inequality implies 

JY(p) - Y(x)I < f d(p,x) IIYII,,x < (1 + e)/2. 

We thus have shown that IY(x)l > (1 - e)/2, and letting e go to zero proves the 
proposition. D 

We concentrate on point evaluations as functionals in V* next. Given a finite 
knot set X c Sn-1, we call 
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the sampling operator. Obviously, T is a contraction. Since X is discrete, C(X) 
may be identified with RIXI, equipped with the maximum norm. Hence its dual is 

(C(X))* span{6x8c(x); x E xI) 

where 0xlc(x): C(X) -* R denotes the evaluation functional when restricted to 
C(X) instead of C(Sn-I). The adjoint of the Qperator T is the isometric imbedding 
of (C(X))* into (C(Sn-l))*. These are some preparatory remarks for the following 
application of norming sets. 

Proposition 2. Let W be a finite dimensional subspace of C(Sn-1) and Z 
span{ x; x E X}, where X is a finite knot set. Assume that Z is a norming 
set of W with norming constant c > 1/2. Then W* can be identified with the space 
span{8xlw; x E X}. Moreover any w* E W*, IIw* I = 1, can be identified with 
some 

Z ax8xw, where E laxl < 2. 
xEX xex 

Proof. We consider the sampling operator restricted to W, 

To = Tlw : W --+T(W). 

Since Z is a norming set of W, To is a one-to-one isomorphism and JJT5-111 < 2. 
Also 

To*: (T(W))* W 

is an isomorphism with Ij(To*)-1II < 2. In other words, for any w* E W* with 
Iw* 1 = 1, there is 

t* E (T(W))* so that To*(t*) = w*, 11t*11 < 2. 

Finally, T(W) is a finite-dimensional subspace of C(X). Thus, by the Hahn-Banach 
theorem, every t* E (T(W))* extends to a functional 

l* E (C(X))*, I* =E axx c(x) 
xeX 

so that 

t* = I* IT(W) and 11t*11 = 111*11 Elax < 2. 
xeX 

For fixed w* E W* let us denote by l* = Exax0xlc(x) this extension of the 
functional (Ta*)-1w*. Then obvious transformations give 

Kw*,w) =w*,To-JTOw) = ((To*)-lw*,Tow) 

K aX6x C(X),1ToW) K ax6x IW, w) 
x 

for all w E W. We thus have completed the proof of Proposition 2. DU 

Remark. The above situation can be compared to usual Lagrange interpolation. If 
the knot set X from above has the same cardinality as the dimension of W, then 
the operator T0-1 is identical to the interpolation operator that maps arbitrary 
real data on X to an interpolating function in W. Hence the lower constant c of 
the norming set can be chosen as the reciprocal of the so-called Lebesgue constant, 
which is the norm of the interpolation operator. In this sense, the notion of norming 
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sets gives us more freedom, since we can work with a larger knot set X. We make 
use of these degrees of freedom in order to obtain uniform bounds for c. On the 
other hand, there is no known sequence of knot sets for Lagrange interpolation on 
spheres, which gives rise to a uniform bound of the Lebesgue constants. Best results 
in this direction may be obtained through interpolation on the basis of extremal 
fundamental systems as described, e.g., in Rein-ter's book [17, Chapters 14 and 15]. 

Let us summarize our findings in the following result which applies to spherical 
harmonics. 

Corollary 1. Let X C S'-1 be a finite knot set with mesh norm h(X) < 1/(2f). 
Then for any linear functional v* on Ve, 1lv*l1 = 1, there exists (ax)xex with 

ExZx laxl < 2 so that 

v*(Y)= Kax6xlY, yEV1. 
x(Ex 

Moreover, there exist such knot sets whose cardinality is bounded by a multiple of 
tn-I ?1. 

