
MATHEMATICS OF COMPUTATION 
Volume 68, Number 226, April 1999, Pages 807-822 
S 0025-5718(99)01040-6 

COMPUTING DISCRETE LOGARITHMS 
IN REAL QUADRATIC CONGRUENCE FUNCTION FIELDS 

OF LARGE GENUS 

VOLKER MULLER, ANDREAS STEIN, AND CHRISTOPH THIEL 

ABSTRACT. The discrete logarithm problem in various finite abelian groups is 
the basis for some well known public key cryptosystems. Recently, real qua- 
dratic congruence function fields were used to construct a public key distribu- 
tion system. The security of this public key system is based on the difficulty 
of a discrete logarithm problem in these fields. In this paper, we present a 
probabilistic algorithm with subexponential running time that computes such 
discrete logarithms in real quadratic congruence function fields of sufficiently 
large genus. This algorithm is a generalization of similar algorithms for real 
quadratic number fields. 

1. INTRODUCTION 

A lot of public key cryptosystems are based on the difficulty of a discrete loga- 
rithm problem (DL problem) in some finite abelian group. For some groups, such 
as the multiplicative group 1F of a finite field (see [10]), or the class group of a 
real quadratic number field (see [1]), subexponential algorithms for solving the DL 
problem are known. Using the infrastructure of the set 1Z of reduced principal 
ideals of a real quadratic congruence function field (that is very similar to the in- 
frastructure of the cycle of reduced ideals of a real quadratic number field; see [5], 
[24], et al.), Scheidler, Stein and Williams (see [21]) recently constructed a public 
key distribution system. To break their system, it is sufficient to solve the following 
problem: given an integral basis of a reduced principal ideal Q(, find the degree of 
an arbitrary generator of Qt. If one has found a generator of 9A, one has solved the 
problem. Note that, in general, the integral basis of Q( does not imply a generator 
of Q(. In this paper, we will describe a probabilistic algorithm with sube'xponential 
running time that solves that problem provided the genus of the function field is 
at least logarithmic in the order of the field of constants. To be more precise, the 
algorithm finds, for an arbitrary principal ideal, the degree of one of its generators. 
We also describe an extension of our algorithm that can be used to solve the real 
quadratic congruence function field DL problem defined in [21] in subexponential 
time. 
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We start our description of the algorithm by summarizing some basics about 
algebraic congruence function fields. In Section 2, we describe the main algorithm 
of this paper which solves the given problem. Section 3 describes some theoretical 
results concerning generating systems for the ideal class group. In Section 4, we 
estimate the probability that we have found a generating system for some lattice. 
This probability is used in Section 5 to compute the expected running time of the 
algorithm of this paper. 

1.1. Basic definitions. The following basic information about congruence func- 
tion fields can be found in [7], [22], [2] and [32]. 

Let K/k be an algebraic congruence function field of one variable over the finite 
field k = Fq of constants of odd characteristic with q elements, and let x E K be 
such that K is a finite, separable extension of the rational function field k(x). The 
ring of integers of K is 0 = k[x], i.e. the integral algebraic closure of k[x] in K. 
The ring ( is a Dedekind domain. The set Z of fractional 0-ideals in K forms a 
group with the set 7H of principal 0-ideals ao (a E K*) as a subgroup. Denote by 
Cl = I/7t the ideal class group of K. Its order h' is called the ideal class number 
of K with respect to 0. Furthermore, we denote by D, Do, 7P, C = D/7P the group 
of divisors, the group of divisors of degree 0, the group of principal divisors and the 
divisor class group of K/k, respectively. The group Co = Do/P of all divisor classes 
of degree 0 is called the zero class group and its order h the divisor class number 
of K/k. Let U be the subgroup of D generated by the set of infinite places of K/k 
with respect to 0, and let Uo = U n Do. We know that 

(1) I rV D/U, 

(2) Cl = /7- v D/IPU, 

and 

(3) hli h [D (DoU)] 
[o U (Pn Uo )]' 

where the index R: [Uo: (P n uo)] is called the regulator of K with respect to 0. 
A quadratic extension K of the rational function field Fq (x) is called a quadratic 

congruence function field. The ring of integers of a quadratic congruence function 
field K is 

(D = Fq [X][VD] = ]Fq[X] + ]Fq [XI VD 

We say that K is a real quadratic congruence function field, if K is of the form 

K = Fq(x)( ) = D Fq(x) + Fq(x) D, 

where D E Fq [x] is a monic, square-free polynomial of even degree (this is in 
analogy to the case of a real quadratic number field ( A), where A is a positive, 
square-free integer). In this case, the infinite place qO of Fq (x) splits completely 
in K as qO = 1 2, where q31 and 32 are the infinite places of K with respect 
to . For a = u + vv E K, where u, v E Fq(x), we denote by -a = u-vv its 
conjugate. The norm of a is defined as N(a) = aa = 2 _ D. 

