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THE ASYMPTOTIC EFFICIENCY 
OF RANDOMIZED NETS FOR QUADRATURE 

FRED J. HICKERNELL AND HEE SUN HONG 

ABSTRACT. An L2-type discrepancy arises in the average- and worst-case error 
analyses for multidimensional quadrature rules. This discrepancy is uniquely 
defined by K(x, y), which serves as the covariance kernel for the space of 
random functions in the average-case analysis and a reproducing kernel for 
the space of functions in the worst-case analysis. This article investigates 
the asymptotic order of the root mean square discrepancy for randomized 
(0, m, s)-nets in base b. For moderately smooth K(x, y) the discrepancy is 
O(N-1 [log(N)](s-1)/2), and for K(x, y) with greater smoothness the discrep- 
ancy is O(N-3/2[log(N)](s-1)/2), where N = bm is the number of points 
in the net. Numerical experiments indicate that the (t, m, s)-nets of Faure, 
Niederreiter and Sobol' do not necessarily attain the higher order of decay for 
sufficiently smooth kernels. However, Niederreiter nets may attain the higher 
order for kernels corresponding to spaces of periodic functions. 

1. INTRODUCTION 

Multidimensional integrals over the s-dimensional unit cube C' = [0, 1)s may be 
approximated by the sample mean of the integrand evaluated on a set P with N 
points: 

(1.1) Q(f)- () 
zCP 

Here, P is allowed to have multiple copies of the same point [Nie92, p. 14]. The 
quadrature error, 

Err(f) f(x) dx- N ( 
depends on the quality of the quadrature rule Q and the roughness of the integrand 
f. 

Average-case and worst-case quadrature error analyses are equivalent in the fol- 
lowing sense (see [Wah9O], [Rit95] and below): 

(1.2) EfeF[Err(f)]2 = [D(p)]2 = sup [Err(f)]2 
fcX 

V(f)=1 
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Here E denotes the expectation, and F is a space of random functions with zero 
mean at every point and with covariance 

(1.3) K(x,y)-EfF[f(x)f(y)1 V(x,y) EC x C . 

The function K also serves as a reproducing kernel for the Hilbert space (X, (,)). 
The variation of the integrand is defined as 

(1.4) V(f) [(f, f) - (1, f)2/(1, 1)] 1/2 

where 1 denotes the unit function. The discrepancy, D(P), serves as a measure of 
uniformity of the set P and is defined as 

(1.5) D(P) { J K(x,y) dx dy - K(z,y) dy 

1/2 

+N2 P K(z, z') } 

This discrepancy may be thought of as an L2-type discrepancy because it is a 
generalization of the L2-star discrepancy. It does not include the popular LO- 
star discrepancy [Nie92, Definition 2.1], however, it does include other L2-type 
discrepancies derived in [Hic98]. 

Since the discrepancy depends only on the quadrature rule and not on the inte- 
grand, it is a suitable figure of merit for quadrature rules, or equivalently sets P. 
There has been much research on generating low discrepancy sets. For moderate N 
one may compare different sets by actually computing their discrepancies [MC94], 
[Hic95], [Hic96a], and for large N one may find the asymptotic order of the dis- 
crepancies for certain kinds of sets [HW81], [Nie92], [SJ94]. One popular family of 
low discrepancy sets is the (t, m, s)-nets in base b. The purpose of this article is to 
present some new results for the discrepancy defined in (1.5) for (0, m, s)-nets that 
have been randomized according to [Owe95], [Owe97a], [Owe97b]. A summary of 
the main results are as follows: 

i. For reproducing kernels with moderate smoothness the root mean square dis- 
crepancy is O(N-1[log(N)](s-1)/2) for large N (Theorem 5.1). 

ii. For reproducing kernels with greater smoothness the root mean square dis- 
crepancy is O(N-3/2[log(N)](s-1)/2) for large N (Theorem 5.1). 

iii. Numerical evaluation of the discrepancy for Faure, Niederreiter and Sobol' 
(t, m, s)-nets show that they do not, in general, have O(N-3/2[log(N)](s-1)/2) 
discrepancy for sufficiently smooth reproducing kernels (Figure 2). However, 
the Niederreiter nets appear to have O(N-3/2[log(N)](s-1)/2) discrepancy for 
a smooth reproducing kernel corresponding to a space of periodic functions 
(Figures 3-6). 

The next section provides some background on reproducing kernels and the 
average- and worst-case error analyses mentioned above. Section 3 defines (t, m, s)- 
nets and describes the randomization proposed by Art Owen. The main results of 
this article are derived in Sections 4 and 5. Some examples are discussed in the last 
section. 
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2. REPRODUCING KERNELS AND ERROR ANALYSIS 

For the sake of completeness we outline the derivation of (1.2). For the average- 
case analysis it is assumed that the functions in F have zero mean and covariance 
K(x,y) as given in (1.3). The left hand side of (1.2) is derived by interchanging 
the order of the expectation and the integration or summation: 

EfCF[Err(f)]2 = Ef F f (x) dx - (z)j 

Ef CF f (x)f (y) dx dy 
Ls 8xcs 

_ E f(z)f(y) dy + N2 E f(Z)f(z')1 

= / K(x,y) dx dy - 
2 

S K(z,y) dy + 2 , K(z, z') 

= [D(P)]2. 

For the worst-case error analysis the function K(x, y) is assumed to be a repro- 
ducing kernel of a Hilbert space (X, (,)), that is, 

f(y) = (K(.,y),f) Vf e X. 

(See [Sai88], [Wah90] for a fuller discussion of reproducing kernels.) This definition 
implies that the functional that evaluates f at a point must be bounded, something 
which is not true for L2(Cs), but is true for spaces of sufficiently smooth functions. 
It can be shown that any reproducing kernel K is symmetric in its arguments, 

K(x, y) = K(y, x), 

and positive-definite, 
N 

Z a( )a(k)K(x(i),x(k)) > 0 Va(i) E R, x() E Cs. 
i,k=l 

F'urthermore, for any positive-definite function K there corresponds a unique Hilbert 
space (X, (,)) for which it is the reproducing kernel [Wah90, Section 1.1]. 