4. POSITIVE DEFINITE KERNELS AND THE NATIVE SPACE 

In this and the next section we describe the variational approach to scattered 
data interpolation. The general framework was developed by Golomb and 
Weinberger in 1959 [10]. We put special emphasis on positive definite kernels in 
C(Sn-I X Sn-1), 

cx N(n,) 

(8) r,(p, q) = E E af,kYt,k(P)YE,k(q), p, q ESn-I 
?=O k==1 

with all coefficients af,k > 0. We further assume from the beginning that i 

H 2s(Sn-I x Sn-1) for some s > 0, or equivalently 

coD N(n,4) 

(9) Z(1+2Ae)2s S a2,< 00o 

t=o k=1 

Kernels of the form (8) are called convolution kernels, since they act by multiplica- 
tion in the Fourier domain, e.g. 

f f(p) r,(p, q) dp = at, kh, k Yt,k(q). 
Sn-1 4, 

They give rise to generalized Hermite interpolation as studied in the papers [6], [15], 
which also deal with the unisolvency of these interpolation problems. 

The kernel r, defines a Hilbert space 

H,c :={f E D'(Sn-1); Ilfl12 5lfek < 0 

a,k k 

the so-called native space for interpolation. This notion was introduced by Madych 
and Nelson [12] for the study of scattered data interpolation in Euclidean space 
R n. Here we are in a different situation since Sn-I is compact and has a discrete 
Fourier domain. Note that our assumptions on ,s yield Hk C HS(Sn-1) (which is 
a continuous imbedding), since ae,k = o(1 + 2A~)` by (9). Hence the Lagrange 
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or Hermite interpolation problems can be posed as long as the Sobolev Imbedding 
Theorem guarantees that these functionals are continuous on H,. In some cases of 
interest the native space is even contained in C0?(Sm-i). This follows if the kernel 
has exponentially decaying ae,k, which occurs for generalizations of Gaussian or 
multiquadric kernels of the Euclidean space. 

5. ERROR ESTIMATES FOR LAGRANGE INTERPOLATION 

5.1. General interpolation. Our error estimates are given in terms of Fourier 
expansions (6). The main idea is taken from the paper [6]. We give a somewhat 
different description here, which we think is more closely related to the classical 
form of interpolation as treated by Golomb and Weinberger [10]. It also avoids the 
restriction to a subspace of the native space H, which intrinsically appears in [6]. 

Theorem 1 [10]. Let Lm, 1 < m < M, be linearly independent continuous linear 
functionals on the native space H,. We define the space 

F {v E H,; Lm(v) = 0 for all 1 < K < M} 

and for given data d= (dm; I < m < M) E RM let 

Fd= {v E Hk; Lm(v) = dm for all 1 < m < M}. 

Then there exists a unique interpolant u E F' n Fd; i. e. 

(10) Lm(U) = dm for all 1 < KM < M. 

This interpolant satisfies the following properties: 
(MI) First minimum property: For any v E Fd 

llvll,f = llull2 + llv - uI1". 

(M2) Second minimum property: For another continuous linear functional L on 
Hk the value Lu is the best approximation to {Lv; v E Fd, llvll, = r- , 
meaning that 

sup ILv-Lwl > sup ILv-Lu 
VECr VECr 

holds for all w E H,k. Here Cr {v E Fd; llvll, = r}, r > 0, denotes a 
hypercircle, and if Cr is non-empty, then equality holds only for w = u. 

Furthermore, the hypercircle inequality is satisfied: If y E F denotes an element 
with unit norm for which LIF attains its least upper bound, then 

(11) ILv-Lu12 < ILy12 (r2- _uI1K) for all V E Cr. 

Let us add a few remarks to this theorem. The space F' is often called a spline 
space. It is spanned by the basis functions 

um (p) : =Lm r, (, vp), I <mIn< M. 

Secondly, the term ILyl in the hypercircle inequality can be written as 

ILyI = dist, (VL, F1), 

where VL is the representer of the linear functional L in the native space and the 
distance is taken in the norm of this space. In this form the hypercircle inequality 
was given in [6]. The term ILyl, for special choice of the functional L, is sometimes 
called the power function (Schaback [18]). 
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Our aim is to give estimates for IL(y) in the hypercircle inequality. This is done 
by eliminating a number of Fourier coefficients and finding bounds on the 'tails' by 
means of appropriate assumptions on the kernel r,. If we employ the expansion (6) 
of y, then we obtain by orthogonality 