In this case, Fq((1/x)) is the completion of Fq(x) with respect to oo, and the 
completions of K with respect to 31 and 32 are isomorphic to IFq((1/x)). Also, 
K < Fq((1/x)). Let q31 be the place which corresponds to the branch where V= 
1. We then consider elements of K as Laurent series at q31 in 1/x. Now, let 
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a E IFq((l/x)) be a non-zero element. Then a = E cix2 with cm 74 0. We 
denote by deg(a) = m the degree of a, by lal = qm the absolute value of a, by 
sgn(a) = cm the sign of a, and by Lai Em 0 cix2 the principal part of a. If m is 
negative, then [a] = 0. We set deg(O) -oo and 101 = 0. 

In analogy to the case of a real quadratic number field, the unit group E of K 
is of the form E = 1F x (e), where e E K is a fundamental unit of K. Then, 
R= deg(6). 

1.2. Ideals. We summarize the most important facts about ideals of 0 (cf. [2], 
[26]). Any non-zero integral ideal Q( of (9 can be written as 

a9=SQ Fq[X]+(SP+SID)IFq[X], 

where S, P, Q E IFq [x] with Q I (D _ p2 ) and sgn(S) sgn(Q) = 1. The polynomials 
S and Q are uniquely determined, and P is unique modulo Q. This representation 
is called a standard representation of Q(. The set {SQ, SP + SOD} is called an 
]Fq [x]-basis of Q(. An ideal is called primitive if S = 1. If Q( is given in standard 
representation, then the norm of Q( is defined by 

N(%1) = (Q S2) E Fq[X]. 
sgn (Q S2) 

The absolute norm of Q( is defined by IN(%)9Q. 

Lemma 1. If 9t and 3 are integral ideals then N(%93) = N(Q)N(93). If 9= aO, 
where a E 0, then there exists c E Fq such that N(9t) = c N(a). 

If Q( is a non-zero ideal of 0, then we denote by Q( the ideal that contains the 
elements that are conjugates of the elements of Q(. 

We say that two ideals Q(, 9 of 0 are equivalent if there exists a E K* (i.e. 
a 74 0) such that a3 = Q(. The equivalence classes of that equivalence relation are 
called ideal classes. The ideal classes form a finite group, the ideal class group Cl, 
whose order is denoted by h', the ideal class number. If Q( is a non-zero ideal of 
( then we denote the corresponding ideal class by [Q(]. Given two ideals, we can 
compute their product in polynomial time. 

The theory of prime ideals is analogous to the case of real quadratic number 
fields. Every ideal can be uniquely factored (up to the order) into a product of 
prime ideals. We are especially interested in the set P of those prime ideals that 
split completely or ramify. By [2], they can be obtained in the following4 way: For 
each P E Fq [x] that is monic and irreducible such that P does not divide D and D 
is a square modulo P, the principal ideal (P) splits into a product of two conjugate 
prime ideals with bases {P, B + D} and {P, B - D}, where B is a square root 
of D mod P. For each monic and irreducible divisor P of D, (P) is the square 
of a prime ideal with base {P, D}. For C E Z>o, we say that an ideal is P-C- 
smooth if it can be factored into a product of prime ideals in P of absolute norm 
bounded by qc. Given a P-C-smooth ideal, such a factorization can be computed 
in O(kc deg(D)3 log q) operations in Fq, where kc is the cardinality of P. 

A primitive ideal Q( is called reduced if there exists a standard representation of 
the form Q( FQFq[x] + (P + ID)Fq[X], where P- D < IQ < P+ D. 

This reduced basis representation is unique. 

Lemma 2. Let Q( be a primitive ideal with standard representation Q = QFq [x] + 
(P + D)Fq [x]). Then Q( is reduced if and only if IN(Q) Q = I I < D 1. 
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In [26], [21], the infrastructure of the set of reduced ideals is explained in detail. 
Here, we only give a short overview. The set of reduced ideals belonging to the same 
equivalence class is bounded by the regulator R. If Q(, 9 are two equivalent reduced 
principal ideals then we define the distance from Q( to 9 by 6(9, Q() = deg(6), 
where 9 =0(. Given any ideal Q( of (9 and y E Z, we can find in polynomial time 
a reduced ideal 9 with c3 =(, with a E K sEuch that I deg(a) - y ?' deg (a')-y - 

for all a' E K with a'9' =( and 9' is reduced. We say that 9 is closest to y 
with respect to Q(. By [26], we have 

(4) 1 <I deg(a) - y I< deg(D)/2. 