The worst-case analysis relies on the Riesz Representation Theorem. Since X has 
a reproducing kernel, the quadrature error, Err(f), is a bounded linear functional, 
and so 

Err(f) = ( V,f) Vf E X, where ((x) = Err(K(.,x)). 

Since all quadrature rules of the form (1.1) are exact for constants, 0 = Err(f) = 

((, 1). This implies that ((, f) = ((, fj), where fi is defined as the part of f which 
is orthogonal to the function 1: 

fi-- f - (1, P)/14 1). 

The Cauchy-Schwarz inequality then implies the following error bound: 

(2.1) 1Err(f)l = I(t,f)l = I(:,fL)l ? (I )l/2(f_If_)l/2. 
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The variation, V(f), may be identified as (f', fi)1/2, and 

(2.2) ( = Err ((x)) 

=jX (x) dx- +Z(x) 

= JK K(x,y) dy dx-- 
2 

K(z,y) dy? j2 E K(z,z') 

= [D(P)]2. 

Thus, (2.1) is equivalent to the right hand side of (1.2). Note that this error bound 
is attained when f is a constant multiple of (. In other words, ( is a worst-case 
integrand. 

It is important to note that in general a random function in F will have infinite 
variation with probability one (see [Wah90, Section 1.1]). This means that F, the 
space of functions arising in the average-case error analysis, is much larger than X, 
the space for which the worst-case error bound is derived. 

The L2-star discrepancy is an important example of the discrepancy. Let S = 
{1, ... , s} be the set of coordinate indices. For any u C S let Jul denote the number 
of points in u. Let Cu = [0, 1)U denote the Jul-dimensional unit cube involving 
the coordinates in u. This notation allows us to distinguish spaces of the same 
dimension in different coordinate directions. Let PU denote the projection of P 
into CU. The quantity 

IPu n [0, xu)I _ Vol([0,xu)) 
N 

is the difference between the empirical distribution associated with the sample Pu 
and the uniform distribution on the unit cube CU. The L2-star discrepancy is based 
on the L2-norm, 11 112, of this difference [Hic98]: 

(2.3) [D*(P)]2 S U V [0 U) 0 -Vol([0, XU)) 1 2 ~~~~N2 

(2.4) (4) 2Er(3 2) N E S J[2-max(zj, Zj)]. 
zc:Pi=l ~~~z,'Z CP j=l 

The worst-case error bound in (1.2) involving the L2-star discrepancy was derived 
by Zaremba [Zar68]. The variation of the function in this case is 

[V(f)]2 = xu 
0CUcS XU -",=(1.1 2 

The average-case error analysis in (1.2) for the L2-star discrepancy was obtained 
by [Woz91], [MC94]. The space of random functions, F, corresponds to Brownian 
sheets. In the context outlined above, the L2-star discrepancy is based on the 
reproducing kernel 

(2.5) K(x,y) =f [2_ i?Yi 2XYj . 
fr=1 
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This reproducing kernel is a special case of reproducing kernels that are products 
of a 1-dimensional reproducing kernel K: 

S 

(2.6) K(x, y) = I|K(xj, yj). 
j=1 

The discrepancy defined in (1.5) for product reproducing kernels can be written as 

(2.7) D(P)-tf [ kj1jk(xi,Yi) dxl dyl - 2 Z Ef K(zj, yj) dyj 

? 

1/2 

N2 E k(Zf( 3,z 
z,z'CP j=l 

Some specific examples of product reproducing kernels are considered in this article. 
Wahba [Wah9O, Section 10.2] and others have used the product reproducing 

kernel with 

(2.8a) K(xl, yl) =- - B2({x1 - Yl}) + (i!)2Bi(xl)Bi(yl), 
i=O 

where p3 is an arbitrary positive constant, the Bi(x) are Bernoulli polynomials 
[AS64, Chapter 23], and the notation {x} means the fractional part of a scalar 
or vector x. The positive integer -y indicates the degree of smoothness of the re- 
producing kernel and the corresponding Hilbert space X. In one dimension the 
Hilbert space X with this reproducing kernel k consists of functions whose -y order 
derivative is square integrable over [0,1). In s dimensions the Hilbert space X with 
the corresponding product reproducing kernel consists of functions whose mixed 
partial derivatives of order up to -y in each coordinate are square integrable over 
C'. The case -y = 1 appears in [Hic96b]. The discrepancy corresponding to the 
product reproducing kernel based on (2.8a) is 

D(P) _ {-l + ?j 2 S (2 
)! B 

(2.9a) k(x1,y ) - ((32Y 

_ _ _ _ _ _ _ _ _ - Y i } ? 1 ,2 

where the meanings of p3 and ty are the same as above. The Hilbert space cor- 
responding to the product reproducing kernel based on (2.9a) consists of periodic 
functions with the same smoothness condition as for (2.8a). The discrepancy cor- 
responding to (2.9a) is 

(2.9b) D(P)-{-1- + ,N2 E 3i[-(7(j)lB2y({zj -z}) 2 + }1/ 
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The discrepancies based on the above reproducing kernels will be considered in 
Sections 4-6. 

3. RANDOMIZED (t, m, 8)-NETS 

To define a (t,m,s)-net consider the base b representation of a point z = 

(zI Zs) zS)Cs: 

Z = (O-ZlIZ21Z31 ..., , -Z12Z22Z32 ...... - -Z1sZ2sz3s ... ), 

where the b-nary digits zij range from 0 to b - 1. Let Z+denote the space of 
s-dimensional non-negative integer vectors. For any k = (k1, ...,k) E Z+, let 
cr(k) = k1 + + k,. There are bkl, bks = b (k) different ways to choose' the first 
k b-nary digits of a point z: 

(3.1) Z11, ...,ZkiZ12, ...,Zk22 ...,Zsi ...,Zk,s. 

(If kj = 0, then no digit zij is being specified.) A (t, m, s)-net contains at least one 
point with every possible choice of the first k digits, provided that v(k) is small 
enough. 

Definition 3.1. Let t and m be non-negative integers with 0 < t < m, let s be a 
positive integer, and let b be a positive integer greater than one. A (t, m, s)-net in 
base b is a set P containing N = bm points in CS. For any possible choice of the 
first k b-nary digits (3.1) there exist bm-of(k) points in P with these digits, provided 
that a(k) <m-t. 