( M co N((n,) M 

I Ly l L - (LE c,L, y < L - (LE cmLm) K,k IW,tkj1 

m=1 
Lm =O>I>Z(LZm= 

for arbitrary coefficients cm E R. Let us assume for the moment that the cm can 
be chosen in such a way that 

M 
(12) (L-, cmLm)Yt,k = ? for all ? < Al I < k < N(n,1). 

m=l 

Then the Cauchy-Schwarz inequality gives 

N(n,4) 2 N(n,4) M 2 
|Ly|2 < E E IWy,k _. c atLk 5 CmLm) e,k 
L1 ?S> k=S a,k >A k=1 m=l 

(13) N(n,4) M 2 

< E E at,k L-E cmLm Yt,k since Ilyll) = 1. 
?>A k=1 m=l 

This is a reformulation of Proposition 3.6 in [6], but the restriction to a subspace 
of H, was removed. The further technique consists of estimates for the last series, 
which are not based on the norm of the native space, but on some easily accessible 
norm (like l or Sobolev norm). 

5.2. Lagrange interpolation by splines. In this paper we concentrate on error 
estimates for Lagrange interpolation. The native space setting is as follows. We 
are given a set of interpolation knots 

X = {xm; 1 < mn < M} C Sn- 

whose mesh norm is 

h(X) sup d(p,X), 

see (1). The functionals to be considered in Theorem 5.1 are Lm = 8x, 1 < m < 
M. The pointwise (or Loo-) error of interpolation is measured by 

L = 8p with p E Sn-I fixed, 

which represents the functional to be approximated. The 'splines' in the interpola- 
tion space F' are defined by 

uZm(p) = Lm<, ( p) = Pi(Xm,P), 1 <Km < M. 

Let us also use the notation 

(14) a. max at,k and x0 = p. 
1<k<N(n,4) 

We can now formulate the main result of this paper. It makes use of Corollary 1 
in order to give estimates for the pointwise interpolation error. 
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Theorem 2. Assume that the set of interpolation knots X C Sn-1 has mesh norm 
h(X) < 1/(2A), for some A E N. Then there exist numbers Cm E R, 1 m< < M, 
so that 

M 
(L ->CmLm)Y0 for allYEVA, and El>cm< 2. 

m=l m 

Moreover, the term ILy12 in the hypercircle inequality (11) can be bounded by 

12y < 5 -N a 
(N(,, 

?)Amax (Pe(r; X(nv 

< 5(M + 1) E ZaN(nr e). 

aJn-I ~>A 

Here P (n; -) is the Legendre polynomial in n dimensions, and Amax denotes the 
maximal eigenvalue of the symmetric, positive semi-definite matrix. 

Proof. The existence of the coefficients (cm) with Em lcmI < 2 is a direct con- 
sequence of Corollary 3.3. Next we give bounds for the last series in (5.4). Let 
xo = p, co = -1. If we use the Addition Theorem (4) in the second line, then the 
inner series in (13) gives 

N(n,m) M 2 N(n,4) M 2 

E (L - E cmLm)Ve,k 5 at,k 5 CmYe,k(Xm) 
k=1 m=1 k=1 m=0 

N(n,4) M 

a< 5i 5 c,c Y,k(Xp)Y,,k(Xv) 
k=1 p,v=O 

~N(nry) 
m 

=af ( - c cv P(n; x,, x>,). 

The matrix (P(r(n; xX, x.)),,-,, is positive semi-definite and symmetric. Hence we 
proved the first estimate in the theorem, since 

M M 2 
ES CM12 < |C012 + E lCml < 5? 

The second inequality follows from the fact that each entry in the above matrix has 
absolute value < 1 (cf. [14, Lemma 9]) and Gershgorin's circle theorem. Thus the 
proof of Theorem 2 is completed. D 

Let us note that the estimate of the maximal eigenvalue of the given matrix 
(P (n; X,f x>)),1,> is rather pessimistic. There are a few known configurations of 
knots where Amax = 1, cf. [17, Chapter 13]. This is also the least possible value, 
since the trace of the matrix is given by 

M 

5 P(n; 1) = M + 1. 
m=0 

Further investigations in order to improve the estimate of Amax are deferred to 
future research. 
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Many interesting kernels i, as in (8) have the form 
00 

where f is a univariate function in Ck [-1, +1j. Hence the Fourier coefficients in 
(8) are aek = -a, by means of the Addition theorem (4). For these kernels the 
Sobolev estimate (9) takes the form 

co 

t E H2s(Sn- x s ) Z(I +A 2 (f+ n - 2))2s a N(n, ?) <c. 
e=o 

This implies that 

-aN(n, ?) = o(f 4) for f -* oo. 