Moreover, we can determine deg(a) in polynomial time. 

1.3. The problem. In this paper, we present an algorithm for solving the following 
problem: given two polynomials P, Q E Fq [x] such that {Q, P + D} is an Fq [x]- 

basis of an arbitrary principal ideal of 0, compute the degree of a generator of that 
ideal. We will describe a probabilistic algorithm with subexponential running time 
which solves that problem provided the genus of the function field is "sufficiently 
large". If we want to find the degree of the generator of a reduced principal ideal 
modulo the regulator R, we say that we have to compute the so called discrete 
logarithm of the ideal. We will also explain how the discrete logarithm problem can 
be solved in subexponential running time. Using these algorithms, it is possible to 
break the key exchange system of [21] in subexponential time. 

2. THE ALGORITHM 

2.1. The main idea. In this section, we describe the main ideas used in our 
algorithm to compute a generator of a given principal ideal and the degree of that 
generator. The idea of our algorithm is similar to the algorithm of Hafner and 
McCurley [18] (resp. of Buchmann [4] and Abel [1]) for computing the class group 
and the regulator of imaginary quadratic (resp. real quadratic) number fields. In 
both cases, it could be proved under the assumption of the generalized Riemann 
Hypothesis (GRH) that the expected running time of these methods is L(D)V+o(1), 
where L(D) = exp/loggDloglogD. These algorithms can also be used to find 
generators of principal ideals (this is explained in [1] or [6] in more detail). We 
will apply the ideas to real quadratic congruence function fields. Note that the 
analogous Riemann Hypothesis holds for function fields (see [31]). 

In the following, we shall always assume that the degree of D is at least 4. This 
is no restriction since it is known that R = 1 for deg(D) = 2. But then the given 
problem can be solved in polynomial time. 

2.2. The factor basis. Our algorithm makes use of the fact that the ideal class 
group Cl of a real quadratic congruence function field is generated by prime ideals 
of small absolute norm. In the case of real quadratic number fields, it could be 
proven (see [3]) that if GRH is true then the class group is generated by the classes 
containing prime ideals of norm at most 12(log(A))2, where A is the discriminant. 
For real quadratic congruence function fields, a completely analogous result, up to 
the fact that here GRH is known to be true, will be proven in Section 3 of this 
paper. 

For C E Z>O, we define 
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Using the estimates in [16, p. 59] or [27, Lemma 6.2.3], we see that Fc is a finite set 
of size kc < 4Cqc. Hence, the set Fc can be computed in O(Cqc deg(D)3 logq) 
operations in Fq. Note that this bound for the size of the factor basis is polynomial 
in the length of the input. In the complexity analysis of the algorithm in Section 
5, however, we expand the factor basis to subexponential size. 

We assume that we have found a number G such that the equivalence classes of 
the ideals pi E Fc generate the whole ideal class group Cl. In Theorem 4 we will 
prove an explicit bound for C (we show that qc (2deg(D) - 5)2). 

Next, we consider the sets 

kc 

(5) rc {(vi, ,vkc,deg(a)) | (vi,... ,Vkc) E Zkc and Ji = ao 
i=l 

and 
kc 

(6) FC {(vi,... ,VkC) | (vi,... ,vkc) E Zkc and v' is principal}. 
i=l1 

Similarly, as in [4], we have the following. 

Theorem 1. Suppose, that the prime ideals in Fc generate the class group. Then 
the set Fc is a (kc + 1)-dimensional lattice of determinant h'R. The set F' is a 
kc-dimensional lattice of determinant h'. 

To find a generator of a given principal ideal Q(, we construct a generating system 
BC of Fc- Suppose that 

bj ... b1,kc b1,kc+l ... bI,N 

(7) dgC( : : : d 

bkc,1 ... bkc,kc bkc,kc+1 ... bkc,N 

deg (,1) deg(Okc) deg(Okc+I) ..deg(ON), 

where N > kc + 1. Then (b1,j, ... ,bkc,j,deg(fj)) E Fc and 

kc 

(8) pbi,i = /3j0< 1 j <N. 