Owen [Owe95] proposed randomizing the digits of the points in a given (t, m, s)- 
net Po to obtain a new (t, m, s)-net P. For every digit index i = 1, 2, .. ., every 
coordinate index j = 1, . . . , s and every ( E Po one obtains a random digit zij that 
contributes to a random point z E P. The randomized net P satisfies the following 
two assumptions: 

Assumption 3.2. a. For any z E P each digit zij is uniformly distributed on 
the set {0,...,b-1}. 

b. For any two points z, z' E P the random vectors (z1, 4z),..., (z5, z') are mu- 
tually independent. 

Assumption 3.3. For any two points E, (' E Po let z, z' E P be the corresponding 
points in the randomized net. Suppose that (j and (j share the same first kj digits, 
but that their kj + lst digits are different. Then 

a. zij=z' fori=1,... , kj, 
b. the random vector (Zkj+l,j, Zk'j+lj) is uniformly distributed on the set 

{(n, n'): n 5 n'; n, n' = 0,..., b-1}, and 
C. Zkj+2,j, Zkj+3,j, * * *, Zkj3,j.. . are mutually independent. 

Assumption 3.2 implies that the marginal probability distribution of any z = 
(Z1, . , zs) E P is uniform on Cs and that the z1, . .. , z5 are mutually independent. 
Assumption 3.3 maintains the correlation between different points in P that is 
necessary for retaining its net properties and thus a low discrepancy. For a simple 
random sample Assumption 3.2 is also satisfied, but instead of Assumption 3.3 one 
has Zlj, Z2j, ... , Zljl, v Z, ... mutually independent for z 5 z'. 

The aim of this article is to analyze the mean square discrepancy for randomized 
nets, i.e. E{[D(P)]2}, where E is understood here to be the expectation over ran- 
dom sets P. This section concludes with a lemma that simplifies formula (1.5) for 
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any P satisfying Assumption 3.2 and a formula for the mean square discrepancy of 
a simple random sample. 

Lemma 3.4. If P is a random set satisfying Assumption 3.2, then 

(3.2) E{[D(P)]2} = j1 , E[K(z, z')7 - K(x, y) dy dx. 
z,z/GP CsxCs 

Proof. By Assumption 3.2 each z E P is uniformly distributed on Cs, so 

E[ Z (z y) dY 2 2 J (x,y) dy dx. 

Substituting this into (1.5) gives (3.2). C] 

For a simple random sample 

E[K(z,')]=fc 
f0 K (x, x) dx, Z=Z 

E[K(z, z )] = .S{ K(x,y) dy dx, z 5z' 

which implies the following theorem: 

Theorem 3.5. If P is a simple random sample, then 

(3.3) E{ [D(P)]} 21 {Jcs K(x,x) dx - J K(x,y) dy dx}. 

This formula serves as a benchmark for other (presumably superior) quasi- 
random sets. Since the mean square discrepancy is O(N-1), the discrepancy itself 
is typically O(N-1/2) for a simple random sample. The variance of a function f 
may be defined as Var(f) fC0 f2 dx - (f.cs f dx)2. The term in braces in (3.3) 
is EfCF[Var(f)]. 

4. THE DISCREPANCY FOR GENERAL REPRODUCING KERNELS 

The calculation of the mean square discrepancy of a randomized net is aided 
by decomposing the reproducing kernel into a sum of components KU,V for all 
(u, v) c S x S. For this purpose the sets (u, v) are partially ordered so that 
(u',v') < (u,v) means that u' C u, v' C v and (u',v') 7 (u,v). The components 
K,V are defined in Definition 4.1, and some of their properties are given in Lemma 
4.2. The two terms in (3.2) are shown to depend only on the components KU,U 
in Lemma 4.3. An expression for the mean square discrepancy as a double sum is 
given in Theorem 4.4. 

Definition 4.1. For any u, v c S the u, v component of the reproducing kernel K, 
denoted KU,V, is a function on Cu x cv recursively defined as follows: 

21(uuv)-(unv)IKu,v(xuI Yv) = Klysv=xsv dxs-(UuV) 
CS-(11uu) Xv-, u=Yv-Xu 

- E~3 21uuv') -(unv) I Ku,,v, (xu', Yv'). 

(u' ,v') < (u,v) 
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The decomposition of product reproducing kernels (2.6) is relatively simple. De- 
fine 

(4.1a) M j K(xI, xl) dxl, At(xl) (K(xl, xl) - M)/2, 

(4.lb) v(xi, Y)=k(x1,y1) - [K(x,wxI) + K(yi, yi)]/2. 

The one-dimensional reproducing kernel can be written as 

K(xi, Yi) = M + t(xi) + M(yi) + v(xi, yi), 

and the components of the s-dimensional product reproducing kernel are 

(4.2) Ku,v = MsIuuvI 1I [(xj) r1 A(Y') 1I v(xj/",yj,,) 
jcu-v j'Gv-u jlcunv 

It follows from the definitions of ,u and v that fg A(xl) dx1 = v(xl, x1) = 0. 
Therefore, for product kernels 

KUV IYj=xj 
=0 Vj Eunv, 

JKu,v dxj =O Vj E (uUv)-(unv). 

In fact, these properties hold not only for product kernels, but in general. 

Lemma 4.2. The components of the reproducing kernel have the following proper- 
ties: 

(4.3a) K Ku,V3 
u,vCS 

(4.3b) Ku,vIyj=Xj = O 0 l E u n v, 

(4.3c) Ku,v dxj = V vj E (u U v)-(u n v). 

Proof. The proof of (4.3a) follows from the definition by setting u = v = S. The 
proofs of (4.3b) and (4.3c) proceed by induction. Both properties hold vacuously 
for u = v = 0. By assuming that they hold for all (u", v") < (u, v) it is possible to 
show that they hold for (u, v) itself. 

