
MATHEMATICS OF COMPUTATION
Volume 68, Number 226, April 1999, Pages 869-880
S 0025-5718(99)01008-X

FACTORING HIGH-DEGREE POLYNOMIALS OVER F2
WITH NIEDERREITER'S ALGORITHM ON THE IBM SP2

PETER ROELSE

ABSTRACT. A C implementation of Niederreiter's algorithm for factoring poly-
nomials over F2 is described. The most time-consuming part of this algo-
rithm, which consists of setting up and solving a certain system of linear equa-
tions, is performed in parallel. Once a basis for the solution space is found,
all irreducible factors of the polynomial can be extracted by suitable gcd-
computations. For this purpose, asymptotically fast polynomial arithmetic
algorithms are implemented. These include Karatsuba & Ofman multiplica-
tion, Cantor multiplication and Newton inversion. In addition, a new efficient
version of the half-gcd algorithm is presented. Sequential run times for the
polynomial arithmetic and parallel run times for the factorization are given.
A new "world record" for polynomial factorization over the binary field is set
by showing that a pseudo-randomly selected polynomial of degree 300000 can
be factored in about 10 hours on 256 nodes of the IBM SP2 at the Cornell
Theory Center.

1. INTRODUCTION

Recently, the implementation of polynomial factorization algorithms over finite
fields has attracted much attention; see e.g. [6], [7], [9], [11] and [16]. The paper
of von zur Gathen and Gerhard is of special interest here since it also describes
an implementation for the factorization of high-degree univariate polynomials over
F2. They use techniques based on a distinct/equal degree factorization. In this
paper a C implementation of Niederreiter's factorization algorithm for factoring
polynomials over F2 is described. In this algorithm, a system of linear equations
has to be set up and solved. To solve this system of equations an "explicit" approach
is used, i.e. storing the corresponding matrix over F2 in memory and performing
Gaussian elimination on it. An advantage of this approach is that it is highly
suited for parallelization. The last stage of the algorithm consists of extracting the
factors from a basis for the solution space with suitable gcd-computations. This is
performed sequentially, but is usually very fast in comparison with the Gaussian
elimination. The implementation was optimized for dense polynomials. It will
be shown that it's competitive with the implementations in [7], which seem to be
harder to parallelize, provided that enough processors are available.

In Section 2, Niederreiter's algorithm for factoring polynomials in F2 [x] is de-
scribed. Section 3 explains how the linear system of equations is set up and solved.
The distribution of the matrix over the different processors and some tricks to speed

Received by the editor May 19, 1997 and, in revised form, August 11, 1997.
1991 Mathematics Subject Classification. Primary 11-04, 11T06, 11Y16.
Key words and phrases. Finite fields, parallel computing, polynomial factorization.

(@)1999 American Mathematical Society

869

870 PETER ROELSE

up the computations will be discussed. Section 4 outlines the different fast poly-
nomial arithmetic algorithms which were implemented. A new efficient version of
the half-gcd algorithm is presented. In Section 5, run times on the IBM SP2 are
given. An IBM SP2 is basically a collection of RISC System/6000 workstations
connected by a high-performance switch, which allows message passing with low la-
tency and high bandwidth. Sequential run timos for the fast polynomial arithmetic
and parallel run times for the complete factorization are presented.

2. NIEDERREITER'S ALGORITHM

In this section, a brief description of Niederreiter's algorithm for factoring poly-
nomials over F2 is given. For more detailed information, refer to [13]. Let f C F2 [x]
be a nonconstant polynomial of degree d with

d

f fix = gll * g12 .. ge.. f= iig1 .g2 em

i=O

where gi C F2[x] are pairwise different irreducible factors occurring with multiplic-
ities ei, e2,... , em. The starting point of Niederreiter's algorithm is the differential
equation

(2.1) (fh)' = h

with h = Ed>j hix' C F2 [X] unknown. The following theorem gives the link to the
factorization problem.

Theorem 2.1 (Niederreiter). The set of solutions h C F2[x] of equation 2. 1 is an
F2-space N:

m
f

N ={h = cigj- cl, .,cm C F2}
i=l1 gi

In the following we shall restrict ourselves to square-free polynomials. This is
not a serious restriction, since efficient methods exist to reduce the problem to the
square-free case (see [19]). The elements of the Niederreiter subspace N can be
used to factor f. Observe that for a square-free polynomial f the following equality
holds:

gcd(f,h)= I7 gi,
{ 1<i<mIec=0}

leading to a nontrivial factorization if h 74 0 and h 7 f'. If the Niederreiter matrix
A/f is defined as