Now, by removing the last line in Bc, we obtain a matrix BC whose columns are a 
generating system of F'0. How can we use BC to find a generator of a given principal 
ideal 9A? To show this, we distinguish two situations: 

If we can factor %l over the factor basis Fc, then Q( is of the form kc Hrf1 Z 

Hence, Z = (Z1,... , Zkc) E F' and therefore there exists x E ZN such that 

(9) BC x =z 

From (8) and (7) it follows that fIN 1 3ixi is a generator of Q( of degree 

N 

(10) EXi deg (,j)- 
i=l1 

If Q( cannot be factored over the factor basis, then we use the following standard 
trick. We try to find an equivalent principal ideal 93 = Q( (a E K) that can be 
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factored over the factor basis. If we succeed and find a generator f of B by the 
method given above, then 2A is generated by a . 

2.3. Generating relations. To construct the above mentioned generating system 
Bc, we find random vectors of Fc. This will be done in a way very similar to the 
case of real quadratic number fields (see [1, Seiction 5.3]): 

We pick at random a vector e = (ei,... ,ekc) E {0,... , D }k c and y E 
{O, . . ., D I}. Then we compute a pair (9, deg (a)) where 9 is a reduced ideal that 
is equivalent to 

kc 

( 1 1) 9( =}rIJp e 
i=1 

and closest to y with respect to Q(, and where a E K is such that a9 =(. Using 
the algorithms described in [26] and [21] (see also [5] and [1] for the case of real 
quadratic number fields), this computation can be done in O(kc deg(D)3 C3 log q) 
operations in Fq. We note that we compute 9 and a without explicitly computing 
the ideal Q(, whose size may be exponential. We do this by using well known fast 
exponentiation methods and by reducing each intermediate power and product. 
This technique is again completely analogous to the method for real quadratic 
number fields described in [1]. 

Next, we try to factor 9 over the factor basis Fc. Suppose this factorization 
can be completed successfully, i.e. 

kc 

(12) pi 
i=l1 

where the exponent vector z = (z1, ... , Zkc) has rational integer entries. Then 

kc 

(13) a= = fJte-z 
i=l1 

which means that the vector (el-.1.... , ekc - Zkc, deg(a)) belongs to Fc. By our 
remarks in Section 1.2, the factorization of 9 can be done in O(kc deg(D)3 log q) 
operations in Fq. For further reference, we denote the whole procedure of this 
subsection as the procedure RELATION. 

2.4. Computing class number and regulator. Suppose that we know a gener- 
ating system b1, . . ., bN for rc, and the matrix BC given in (7). We can compute 
the Hermite normal form of BC and its determinant. Thus, we will obtain h'R. 

Next we consider the matrix BC whose columns are the vectors b, ... , bcon- 
sisting of the first kc entries of the vectors bl,... , bN Its entries are rational 
integers whose binary length is polynomially bounded in log IDI. As in [18], we can 
compute both the Hermite and the Smith normal form of Bc. The Smith normal 
form will yield the ideal class number h' and the structure of the ideal class group. 
Finally, the regulator R can be computed by R:= h'R/h'. 

2.5. Computing the discrete logarithm. We "compute" a generating system 
for Fc by generating "sufficiently many" random vectors in Fc. In Section 4, we 
estimate the number of random vectors we have to find such that these vectors are a 
generating system for Fc with high probability. Until now, we have not mentioned 
how to verify that the produced vectors really generate the lattice Fc. In fact, if we 
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only want to find the degree of an arbitrary generator of a principal ideal (and this 
is what is needed to attack the system in [21]) such a verification is not necessary. 

But if we want to compute the regulator R or discrete logarithms as defined 
in [21] (i.e. the degree of a generator modulo R), then we must be sure that the 
generated lattice indeed is Fc. 

Again we use a method analogous to AbeV's algorithm for real quadratic num- 
ber fields. Using standard results on zeta functions for function fields, we can 
approximate the value of h'R by a number E) satisfying h'R < E) < 2h'R. The 
approximation E) can be derived by techniques similar to those used in [28] and can 
be found in [27, Theorem 6.2.1]. Suppose that, using the methods of Section 2.4, 
we have computed values h and ft assumed to be ideal class number and regulator. 
We have found a generating system of the whole lattice, if and only if hR < E), and 
we know that h' = h and R = f. In this way, we can always find the correct value 
for h', R and the discrete logarithm. 