Let j be some coordinate index in u n v. The definition of a componeht implies 
that 

21 (uUv) - (unv) jK I Kys_v =xsv dxs-(uv) 
yj =Xj CS-(1uu) Xv-u=Yv-u 

21( =x = 

- 
E 

21(u'uv>)(uov)I 
gu 

YjXIy=j. 
(u' ,v') < (u,v) 

In the sum over (u', v') those terms with j E uA n v' vanish by the induction 
assumption, leaving only those terms for which j is in either u' only or in v' only 
or in neither. Let ut = u - j and v = vj-. Then 

(U/Uv') - (unv)I 

f (u'uv')-(un)1-1 =1(u'uv')-(iunv)l-l if jEu'Uv', 
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This allows us to rewrite the sum over (u', v') in the right hand side above: 

21(uuv)- (unv) I _ J uKlYS-0=s_0 dxs-(uUV) 
yj=Xj S-(ut) Xv-u=yv-u 

1 E 21(u'uv')-(unv)I K ,, 

(U' ,v' ) ?< (t,v) 

1 E 21I(u/ Uv') - (unv)I Ku, v 

tuX v') - (ftnv) I 21 t-221(uu(u)K + , Klys_v fxs dxs-(fUv) 2 J0~~~~~~~~~~S-(,auv) _v v - 
Cs-(1Ut) Xv-u1=Yv-11 

-u/ Sv/ )< I(uUV)(v)1Ku,,v 

?1 ' - 2I(uuv)(uov)IKU,o ? f KIYS-V=XS- dxs(Uuv2 
2 J0S-(Uuo) XvU=vY U 

- S 21I(u UV>)-(unv)IKu , ,v 
(u v' ) < (u, f)) 

Each set of braces is zero by Definition 4.1, thus completing the proof of (4.3b). 
To prove (4.3c) one may assume without loss of generality that j E u - v. Again 

let ut = u - j and note that v - u = v - &. The integral over KU, with respect to 
the jth coordinate is 

1~~~~~~~~~~~~~~~~~~~~~ 21 (uuv) - (unv) I j u v dxj KlICs-v=x)s dxs-(~auv) 

- E3 21(u'Uv')-(unv)I / K// dxj. 
(u ,v) < (u,v) 

The integrals of KU/,V/ on the right hand side vanish if j E u' by the induction 
assumption. If j ? u', that is, u' C u, then the integral is the same as the function 
itself. Therefore, 

21 (uuv) - (unv) I Ku v dx=j KlysC=xs_ dxs-(uuv) 
O C~~~~S-(11uv) XV-11 =Yv-11 

- 5 21(u' UV,) - (unv) I KU,,v,. 

(u v') ? (f v) 

The right-hand side vanishes by the definition of KU,V- D] 

Substituting the decomposition of the reproducing kernel into the two terms in 
formula (3.2) for mean square discrepancy of a randomized set under Assumption 
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3.2 yields 

1 S E[K(z,z')] = E NK2 u,v(zUZv) 
z,z/'CP u,vCS z,z' CP 

ICsxCs K(x,y) dy dx = 51 I yv) dxu dyv. 
scs x u,vCS c xcv 

Using Lemma 4.2, one sees that those terms involving KU,V for v + u vanish. One 
may suppose without loss of generality that there is some coordinate j in u but 
not in v. The expectation E[Ku,v(zu, z')] depends on zj, which is independent of 
Zu-j and z'. Since zj is uniformly distributed on [0, 1), E[Ku,v(zu, z')] vanishes by 
(4.3c). The integral of KU,V over xj also vanishes by (4.3c). This gives the following 
lemma: 

Lemma 4.3. If P is a random set satisfying Assumptions 3.2, then 

(4.4a) j1 5 E[K(z,z')] = E N2 E E[Ku,u(zur,z)], 
z,z CP uCS z,z' CP 

(4.4b) J K(x,y) dy dx = E J Ku,u(xuIyu) dxu dyu. 

To further simplify (4.4) one must analyze in what subset of Cu x Cu a pair of 
points (zu Zu ) E Pu x Pu may fall. Suppose the coordinates zj and z share exactly 
the first kj base b digits but no more. If this is true for all j in some u C S, one may 
say that the points zu and z' share exactly the same ku coordinates, where ku is 
in Zu, the set of Jul-dimensional non-negative integer vectors. Define the following 
conditional expectations: 

(4.5a) H(ku) F [Kuu (zuI Z/ ,zu and z' share exactly ku digits], 
(4.5b) HIT _ E[KU,u(zu, z zu) and zU share exactly ku digits 

for some kU with a(ku) = T and Jul = 11. 

If Zu and z' share exactly ku digits, then (ZU, z$ ) is uniformly distributed on 
Qku C CU x Cu, the Cartesian product of certain Qkj C C{j} x C{i}, that is, 

(4.6a) Qku Qkj3 

jEu 

bkj bkj+1 

(4.6b) Qkj U (i 1)b k)2- U [ib kl, (i + 1)bki1)2. 
i=O i=O 

The volume of Qkj is b-kj (- b-), so the volume of Qku is the product of the 
volumes of the corresponding Qkj: 

(4.7) Vol(Qku) = Voljuj,,(ku), where Vol1,=_ b-T(1 -b-1). 

This notation now allows one to compute the conditional expectation defined in 
(4.5a): 

(4.8a) H(ku) = K (u,u(u,yu) dxu dyu. 
VOljuj,a7(ku) Qku 
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The conditional expectation Hl,, is the average of the H(ku) with Jul = 1 and 
ca(ku) = r. There are (l) subsets u of S with cardinality 1, and for any u there are 
(1+,T 1) different ku with a(ku) = r, so 

(4.8b) Hi S S H(ku). 1 
(SI) ( I-,-1 1) u1=l atku)=-r 

It is known [Hic96a] that for a randomized (0, m, s)-net there are AIujK,(k.) points 
z' that share the same ku digits as z, where 

A1"r (4.9) i = b-T( - b-1)R(l,m -,) (= 0 for m < r), 

and R(l, r) is defined as the partial binomial sum: 

(4.10) R(l, ') (1- b-1)' l( 1)(_b) r = b) r 
<>0 

Furthermore, when z = z', then Kuu = 0 for u 7 0 by (4.3b). Therefore, (4.4a) 
may be written as 

(4.11) Z N2 E E[KuSu(zU)] 
uCS z,z' EP 

= K00 + E E [Proportion of (z, z') E P x P 
0cuCS ku 

such that zu and zL share exactly ku digits] 

x E[Ku,u(zu, zL)zu and z' share exactly ku digits] 

= K0) +EE E E NV uH(ku) 
1=1 -=0 juj=1 a(ku)=r 

K +E E (s) (I + (1 -b- ) b-) R(l I m-r) Hi,, 
1==1 -r=O 

The term (4.4b) is even simpler to express. Note that Cu x Cu is the union of 
Qku over all ku E Zu plus a set of measure zero (the diagonal {(xu, xu): xu E Cu}). 