In our subsequent error estimates, which are simple consequences of Theorem 2, we 
will therefore use assumptions on the decay of the sequence (aeN(n, f))e>o, where 
ae is defined in (14). 

Corollary 2. Let i be a positive definite kernel in C(Sn-1 x Sn-1) as in (8) with 
all Fourier coefficients a,k > 0. Furthermore, let X = {xI,... ,XM} C Sn-1 be a 
knot set with mesh norm h = h(X), and let 0 < A E N be such that 1/(2A + 2) < 

h(X) < 1/(2A). 
Then for given f E H,<, there is a unique interpolant 

u E span{s (x, .); x E X} 

with fIx ulx and satisfying the error estimate 

Ilf U112 < 5(M A 1) IlfI2 Zae N(n,?), max ae1k Y -a~~ 
N(nj),1?a?Nmax 

a 

Moreover, with special assumptions on the decay of the coefficients ae we have 

approximation orders as follows: 

* If ae N(n, I) < c1 (1 + ?)- for some a > 1, then 

5c, 1d 
-U|| 

- 5nC1 |lfAK2 
(M + 

(I 

| 
de' 

5c,1) _ Ilf 112 (M + 1)(1 + A) 

* If ae N(n, f) < cl e-c(1+?) for some a > 0, then 

l-u2 - 12flfl (M + 1) e d(1?)d 
Wn - c1 

= 5ci flfll (M+? 1)e (l?). 

It should be noted that the factor M + 1 will usually depend on h(X) as well. 
A natural assumption would be (see Proposition 1) that 

(16) h(X)n-1 (M + 1) < const. 

We can thus give approximation orders in terms of the mesh norm of X. 

Corollary 3. Let X be any knot set on Sn-1 whose mesh norm h satisfies (16). 
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(a) If -ae N(n, I) < c1 (1 + ?)- for some a > n, then 

(17) flf - u112 = O(h`Tn). 

(b) If ae N(n, e) < c1 e-(1+?) for some a > 0, then 

(18) -lf _ 
U112 = O(hl-n e`/2h). 

The constants in these upper bounds can be chosen to depend only on cl, a, the 
constant in (16), the dimension n and the norm Ilf 11,. 

The upper bound in (b) is sometimes called 'spectral approximation order', since 
the convergence as h tends to 0 is faster than any polynomial in h. 

6. Two FAMILIES OF KERNELS AND NUMERICAL RESULTS 

In this last section we present numerical experiments for scattered data interpo- 
lation on S2. Let us begin with the discussion of two different families of kernels on 
Sn-l which have the special form (15). The first kind consists of C?-functions with 
exponentially decaying Fourier coefficients; hence part (b) in Corollary 3 applies to 
this family. They are defined by a generating function of the Legendre polynomials. 
FRom [14, p. 30], we have that, for 0 < z < 1, 

(19) ~gen (p,q) = =1-Nzn2) ~P~(;p ) 
(l9) (1 + z2-2zp . q)n/2 =zEN(nye) zePp.q). 

The exponential decay and positivity of the Fourier coefficients is obvious from 
(19). 

The second family is defined as follows. For any even v E N we let 
oo ?? kpq 

(20) /v (p,q) =N(n, ) a(') Pe(n; p q) = co +(P ), 0 > 0. 
e=o k=l 

This is a continuous function, since the power series Zk zk/lk converges uniformly 
in the interval [-1, +1] due to our assumption v > 1. Strict positivity of the 
coefficients in this power series also implies that all coefficients a(>) in the Fourier 
expansion are positive. This very general fact is a consequence of Schoenberg's 
work [19] on positive definite functions on spheres. The power series are sometimes 
called poly-logarithmic functions and are discussed in connection with the zeta- 
function. MATHEMATICA has an intrinsic definition for them. By some more 
detailed analysis one can show that 

N(n, ) a(v) =0(l-2v) for ? -o 

and this order cannot be improved. In particular, the decay rate is independent 
of the dimension n. Hence these kernels provide examples for the assumptions of 
Corollary 3(a). 