3. EXPLICIT BOUNDS FOR A GENERATING SYSTEM 

3.1. C- and L-functions. Let K/k be an algebraic congruence function field over 
the finite field k = IFq of odd characteristic. Let q3 be a prime divisor of K of 
degree fq and residue class field kq. Then, the absolute norm of lj is defined to be 
the integer N(q3) = qf. Similarly, the absolute norm of a divisor 2A of degree fa 
is defined as N(29) = qf. Let E be the principal class. According to [7, p. 62], a 
character X of finite order on the divisor class group C is a homomorphism of C into 
the multiplicative group C* of non-zero complex numbers such that there exists an 
integer N with xN(c) = 1 for all c E C. This character induces a character on D by 
composing with the natural homomorphism, D -> C, Q( p-> QE. Again, we denote 
this character by X The L-function L(s, X, K) associated to a character X (of finite 
order) on K/k is then defined as 

(14) L(s, X, K) z x(A) (5R(s) > 1), 

where the summation is over all integral divisors Q( of K. As usual, we set u := q-8. 

We also have the Euler product for L(s, X, K), 

(15) L(s, x, K) = ]IJ x - I 1- - 

where the product is over all prime divisors of K. For X = 1, we obtain the 
(-function of K, namely 

(16) C,(s, K)=E (, =[ -1 Illuv Z N(9Qs 1P 1N(q)s T 

To compute explicit bounds, we need further representations of the L-function 
and the (-function by series and products. We denote by g the genus of K. It is 
well-known (see for example [9], [12] or [29]) that 