Therefore, by (4.7) and (4.8a), 

(4.12) E SJK u(xu(xuYu) dxu dyu 
uCS cux cu 

=K00 + E EVol(Qku)H(ku) 
0cuCS ku 

_K0 +E (I - 
(s I+r1 1b-1)1b-rHj,r 

Combining (4.11) and (4.12) with Lemmas 3.4 and 4.3 yields the following for- 
mula for the mean square discrepancy of a randomized net: 

= +00 1 1 
(4.13) E{ [D(p)]2} = >3 ( 1 FT I 2(1- b-1)I1bTr [R(l,I m - Tr) - 1] Hi,,~ 

1=1 7=O \1 
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Not only is R(l, r) is a partial binomial sum, but R(l, Tr) -1 is also a partial binomial 
sum. Let 

(4.14) R(1l,r)-=_(1- b)1-1 ?( 1(-b)r = {O <O 

By rearranging the order of summation we get 

R(l,) - 1 =-(1 - b) [E (11) (bb)r) 

-=-R(l,lI-w). 

Replacing R(l, m - r) by 1 - R(l, r + 1 - m) in (4.13) gives 
s +00/ /1 I 

E{[D(P)]2} -KE ) (l - (1 bl)1b-TRf(l,'r +1 - m)H,,. 
1=1 -r=O \ \1 

Replacing T by T + m - 1 and noticing that R(l, r) is only nonzero for 'r > 1 yields 
the following theorem: 

Theorem 4.4. Let Hl,, be the conditional expectation given by (4.8) and R(l,'r) 
be the partial binomial sum defined in (4.14). The mean square discrepancy of a 
randomized (0, m, s) -net P satisfying Assumptions 3.2 and 3.3 is 

(4.15) E{[D(P)]2} 

- j +~__ (s) (m +1r-1N) (b - 1)1b-m-T R(l vT)HI,r+m_j. 

1=1 -r=max(1,1-m) 

The advantage of this formula is that the large N (or m) asymptotic behavior of 
the mean square discrepancy is seen to depend on how fast the Hl,, tend to zero as 
'r tends to infinity. In fact, the values of Hl,, for 'r < m - s do not even enter into 
the formula for the mean square discrepancy. For large 'r, the Hl,, depend only on 
the values of the reproducing kernel K(x, y) close to the planes xu = Yu 

To apply Theorem 4.4 one must know more about the Hl,, as given by (4.8). 
For product reproducing kernels the components K as given by (4.2), are: 

(4.16) Ku,U = MS-JUl I7 v(xj, yj). 
jEu 

Let hk, be the average value of v(x1, Yi) over Qk1 for any non-negative integer k1: 

hk- Vol J v(x1,y1) dx1 dyl. 

Then by (4.8) 

Hi= hkE h ..hk1. 
(I+-r-1) kl+ +kl=r 

For some cases this can be further simplified. 
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For example, consider the product kernel defined by (2.8a) with -y = 1. By (4.1) 
the M and v are 

M = I+ 
02 

V(x1 Yi) - 2 
|xi - Yi| 6 2 

Some straightforward algebra (see Lemma 5.2 and the proof of Theorem 5.1 below) 
gives 

h2 (1b1+ b- b6l H3 
2 

_[ 
2 

(+b )1 b-b. hk =-L b , Hlr =6 6 [ (6 +32) 

Therefore, (4.15) becomes 

(6 + 2) s ( -32 (b2 i)] 

?00 
T/i\1 +? m+r1 R(1l T)b -2m-2,r 

r=max( 1,1-m) 

For large numbers of points, i.e. large m, the binomial coefficient (rn+F-1) is 

asymptotic to m1_- Making this substitution the inner sum in the equation above 
can be simplified by reversing the order of summation: 

+00 
Tn T 1- 

E (m+7-1) ~R(1l T)b -2m-2,r 

r=max(1,l-m) 

-m b)1- ' r ( )-b)b b-2r 

b-2m (1-b)1-' , (1 (-b) E b 
(1 - 1)! ~r=O / r=r+ 1 

- b+0l m - 1 ( (-1)_ b-2r 

-b-2m ml- ( bb)-?l+ 

(I-1)! b2 - 1 

For large m the most significant term in the outer sum of (4.17) is 1 = s, because 
of the factor ml-l above. Therefore, the asymptotic form of the mean square 
discrepancy is 

E{[D(p)]2} _32(b - b-1)-1 b-2mMs-1 = )32(b -b-b1)-1N-2[10gb(N)]1 

This formula was obtained previously by [Hic96a]. 

5. THE DISCREPANCY FOR SMOOTH REPRODUCING KERNELS 

For general choices of the reproducing kernel it is not possible to obtain a precise 
asymptotic form of the mean square discrepancy as in the example above. However, 
by assuming sufficient smoothness of the reproducing kernel it is possible to use 
Theorem 4.4 to compute the asymptotic order for general reproducing kernels. 
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Such a result is given in the the following theorem, which is the main result of this 
article. 