We use three different knot sets of cardinalities 20, 100 and 400 on S2 for our 
computations. They are 'almost' equidistributed on the sphere and were computed 
by software which was kindly given to us by U. Depczynski. The mesh norms were 
computed numerically. We found values of 0.66, 0.29 and 0.17 for the corresponding 
mesh norms. Similar knot configurations were also developed by J. Fliege and U. 
Maier [13]. Figure 1 shows the knot locations as seen from one side of the sphere 
for the two larger knot sets. 
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FIGURE 1. Spheres with 100 and 400 knots, denoted by small arrows 

TABLE 1. Parameters for the definition of the function f 

i pi,l Pi,2 Pi,3 ni ai Ci 

1 0 0 1 1 5 2 
2 0.932039 0 0.362358 1 7 0.5 
3 -0.362154 0.6.1228 0.696707 2 6 -2 
4 0.904035 0.279651 -0.32329 1 5 -2 
5 -0.0479317 -0.424684 -0.904072 1 2.1 0.2 

The function f to be interpolated is synthesized by taking the sum of 5 expo- 
nentials: 

fi(q) = ci e- ai (1-pi.q)ii 1 < i < 5, q C S2, 
with some rather arbitrary choices for the parameters ci, ai, ni and the 'centers' 
pi E S2 which are given in Table 1. Each fi is certainly in C?, and it is closely 
related to a Gaussian centered at pi and involving the (2ni)-th power of the geodesic 
distance from this point. Hence f is an element of a large variety of native spaces. 
We depict a surface plot of (3 + f (p))p in Figure 2 in order to give a better picture 
of the range of the function values of f, which is the interval from -1.85 to 1.28. 

We then compute three different interpolants to the scattered data which is 
defined by the function values of f on one of the knot sets. Our first interpolant is 
based on the kernel of type (20) with least possible parameter v = 2. The second 
interpolant is of the same type, but uses this kernel with parameter v = 4. Finally, 
the third interpolant is based on the kernel 'c ge in (19); hence the parameter 
z = 1/2 is used here. The maximal deviation IIf - u lI, where u is the interpolant, 
is computed on a rectangular grid of angles, which is of size 100 x 100. These 
maximal errors and sharp numerical estimates for the mesh norm of X are included 
in Table 2. Our computations of interpolants and mesh norms were done with 
Matlab 5 on a Pentium 166 MMX. The knot generating software is a C++-routine, 
which also runs on the same machine. All examples required at most 2 minutes for 
the knot generation and 3 minutes for the Matlab routines for interpolation and 
error estimates. 
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4. 

FIGURE 2. Surface plot of (3 + f (p)) *p, where fis the superpo- 
sition of five Gaussians on the sphere 

TABLE 2. LOO-errors for interpolation with different kernels 

# of points in X 
20 100 400 

mesh norm h(X) 0.66 0.29 0.17 
K2 0.700 0.060 0.0073 

LOO-errors with kernel K4 0.552 0.017 0.00046 
Kgen 0.716 0.019 0.000077 

Our numerical data allow a first observation to be made. There is a nice coin- 
cidence of the theoretical results in Section 5 and the numerical result in Table 2. 
As it should be expected from the smoothness properties of f, the smoother in- 
terpolants give lower error bounds for the interpolation. We defer more extensive 
numerical testing and more precise asymptotic error estimates for the specified 
kernels in (19), (20) to the future. 

Let us end our presentation with a remark. The interpolating spline spaces which 
are studied in this paper have a natural meaning for multiresolution analysis on the 
sphere. Nested subspaces of the native space are simply obtained by nested knot 
sequences. First results in this direction were recently obtained in [9], [16]. 
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