2g 

H(1-wiu) 
{1~~~ ~ ~ 

~~~~~ 17 
Az 

u)\ -au) I/ 
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where wi - qPi (i 1,2,... ,2g) and Pl,... ,P29 are zeros of ((s, K). Then, l/wi 
(i = 1, 2, ... , 2g) are zeros of Z(u, K). Because of the truth of the Riemann 
Hypothesis (see [31]) in K, we have I wi q 2 (i = 1, 2, ... 2g). Note that the 
(-function is periodic with period 27ri/logq and analytic in the whole plane with 
the exception of simple poles at s = 0, 1 + 1 27ri/log q (1 E Z). From now on, we 
assume that X is not trivial when restricted to Do. By results in [7, p. 66], we know 
that if k is a field with q elements, then L(s, X, K) is a polynomial in u = q-S of 
degree 2g - 2, and 

2g-2 

(18) L(s, X, K) = Z(u, X, K) = 17 (1-wi(X) u), 
i=l1 

where 1/wi (X) (i = 1, 2, ... , 2g-2 ) are the zeros of Z(u, X, K). Let wi(X) = qPi(X) 

(i = 1, 2, ... , 2g -2). Then P1(X), *.. , P2g-2(X) are the zeros of L(s,X,K). As 
a consequence of the Riemann Hypothesis (see for example [13, p. 155-156], or [30, 
p. 260], and [7, p. 148-149]), we have I wi(X) q 

1 
(i = 1, 2,... 2g - 2). 

3.2. Explicit bounds. In this subsection we develop explicit bounds for the degree 
of the least prime divisor with X(93) :& 1 in algebraic congruence function fields. If 
one proceeds in the same way as Bach [3] did in the case of algebraic number fields, 
one obtains the same bound as in Corollary 1 (see [27]); however, since L-functions 
of function fields are essentially polynomials, the result can be derived more easily 
than in the traditional context. 

Theorem 2. Let X be a character (of finite order) which is not trivial when re- 
stricted to Do. If X(X3) = 1 for all prime divisors X3 of K of degree fT < d, where 
d E , then we have 

d < 2log(4g-2) 
logq 

where g denotes the genus of K. 

Proof. If all prime divisors X3 of K of degree fT < d have the property that x(X3) 
1, then the first few Euler factors of Z(u, X, K) are equal to the corresponding Euler 
factors of Z(u, K). In other words, 

2g 

1 1 ~ ~~~ J(1wzu) 
Z(u,K) f=<d i- ? f_>d 1 - f - (1-u)(1-qu) 

fT<d fT>d 

by (16) and (17), and 

2g-2 1 

fl (1-wi(X)u8) Z(ua X,K) fH - U' fT > 1-X(93)Uf 
i= 1 ~~~~~ ~~~f <d fT>d 

2g 

F(1-wiu) 1- Uf 
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by (15) and (18). If we take logarithmic derivatives, we obtain 
oo 2g-2 oo 2g 00 00 

(19) E E E Ed) 
v=O i=1 v=O i=1 v=O v=O 

where 
00 

p(ud) = S fq3uvf (1 (X9)>v - 1) 
fT>d v=1 

is a series in u with terms of degree at least d. Equating coefficients at ud-1, we 
find that 

2g-2 2g 

S wi(X)d - 1 - qd, 

i=l ~~i=l 

so that, by the Riemann Hypothesis, 
qd + 1 (2g+(2g-2))q2, 

and hence 
d 

q2 < 2g - 1 + 4g2-4g < (4g - 2). 

Corollary 1. Let X be a character (of finite order) which is not trivial when re- 
stricted to Do. If we define 

d [2l~10lg(4g-2) 
log q 

there must exist a prime divisor X3 of degree fT < d such that X(9) :& 1. 

Notice that d is at least 1. This corollary is an analogue of the results for 
algebraic number fields in [3]. 

3.3. Real quadratic congruence function fields. Now let K/k be a real qua- 
dratic congruence function field. The decomposition of the infinite place 93, of 
k(x) is 3= 93 32 where 93, and 932 are two different infinite places of K/k. 
It follows that 

U= (91T2i 

and that 

uo (K -T1i). 
From [32, p. 263], we have that fT= fT2 = 1, and that 

D = DoU, 

and 

h = Rh'. 

We deduce from (1) and (2) that 

I Do /U, 

and 

Cl- DolU/PU. 
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As in Section 3.1, any character x (of finite order) defined on the ideal class 
group Cl induces a character on f. A character that takes only the value 1 is called 
the trivial character. We also denote it by 1. From the above, we see that any 
non-trivial character X on I can be induced by a character defined on D that is 
not trivial when restricted to Do. Also, we know that fp1 = fT, = 1. Thus, we 
immediately derive from Corollary 1 the result for prime ideals. 

Theorem 3. Let X be any non-trivial character (of finite order) defined on Cl. If 
we set 

d =2 log( 2 deg(D) - 6)l d := 
~~log q 

then there must exist a prime ideal p of K with absolute norm I N(p) < q d such 
that X(p) : 1. 

Here, we use the fact that g = deg(D)/2 - 1. We notice that d is at least 1, and 
that qd is almost equal to (2deg(D) - 5)2. 

As in the case of a quadratic number field (see [23, p. 266]), we use the argument 
that we can produce a generating system for the ideal class group by using only the 
prime ideals with norm less than qd, where d is given as in Theorem 3. We derive 
from character theory (see, for instance, [11, p. 68]) the following theorem. 

Theorem 4. The ideal class group Cl of a real quadratic congruence function field 
can be generated by all prime ideals p with absolute norm I N(p) < qd, where 

d [ 02 log(2 deg(D) - 6)1 