Theorem 5.1. Let Rmax(l) be an upper bound on IR(l,) I) for all r. Suppose that P 
is a randomized (0, m, s)-net satisfying Assumptions 3.2 and 3.3. If the reproducing 
kernel satisfies a moderate smoothness conditiqn: 

(5.1a) |&u KU,U < Al (ul) Vv C u C S, 

for some finite A1(l), 1 = 1,... , s, then the mean square discrepancy for large N is 
asymptotically 

(5.1b) E{[D(P)]2} < Al (s)Rmax(S) (b2N -1)S -1 
rIl., )38s(s - 1)!N[109b(N)1 

If the reproducing kernel has even greater smoothness: 

(5.2a) &K2U,KU'u < A2( Ul) VV, _ _ , 

for some finite A2(l), 1 = 1,.. ., s, then the mean square discrepancy for large N is 
asymptotically 

(5.2b) E{ [D(P)]2} < A2 (S)Rmax(S) (bs N )1 3 
rIl., ) ~68(s - 1)! 

lo bN ]- 

The proof of this theorem is based on two lemmas. The first is a technical 
one whose proof involves straightforward integration. The second involves Taylor 
expansions of the the components of the reproducing kernel Ku,u about the diagonal 
Xu = Yu. 

Lemma 5.2. For any constant p > -1 

Vol(Qk,,)j?Qk JJxi - y P dxu dyu < )] b-Pa 

Proof. Because the domain of integration as defined in (4.6) is a Cartesian product 
of one-dimensional domains, the integral may be simplified as follows: 

12k 7JI xi - Yj P dxu dyu = J1 - P dxj dyj 
ku jC:U ju Q:kj 

{ b - k j b -k j 
= 7 bkj [jl bJxj - yj"I dxj dyj 

ju 

b-k j - 1 b-k j -1]} 

-bj 1b I xj - yjI" dxj dyjl 

=-I { bki F 2b-kj (P+2) b(kj +l ) (p+2) 
- 

j [(p+ 1)(p+ 2) (p + 1)(p + 2) J_ 

2(1J-{b-P-1) k (p 1) 

__[2(1 - b-P1) 1lul [(p? l(-p+2) J 1 I 
b_(p+1)a(ku 

_(p + 1)(p + 2)_ 
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Dividing the term on the right hand side by the volume of Qk. completes the 
proof. ? 

Before stating and proving the next lemma it is convenient to introduce new 
coordinates (xj, j) defined as follows: 

Xj = Xi + y, Y3 = Xij-Y 

Xj = (Xj + ?j) /2, yj - (Xj -yj) /2. 

The plane xj = yj corresponds to yj = 0. Furthermore, let 

Ku, u u) = Ku,u((xj + Qj)/2, (Xj - yj)/2). 

Below we consider derivatives of ku,u with respect to its second variable, yu Ac- 
cording to the above definitions 

a3yj 2 i93xj i3yj 

Therefore, the mixed partial derivatives of Ku,u with respect to its second variable 
may be written as follows: 

(5.3a) K k 
= 2I S ( 1)V 91ulKU, 

iq~u lul 
CvCu iXu-vaYv 

(5.3b) al2ul kuu _ 1 E V1+UWK 
a u u,u 

u Ay2 2 0cvcu 0cwcu 

Conditions (5. la) and (5.2a) guarantee the boundedness of these partial derivatives 
of Ku,u with respect to YU 

Lemma 5.3. If the reproducing kernel K satisfies smoothness condition (5.1a), 
then 

y~ 
(5.) Ku, u (XU,u IYU) = d IK,u(u u) 

If the reproducing kernel K satisfies smoothness condition (5.2a), then 

(5.5) K ( = S (1)I?l&KUU(xU =L) 
0CvCu ~V=V 

7U-v =YeU-v 

YU X q X 2 u ( I 
u' ('u) I (U) n 

Proof. Assuming sufficient smoothness of the reproducing kernel, one may expand 
Ku,u(XU) Yu) in a Taylor approximation about Yu = 0. This is derived by integrating 
the partial derivative of ku,u with respect to its second variable over the rectangular 
solid from 0 to Yu: 

&Ual lu CC By( X)te Kem on te ) druigh (-v)svIu,w h iu pie (5. 

By (4.3b) the terms on the right vanish for all v 780, which implies (5.4). 
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The second part of the lemma is proved similarly, except that it involves an 
iterated integral of a higher order partial derivative of KU,U 

= S 2(~1)~u u uI d (udYu 

- - - l7u-v Yu-v ocwcvcu (anw | V n=0 

Again by (4.3b) the terms on the right with w C v vanish, which implies (5.5). LI 

Proof of Theorem 5.1. The results of the previous two lemmas are now combined. 
If the reproducing kernel satisfies smoothness condition (5.1a), then it follows by 
(5.4) and (5.3a) that 

IKu,u(xuYu) = Iku,u(xu + Yu,Xu - Yu)| < Al(s) J lxj - I. 
jEu 

Substituting this inequality into (4.8) and applying Lemma 5.2 for the case p = 1 
yields upper bounds on IH(ku)l and JHi,Tl: 

H(ku)l < Ai(s) (1 - b-2) 1) b-(ku 

[ 3(1 - b-1) 

Formula (4.15) in Theorem 4.4 contains an infinite sum over 'r. For large m 
the binomial coefficient (m+7<r1) in this sum is asymptotic to as was noted 
earlier. Therefore, the inner sum has the following asymptotic upper bound for 
large m: 

+=1 |~ (1 - 1)! mx(l1) 5 T)b-THs,+m_1 

mI-1 +00 

(< i)!Rmax(l) Eb-l Hs+m-I 

(l_< Rmax (1) Al (l) [ lbl E b-m+1 -27 

Ml1i (b 2 - 1)1-1 
= (l 1)!Rmax(l)Ai(l) b -)]b 

In the outer sum over 1 in (4.15) the most significant term is 1 = s, due to the 
presence of the m1-1 above. This term, after substituting the above bound on the 
inner sum, is just (5.1b). 