fl f3 fA 0 0

fO f2 f 0 0

0 fl f3 ... *-- 0 0

0 fo f2 * * 0 0

0 0 0 . fd 0

0 0 0 .fd-1 0

0 0 0 . * fd-2 fd

FACTORING HIGH-DEGREE POLYNOMIALS OVER F2 871

then comparing coefficients in Equation 2.1 gives

(2.2) h C N Xh(f-h d) = ,

where h (hoh1 ... hd- 1). So a basis {V1,V2,... ,Vmlvi C F2[x]} for N can be
found by setting up the matrix Vf[-'d and computing a basis for its right nullspace
(this is the reason that the transpose of the Niederreiter matrix is used; the nullspace
algorithm described in the next section only computes right nullspaces). Note that
the dimension of the nullspace coincides with the number of distinct irreducible
factors. Assuming this number is larger than one, all irreducible factors of f can
be found with the elements of the basis. First compute j = gcd(f, vl). If this
gcd is trivial, proceed with the computation of gcd(f, v2); otherwise compute both
gcd(j, v2) and gcd(f/j, v2). Repeat this procedure of computing the gcd with the
next vi and all factors already found until the number of factors equals m.

3. COMPUTATION OF THE NULLSPACE

The coefficients of the rows of the matrix)VT -Id are packed in 32 bit computer
words. The operations in F2 can then be performed by using boolean arithmetic
on these words, e.g. addition can be done by an exclusive or operation adding 32
field elements in one turn. The matrix is distributed in columns, where the number
of columns per processor (which is a multiple of 32) is the same for all processors.
An exception is the first processor, which usually gets a bit less columns since this
one also handles the IO. To set up the matrix, all processors first precompute all
possible 32 bit words that occur in the matrix AF[, which is an 0(d) process. After
this, only assignments are needed. Finally, each processor subtracts its part of the
identity matrix.

For the parallel computation of the nullspace of the matrix, a program developed
by Michael Weller is used [18]. This program transforms the matrix into full echelon
form. The reason that it computes right nullspaces is to maintain compatibility with
older programs. A problem arising when the right nullspace has to be computed
is that column operations have to be performed. Since the rows are packed in
computer words, this would mean that operations within these words are needed.
This is inefficient, as also transposing the matrix would be. Therefore the column
operations are replaced by row operations. The idea for this was developed by
Reiner Staszewski and works as follows. A row that equals the pivot row with one
minor change is stored. The modification is that the pivot is replaced by a zero.
For all rows the element in the pivot column is checked. Whenever this equals one,
the modified row is added to this row. This process is illustrated in Example 3.1.
With slight extensions this can be generalized to any finite field; see [18].

Example 3.1. Consider the following small example of a 3 x 3 matrix over F2.
The pivot is chosen to be the first element in the first row. Then the pivot row is
(1 1 0), so the modified row will be (0 1 0).

/1 1 0\ /1 0 O'
I0 1 1 0 1 1
\1 0 1, 1 1 1,

One can easily see that instead of doing column operations using the pivot column,
we can perform row operations using the modified row. Note that we have to
perform the row operations on all rows of the matrix, i.e. including the pivot row.

872 PETER ROELSE

Current node l
I Solve : _History_--_--__ _ _

ipivot[] pivot[]]

@ <~~-- - -- - --- - - - - - - - - - - -

Broadcast

Il _, t NI CLI

FIGURE 1. Data flow and distribution of the matrix

The elimination process is speeded up by eliminating multiple rows in one turn.
For a detailed description of this process, see [18]. In each step a small stripe of
columns is selected on the current node (see also Figure 1). This is then transformed
by this node to column echelon form by a special column solver. Although this
makes the program more sequential, it does speed up the nullspace computation
considerably. The indices of the pivot rows are stored in ipivot, while History
contains which linear combination of the pivot rows should be added to each row
of the matrix. This is then broadcast to all nodes. Each node then computes all
linear combinations of the pivot rows using a highly optimized submodule (CLI)
before the appropriate linear combinations are added to the rows of the matrix. An
important advantage of the distribution in columns is that the calculation of the
linear combinations is fully parallelized.

Sorting the columns after the Gaussian elimination is not done; the program
only constructs a table containing the corresponding permutation. However, if the
result has to be written to a file, the permutation is performed. This usually is no
problem, since only a few basis vectors are expected.

4. FAST POLYNOMIAL ARITHMETIC

In order to compute the gcd's in the final stage of the algorithm efficiently, sev-
eral (fast) polynomial arithmetic algorithms were implemented. A polynomial is
represented as an array of 32 bit computer words. The bits in these words cor-
respond to the coefficients of the polynomial. Figure 2 shows how the different

FACTORING HIGH-DEGREE POLYNOMIALS OVER F2 873

Multiplication: O(M(d)) Classical Division O(d2)

Classical M(d) = d2 &

Karatsuba M(d) = d-?2 3

Cantor M(d) = dglog"?2 3d Newton Divis. O(M(d))

FIGURE 2PyDivisionc

s r X | ~Extended Euclidean |

|Half-gcd a lgorithm agrtmOd

| O(M (d) log d) l

\ | ~~~~Binary gcd l

\ ~~~algorithm O(d2)

i >| ~~~GCD

FIGURE 2. Polynomial arithmetic

algorithms depend on each other together with their complexities. Note that effi-
cient multiplication of two polynomials is crucial for the efficient implementation of
division and gcd-computations. Observe also that multiplication, division and gcd-
computations all have a complexity that is almost linear, i.e. they can be c5omputed
with O(dl+e) field operations for any fixed E > 0.