log q 

i.e. 

Cl [P[] p a prime ideal and I N(p) < q d}) 

4. PRODUCING A GENERATING SYSTEM 

In this section, we estimate how many vectors in Ic we must generate in or- 
der to obtain (with high probability) a generating system for FC. Suppose that 
the algorithm RELATION of Section 2.3 chooses the vector e = (el,... ekc) E 
{0,... ,I D}kc and y E {0,... , D|} and outputs a vector (vI,... ,Vkc',Vkc+1). 
From Lemma 2 it follows that the exponents zi (1 < i < kc) in (12) satisfy 
Izi I < deg(D)/2. Thus, we have - deg(D)/2 < ei-zi = vi < |D| +deg(D)/2. Analo- 
gously, we have by (4) that -deg(D)/2 < ekC+I-ZkC+ I v= Vk1 < ID + deg(D)/2. 
Therefore, any vector which is computed by RELATION belongs to the set 

(20) W+ = {- deg(D)/2,... , D + deg(D)/2}kc 

x {- deg(D)/2,... , D + deg(D)/2}. 

On the other hand, we see that all vectors (v1, ... , Vkc, Vkc+1) that can be produced 
by RELATION only from vectors (e, y) E {0, ... , ID l}kc x {,.. . , ID } must belong 
to 

(21) W- ={0, ... , DI - deg(D)/2}kc x {O,... , IDI - deg(D)/2}. 

Finally, we let Nred(C) be the number of reduced ideals of (9 that can be factored 
over Fc. 
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Proposition 1. Let N, be the number of pairs 

(e, y) EC{O, ... , IDl}kc x {O ... ., IDI} 

which as choice in RELATION can yield the vectorV = (V1, ... , Vkc, Vkc+l) E W-. 
Then Nred < Nv 

Proof. Let (v1,... Vkc,VkcV+1) E W-. Let 

Z {3 93 a reduced ideal of (9 that can be factored over Fc} 

Then for each z with = pZi E Z there exists e E {0,... , D }kC such that 

kc kc 

vIii = FJei-zi 

i=l i=l 

This implies the assertion. D 

Suppose we have found the vectors v... , Vj. (If j = 0, we have not yet found 
anything.) Let Fj C Fc be the sublattice generated by those vectors and let dj be 
its dimension. If dj = kc + 1, let Ij = [Fc: Fr]. We will estimate the probability 
Pj+I for the procedure RELATION to yield a vector j+I E F - Fj. 

Let N1 - (j n(V W+), AN2 = (Fc n W-). Then by Proposition 1 we have 

(22) pj+I ? Nred (C) (N 2-NI) 
(IDI ?l)kc?l 

To find a lower bound for that probability, we compute an upper bound for N1 and 
a lower bound for N2. 

Lemma 3. (i) If d3 = kc + 1, then we have 

N1 < hIRfIj (IDI +deg(D) + 2Ij (deg(D) 
q 

1)2 (jflde )D2) 

(ii) If dj < kc + 1 and I' is a (kc + 1) -dimensional sublattice of Fc with Fj C F', 
then we have 

N- hR [I F'] (D + deg(D) + 2[FC: IF] (deg(D) - 1)2 (/I)desg(D)-2) kc+l 

Proof. (i) We have det(Fj) = Ij det(Fc), which by Theorem 1 implies det(Fj) 
Ijh'R. As in [2, p. 236, (9)], we can bound h'R by 

h'R < 2 (deg(D) - 1)2 (V/-)deg(D)-2 

Hence, there is a basis of rj that is contained in 

{0o... , 2 Ij (deg(D) _ 1)2 (,/-)deg(D)-2}kc+I 

Let Fj be the fundamental parallelepiped of that basis. Then for every v E Fj UW+ 
the translated set v + .Fj belongs to 

{-deg(D)/2,... , IDI + deg(D)/2 + 2Ij (deg(D) 
q 

1)2 ( /?1)deg(D)-2}kc?1. 
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It follows that 
N1 =F(irnw+) 

< det(F) (DI + deg(D) + 2Ij (deg(D) q)2(A) )deg(D) ) 

Ij h'R (DI + deg(D) + 2Ij (deg D) - 1)2 (q/) deg(D)_2)c? 

(ii) Since t(Fj < W+) C t(F'oW+), this is an immediate consequence of (i). Ei 

Analogously, we obtain 

Lemma 4. We have 

N2 >J (|DI - deg(D) -2 (deg(D) - 1)2 (A/i) deg(D)2)cl 

Finally, from (22), Lemma 3 and Lemma 4, we obtain 

Corollary 2. 

Pj?+ ?Nd. (1 - O)). hIR 

5. THE EXPECTED RUNNING TIME OF THE ALGORITHM 

In this section, we use the results of the previous two sections to derive the 
expected running time of the algorithm described in this paper. 

First of all, we compute the factor basis Fc. The factor basis Fc is the set of 
prime ideals whose norm is bound by qc for some constant C (see Section 2.2). 
Using the estimates in [16, p. 59] or [27, Lemma 6.2.3], we see that the size of the 
factor basis is bounded by kc - 4Cqc. It can be computed in O(Cqc deg(D)3 log q) 
operations in Fq, 

Let us now estimate the expected time until we have found a generating system 
for the lattice Fc. We define for p E R>, 

L[p] = exp (/log D log log D 

where the notation o(1) represents a function of IDI which tends to 0 as IDI tends 
to infinity. 

According to Theorem 4, it is sufficient to choose C > [2 log(2 deg(D) - 5)/ log q] 
for Fc, which implies that the minimal size of the factor basis is O(deg(D)2). This 
is polynomial in the input length ID . Note that C is at least 1. To get a better 
probability of success in the algorithm RELATION, we extend the factor basis to 
subexponential size, i.e. we choose 

C = logq(L [p]) 

where p is some positive constant. Thus, L [p] qc. Since C > 1, it follows in 
particular that q must be subexponential in the input length, and we obtain the 
following condition: 

Vdeg(D)lgi 

L[p] = q(P+0(1)) o q q 

In order to assure this condition, we assume from now on that deg(D) > log q. 