The proof for the case where the reproducing kernel satisfies smoothness condi- 
tion (5.2a) is similar, but more tedious. The right-hand side of (5.5) contains two 
parts. The first is a sum of terms that are linear in Yv = Xv - Yv. These terms do 
not contribute to H(ku), since the integration domain Qku in (4.8a) is symmetric 
about the planes xj = yj. Only the second part of the right-hand side of (5.5) 
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contributes to the upper bound on IH(kU) . By Lemma 5.2 for the case p = 2 it 
follows that 

IH(ku) | < A2 (s) [ b((I b )) b-2(U 

The asymptotic bound on the mean square'discrepancy then follows as for the 
previous smoothness condition: 

IH,l < A2(l) b-2, 

S l-0$A2l (b3 ~1)1-1 b 
|Eg ( I _ )R(l,r)b Ht,,+m-l| < A2(1) [6b2m] 

Substituting this bound into (4.15) and taking the term 1 = s gives (5.2b). 0 

For product reproducing kernels the smoothness conditions in Theorem 5.1 may 
be written in terms of M and v defined in (4.1). Recall that v(xi,yi) = v(yi,x1). 
If 

(5.6) v &- |0v(xi,yi) | 0v(xi,yi) 

then by (4.16) 

allu,u -Mv -J7J 09(j yj J7J j 1Y* M- u -u 
&X ? u vYv oc jEu-v 00& jv I j' 00 

Smoothness condition (5.1a) is satisfied by taking A1(1) = Ms-'-'. If 

- _9 V1 2(X 1, yl) 11 1 2V(Xl, yl) 11 1 2V(X1, Yl) 1 
(5.7) 02 max 

&X 1&2 || T | xy, 1 Y 2 

then by (4.16) 

al2UlKuU - MS-Jul j &2 V(Xj, ,j 

axu_v&xu-w&Yvayw 00 j2u-(vUw) oc 

X 1- &2V(Xj/,yj/) &2V(Xj/,yj")i Ms_ur-ul 

j'E(vuw)-(vnw) o j9YEvnw 00 

Smoothness condition (5.2a) is satisfied by taking A2(l) = Ms-I 12. 
For the product kernels defined by (2.8a) and (2.9a) the only discontinuities 

in the derivatives of v(x1,y1) come from the term B2-({xl - Y1}). For 'y = 1 
these product reproducing kernels satisfy (5.6), and thus (5.1a), so the root mean 
square discrepancies (2.8b) and (2.9b) are O(N-1[logb(N)](s-1)/2), by Theorem 
5.1. For -y > 2 the product reproducing kernels defined by (2.8a) and (2.9a) satisfy 
(5.7), and thus (5.2a), so the corresponding root mean square discrepancies are 
O(N-3/2 [logb(N)](s-1)/2), by Theorem 5.1. 

For any (0, m, s)-net the base b must be no smaller than s - 1 [Nie92, Corollary 
4.21]. This allows one to derive simple lower and upper bounds on R(l, r). Suppose 
that 1 is odd. The terms in the definition of R(l, r) in (4.14) are alternating in 
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sign and monotonically increasing in magnitude with the summation index, since 
1 < s < b + 1. Therefore, 

0 < R(l, 1) < R(l, 3) < < R(l,l) = 1, 

and 

0 > R(1,2) > R(1,4) > > R(l,l- 1) = 1- (1- b-1)1-' 

> 1-(1-b-1)-b >-3 for b >2. 

A similar argument gives -3 < R(l, -r) < 1 for even 1 as well. Therefore, one may 
choose Rmax(l) in Theorem 5.1 to be 3. 

6. DISCUSSION AND CONCLUSION 

The bounds on the LOO-star discrepancy for (t, m, s)-nets [Nie92, Theorem 4.10] 
are of the form 

D* (P) < C(s, b)bt N) 00 ~N 
that is, the value of t does not effect the order of the Loo-star discrepancy, only the 
leading constant. Although the results proven in this article are only for (0, m, s)- 
nets, the author conjectures that the orders of the root mean square discrepancy 
for randomized nets will be the same even if t is nonzero. Of course, this remains 
to be proven. 

An interesting question, then, is whether the discrepancies of known (t, m, s)- 
nets attain the same asymptotic order as the root mean square discrepancy of 
randomized (0, m, s)-nets. Although no mathematical proof has been found, some 
computational evidence is presented here. Figures 1-6 show three different discrep- 
ancies for three different kinds of (t, m, s)-nets. The nets are the first b' points 
of: 

i. the (0, s)-sequence of Faure [Fau82] with b chosen to be the smallest prime 
number > s, 

ii. the (t, s)-sequence in base 2 of Niederreiter [BFN92], and 
iii. the (t, s)-sequence in base 2 of Sobol' [BF88]. 

The initial point for all of these sequences is the origin. 
The first discrepancy considered is (2.8b) with 3 = 1 and -y = 1. Only smooth- 

ness condition (5.1a) is satisfied since -y = 1. The root mean square discrepancy for 
randomized (0, m, s)-nets is O(N-1c+), and Figure 1 shows that the three (t, m, 5)- 
nets chosen also have this same asymptotic order. 

The second discrepancy considered is (2.8b) with / = 1 and -y = 2. Now smooth- 
ness condition (5.2a) is satisfied, so the root mean square discrepancy for random- 
ized (0, m, s)-nets is O(N-3/2+?). However, Figure 2 shows that the discrepancies 
of the three (t, m, 5)-nets are only O(N-l+?). Thus, these three popular nets have 
worse than average discrepancy, in this case. This means that these three nets are 
not able to attain higher quadrature accuracy than O(N-l+?), even if the integrand 
has sufficient smoothness. 

To understand why consider a linear integrand f(xi) = x1, and a one-dimensional 
net with N = b' points, {0, b-M, ... , 1 - b-m}. Quadrature using this net corre- 
sponds to the left rectangle rule, which can only attain an error of O(N-1), since 
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FIGURE 1. The discrepancy defined in (2.8b) with3 = 1, -y = 1 
as a function of N for three different (t, m, 5)-nets 
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FIGURE 2. The discrepancy defined in (2.8b) with /3 = 1, -y = 2 
as a function of N for three different (t, m, 5)-nets. The dashed 
reference lines are plots of N-1 and N-15 
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FIGURE 3. The discrepancy defined in (2.9b) with /3 = 1, ty = 2 
as a function of N for three different (t, m, 3)-nets. The dashed 
reference lines are plots of O.1N-1 and O.1N-15 
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FIGURE 4. The discrepancy defined in (2.9b) with /3 = 1, -y = 2 
as a function of N for three different (t, m, 5)-nets. The dashed 
reference lines are plots of O.1N-1 and O.1N-1.5 
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the points have a leftward bias. On the other hand, quadrature using Owen's ran- 
domization of this net attains an error of O(N-3/2). The Faure, Niederreiter and 
Sobol' nets share the same problem as the one-dimensional net. 