For a description of Karatsuba & Ofman multiplication and division based on
Newton inversion, refer to [1], [8] or [12]. The multiplication method of Cantor,
which is based on evaluation and interpolation at additive subspaces of F22n, is
presented in [3]. In this implementation the field F216 is used, which allows multi-
plication of two polynomials over F2 as long as the sum of the degrees is smaller
than 524288. For a detailed description of Cantor's algorithm for multiplication in
F2 [x], including an iterative version, refer to [14].

A description of the half-gcd algorithm, the fast version of the Euclidean algo-
rithm, can be found in [1] and [17]. However, the version in [1] is incorrect while the
version in [17] is inefficient, since the polynomials involved are too large. Therefore
an efficient and correct version will be given below. Let a1 and a2 be two nonzero
polynomials for which the gcd has to be computed. Without loss of generality
we assume that deg(al) > deg(a2). Then the Euclidean algorithm computes the

874 PETER ROELSE

remainder sequence of a1 and a2 such that

a, = qja2 + a3,
a2 = q2a3 + a4,

at-, qt-;at,

with at+, = 0 and at = gcd(al, a2). However, this algorithm is not used in this
version in the factorization algorithms. For small polynomials the binary gcd algo-
rithm is used (see [2]). For two polynomials of approximately the same degree, the
implementation of the binary gcd algorithm is about 30% faster than the implemen-
tation of the Euclidean algorithm. For large polynomials the half-gcd algorithm is
used, which uses the following fact. If the matrices Mi are defined as

0O 1
Mi (1 -qi)'

then

(ak) MkiMk2 M1 a,
ak?i) . a2)

with k < t. The half-gcd algorithm computes the product Mk-lMk-2 ... M1 such
that the degree of ak is larger than or equal to half the degree of f, and either k = t
(i.e. ak+l= 0) or ak+1 is the first term in the remainder sequence of ai and a2 for
which the degree is smaller than half the degree of a1. It returns deg(f) - deg(ak).
The product of matrices is computed recursively and with polynomials of smaller
degree than a1 and a2. The following definitions will be needed for the description
of the algorithm and a proof of its correctness. If f = Ed o fix' 7 0, then define

f Il := fdx +fdIX1 + +fd-l for 0 < I < d.

Two pairs of polynomials (f, g) and (h, j) with deg(f) > deg(g) > 0 and deg(h) >
deg(j) > 0 are said to coincide up to 1 if and only if

f I h I,

I (1 - deg(f) + deg(g)) j I (1 - deg(h) + deg(j)).

This is only defined if 1 < min{deg(f), deg(h)}, 0 < 1 - deg(f) + deg(g) < deg(g)
and 0 < 1 - deg(h) + deg(j) < deg(j). The following lemma can be found in [17].

Lemma 4.1 (Lehmer/Strassen). Let 1 > 0 and 1 < k < t be -such that deg(al) -

deg(ak) (= Ek- L deg(qi)) < i and either k = t or (Ez=k deg(qi) =) deg(al) -

deg(ak+l) > 1. Consider the Euclidean algorithm for another pair of nonzero poly-
nomials (at*,a*) with deg(a*) > deg(a*):

al = qla2 + a3,

a2 = q2a3 + a4,

at.*-

qt*1at*

Define k* similarly. If (a,, a2) and (a*, a*) coincide up to 21, then k k* and
qi = q* for 1 < i < k - 1.

FACTORING HIGH-DEGREE POLYNOMIALS OVER F2 875

The half-gcd algorithm

int half-gcd((R, f, g)
{

1. u <- [deg(f)/2j
2. if (u < deg(f) - deg(g))

{
3. I ()
4. return 0

}
5. if (deg(f) < C) return half-ext-Euclid(R,f, g)
6. s < half-gcd(T, f I u, g (u - deg(f) + deg(g)))

8. if (j 0 or u < deg(f) - deg(j))
{

9. R- T
10. return s

}
11. quotient-remainder(q, r, h, j)
12. s- s+deg(q)
13. if (r 0 or u < deg(f) - deg(r))

{
14. Rz

0 1 T I -qJ
15. return s

}
16. v -2(u-s)
17. s <- s+ half-gcd(S, j I v, r (v - deg(j) + deg(r)))

18. 1?<- S
0

%T I -q
19. return s

}

Theorem 4.2. Let f 7& 0 and g 7& 0 with deg(f) > deg(g). The half-gcd algorithm
computes the matrix]Z, -such that R1(f, g)T = (ak, ak+l)T with the property that
deg(f) - deg(ak) < [deg(f)/2j and either ak+1 = 0 or ak+1 is the first term in
the remainder sequence of a, := f and a2 := g for which deg(f) - deg(ai+,) >
[deg(f)/2j. The function returns deg(f) - deg(ak).