In Section 4, we examined the probability of finding a relation. In order to 

determine the expected running time of our algorithm, we have to find a lower 
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bound for Nred(C) in Corollary 2. In this context, we immediately derive from [17, 
Theorem 2.1] (see also [25]) the following fact. 

Theorem 5. For [2 log(2 deg(D) - 5)/ log q] < C < qdeg(D)/2 we have 

Nred(C) > q2 deg(D)-1 L [- ] 

Using this theorem, we obtain 

Corollary 3. If Fj F4 oC, then for [2 log(2 deg(D) -5)/ log q] < C < qdeg(D)/2 we 
have 

Pj>? L 
4p 

Proof. We have h'R < (deg(D) - 1)2 (V/-)deg(D)-2 From Corollary 2 and Theorem 

5, we obtain pj+l > L [- 4p] 

Finally, the next theorem determines the expected running time for computing 
a generating system for the relation lattice F0. 

Theorem 6. Assume that deg(D) > log q. A generating system for FC consisting 
of L[p] elements can be computed in expected running time L[2p + ?1]. 

Proof. We recall that C = logq(L [p]). Then C > [2 log(2 deg(D) - 5)/ log q], and 
therefore the conditions of Theorem 4 are satisfied. We also have kc = L[p]. By 

Corollary 3, we have Pj+1 > L [-1] . The expected number of applications of 

the procedure RELATION before a sublattice FO of IF of finite index is found 
is L[p + 1p]. Now, we have to estimate the index [Fc: Fo] = det(Fkc+l) det(Fc). 
Obviously, det(Fc) = h'R > 1. To bound det(Fkc+l) we use Hadamard's inequality. 
By (20), we obtain det(Fo) < (IDI + deg(D))kc+l = exp(L[p]). Hence the expected 
number of applications of RELATION before a generating system of IF is found is 

again L [p + 1] . Each application of RELATION requires L[p] operations in Fq, 

and this completes the proof. El 

By standard techniques in probability theory (see for example [14]), we obtain 

Corollary 4. If the number of applications of RELATION exceeds 4L[p+ 1 ], then 
the probability that the produced vectors generate IC is at least 1/2. 

If we know a generating system for I`, we have the matrices Bc and Bc as 
in (7). As described in Section 2.4, we compute the Hermite normal forms and 
the determinants of Bc and B . In addition, we compute the Smith normal form 
of B . The computation of the Hermite normal form, the Smith normal form, 
and the determinant, respectively, can be done in L [5p], L [3p], L [3p] (see [6], [8], 
[18]). For computing the degree of a generator of an ideal 2(, we considered two 
situations in Section 2.3: if St splits over Fc, we need time L[4p] for computing the 
degree of a generator. If the ideal St should not split over the factor basis Fc, we 
construct another ideal 93. This is done as follows: we choose at random a vector 
e E {0,... , ID }kc and y E {0,..., D } and compute a reduced ideal (t closest to 
y and a Ez K such that 

kc 

i=l 
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We repeat this step until we can factor (t over Fc, but at most L[p] times. By the 
same arguments as above, we obtain that the probability that we can factor one 
of the ideals (t over Fc is at least 1/2. The expected number of operations in Fq 
performed by the algorithm is therefore L [2p + ?1p] 

If (t can be factored, i.e. t = fl7kc1 i i then we have 
kc 

f3 Jrzi-ei 

i=l1 

Finally, we have to solve (9) and to compute (10). By the techniques described in 
[19], this can be done in L[4p] operations in Fq. 

We can now discuss the optimal choice for p. Since the computation of the 
generating system requires L[2p + 1 ] operations, optimizing p means solving the 
equation 

2p +-= 5p. 
4p 

One solution of this equation is p - 2 which means that the expected running 
time of the whole procedure is L[1.44]. Therefore we obtain the following main 
result of this paper: 

Theorem 7. Let K = Fq(x)(\D) be a real quadratic congruence function field 
with deg(D) > log q. Then we can find the degree of a generator of an arbitrary 
principal ideal in the ring of integers (9 of K in expected running time L[1.44] with 
probability at least 1/2. 

By iterating our algorithm 1-times (1 E 2>O), we can increase the probability up 
to 1 - 2-1. As described in Section 2.5, we can solve the discrete logarithm problem 
in real quadratic congruence function fields of large genus with the same algorithm 
and an additional approximation E of h'R. This approximation is described in 
detail in [28] and [27]. It can be done in polynomial time O(deg(D)2). Note that, 
if q > (2/(21/29 - 1) + 1)2, then it is sufficient to use E := 2(- 1)29. Thus we 
obtain 

Theorem 8. The discrete logarithm problem for real quadratic congruence function 
fields Fq(x)(\D), where deg(D) > logq, can be solved in expected running time 
L[1.44]. The structure of the ideal class group, the ideal class number, and the 
regulator can be computed in the same expected running time. 
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