The third discrepancy considered is (2.9b) with /3 = 1 and -y = 2. Again the 
root mean square discrepancy for randomized (0, m, s)-nets is O(N-3/2+?). For 
dimensions s = 3, 5, 8, 10 the discrepancies of the Faure and Sobol' nets are still 
only O(N-l+?), as shown in Figures 3 through 6. However, the discrepancies of the 
Niederreiter nets decay faster than O(N-1). For smaller dimensions (Figures 3 and 
4) the decay rate appears to be O(N-3/2+,). For the higher dimensions (Figures 5 
and 6) the decay rate is not as good. This may be because for larger s the factor 
[log(N)](s-1)/2 remains significant for the range of N values shown in the plots. 

For s = 5 Figure 4 displays two curves for each type of net corresponding to 
taking different starting points in the (t, 5)-sequence. One curve takes the first 
5m points of the Faure sequence for m = 1, . .. , 7. Another curve takes the 57 + 
1st to 5m+7th points of the Faure sequence for m = 1, . .. , 7. The curves for the 
Niederreiter and Sobol' nets are obtained in a similar manner. The choice of starting 
point does not seem to affect the asymptotic order of the this discrepancy. 

Because the discrepancy as plotted in Figure 4 is for a space of periodic inte- 
grands, the example of a linear integrand mentioned for the previous case does not 
apply. The Niederreiter nets are able to integrate periodic functions more accu- 
rately than non-periodic ones, and more accurately than Faure and Sobol' nets, 
especially in lower dimensions. Therefore, when using Niederreiter nets for quad- 
rature it is suggested that one periodize the integrand, that is, use the quadrature 
rule 

Qper(f)kN E f(12zl-11, ..., 2Zs11) 
zEP 

instead of the Q(f) defined in (1.1). 
To demonstrate this suggestion with a practical example, consider the problem 

of computing multivariate normal probabilities: 

(6.1) I(a, b, 3) = 1 X .j e- 
1 0'' dO, 

where a and b are known s-dimensional vectors that define the interval 9f integra- 
tion, and Z is a given s x s positive definite covariance matrix. Alan Genz [Gen92] 
has proposed a transformation of variables that results in I(a, b, Z) being written 
as an integral over an s - 1-dimensional unit cube. We consider the specific case of 
s = 6, 

(6.2a) a = (-oo, ... , -oo), b = (0, 0.5,1,1.5, 2, 2.5,3) 

(6.2b) = (uij), where Uij = 51 
i l 

0.1i #3 . 

Because the off-diagonal elements of the covariance matrix are all equal, the mul- 
tivariate normal probability may be reduced to a one-dimensional integral [Ton90], 
which may be evaluated by standard numerical techniques to provide the "exact" 
answer of 0.6135764963. Figure 7 shows how the absolute error decays when ap- 
plying the quadrature rules Q and Qper with Niederreiter nets to the integral (6.1) 
after Genz's transformation. The error of Qper has a faster rate of decay. 
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FIGURE 5. The discrepancy defined in (2.9b) with /3 = 1, ty = 2 
as a function of N for three different (t, m, 8)-nets. The dashed 
reference lines are plots of O.1N-1 and O.1N-15 

The L2-star discrepancy defined in (2.3) gives the average-case quadrature er- 
ror for Brownian sheets. Because the corresponding reproducing kernel satisfies 
smoothness condition (5.la), the L2-star discrepancy is O(N-1 [10 g(N)](s1l)/2) for 
(0, m, s)-nets, a fact previously shown in [Hic96a]. For Brownian motion in Levy's 
sense the covariance (reproducing kernel) is 

K(x, y) =IX12 + IYI2 -|X -Y|2 

and the corresponding discrepancy is known to be at best O(N ~- -2H) for any 
set [Was93]. The reason that this discrepancy has larger order than the L2-star 
discrepancy for s > 1 is that the reproducing kernel is not sufficiently smooth. 
Consider the case s = 2. The components KU, of this reproducing kernel are 

X' + log(1 + V') 

K{i} ,{i}(x1:,yi) = 2lY K{2},{2} (x2, y2) 
-= 

X2Y 

K{,2,{,2 x1,+x2, xY+y, xYy2)~+ 

+ 2{lx- Yl + X2 -Y21 - I/(xi _ yi)2?+(x2 -y2)2} . 
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The last term of component Kfl,21,f1,21 does not satisfy condition (5.1a), so an 
O(N-1[log(N)](s-1)/2) discrepancy cannot be attained. 

Theorem 5.1 and (1.2) imply that for randomized (0, m, s)-nets 

E sup [Err((f)]2 E = [D2(p)]21 = O(N P[log(N)]s-l) as N -* oo, 
V(f)=l 

where the variation of the integrand, V(f), is defined in (1.4), and p = 2 or 3 
depending on the smoothness of the integrands. The smoothness of the integrands 
(roughly that of the reproducing kernel) required for p = 3 is greater than that 
assumed in [Owe97b], where it is shown that, for a fixed integrand f, 

E {[Err(f)]2} = O(N-3[log(N)]s-l) as N -* oo 

for randomized (0, m, s)-nets. The reason is that in the latter case the integrand is 
fixed in advance, whereas in the former case the integrand is chosen pessimistically 
after picking a specific randomized net. On the other hand, Theorem 5.1 and (1.2) 
also imply 

E {EfCF[Err(f)]2} = E{[D2(P)]2} = O(N-P[log(N)]s-l) as N -> oo, 

where again p = 2 or 3 depending on the smoothness of the integrands. The 
smoothness of the integrands in F required for p = 3 is less than that required for 
the worst-case result and is similar to that assumed in [Owe97b]. 

Theorem 5.1 demonstrates that the asymptotic order of the discrepancy depends 
on the smoothness of the reproducing kernels. It appears that O(N-3/2+,) is the 
best possible order attainable by assuming only sufficient smoothness of the repro- 
ducing kernel. However, if one considers spaces of Walsh series or Haar functions, it 
is likely that the order of the corresponding discrepancy may be improved further. 
This is because it has been shown by other means that (t, m, s)-nets accurately 
integrate these type of functions [LSW94], [LT94], [Ent96]. 
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