Proof. Assume that there exist functions satisfying the properties for the input
for which the algorithm produces a wrong output. Among these functions, there
exist an f and a g with deg(f) + deg(g) minimal. We call the function with these
arguments. The condition in line 2 cannot hold, since the output would be correct
in that case. So we have deg(f) > deg(g) and u > deg(f) - deg(g). From this
we obtain the following inequalities for u = deg(f I u) and u - deg(f) + deg(g) =

876 PETER ROELSE

deg(g I (u - deg(f) + deg(g)):

deg(f) > [deg(f)/2j = u > u - deg(f) + deg(g),

deg(g) > u - deg(f) + deg(g) > 0.

Line 5 of the algorithm is for efficiency reasons only; if the arguments are of small
degree the matrix is computed by the classical extended Euclidean algorithm. It is
assumed that the result of this call is correct. The output of the recursive call to the
half-gcd function in line 6 has to be correct, since the arguments satisfy the input
conditions and have smaller degrees than f and g respectively. Note that (f, g)
and (fu,gI(u - deg(f) + deg(g))) coincide up to 2[deg(f)/4j. If k

T(flu, gl(u - deg(f) + deg(g)))T, then by Lemma 4.1 and induction we see that h
and j in line 7 are two polynomials in the remainder sequence of f and g with s =

deg(f Iu)-deg(a *) = deg(f)-deg(h) < [deg(f)/4j. If the condition in line 8 would
hold, the output would be correct, contradicting the assumption. So we continue
with line 11. Right after line 12 it holds that s = deg(f)-deg(h)+deg(q) = deg(f)-
deg(j) < u. So the condition in line 13 also cannot hold, since the output would
then be correct. After line 15 we have deg(j) > deg(r) and u > deg(f) - deg(r).
For v deg(j Iv) and v - deg(j) + deg(r) = deg(rj (v - deg(j) + deg(r)) it follows
that:

deg(f) > deg(j) > 2u-s > 2(u-s) = v > v-deg(j) + deg(r),

deg(g) > deg(r) > v - deg(j) + deg(r) > deg(j) - deg(r) > 0.

So again the recursive call to the function must give a correct output. Next observe
that (j, r) and (jIv, rI(v - deg(j) + deg(r))) coincide up to 2(u - s). Let

(ak, ak+l)T :- S(jj r)T (= ZfIg)T

and

(Qk, dk+)T = S(j [v, rl (v - deg(j) + deg(r)))T.

Then by Lemma 4.1 and induction we have

deg(j) - deg(ak) = deg(jlv) - deg(&1k) < v/2

and either 0+, = O or deg(j I v) - deg(dkj+1) > v/2. If ak+l= 0, then the output
would be correct, so we can assume that ak? I 0. If deg(j)-deg(ak+l) < v/2, then
by Lemma 4.1 qk= qk. This would imply that also deg(j I v) - deg(k+j1) < v/2.
Since this is not true, we know that deg(j) - deg(ak+l) > v/2. From this it follows
that

deg(f) - deg(ak)= deg(f) -deg(j) + deg(j) - deg(ak)
(= deg(f) - deg(j) + deg(jlv) - deg(&k) = s)

< deg(f) - deg(j) + v/2 = [deg(f)/2j

and

deg(f) - deg(ak+1) = deg(f) -deg(j) + deg(j) - deg(ak+l)

> deg(f) - deg(j) + v/2 = [deg(f)/2j,

which contradicts the assumption that the output is wrong. El

FACTORING HIGH-DEGREE POLYNOMIALS OVER F2 877

gcd algorithm

pol gcd(f, g)

{
1. h-f
2. j< g
3. for (;;)

{
4. quotient-remainder(q, r, h, j)
5. if (r-=0) return j
6. if (deg(j) < K) return binary-gcd(j, r)
7. s <- half-gcd(R, j, r)

8. (R)

9. if (j = 0) return h

}

In order to compute the gcd of two polynomials the half gcd algorithm usually has
to be iterated. For completeness, a gcd algorithm is given. The arguments should
be non-zero, and deg(f) > deg(g). For polynomials over fields other than F2,
the binary gcd algorithm can be replaced by the Euclidean algorithm if necessary.
The value returned by the half-gcd algorithm is used to compute the matrix-vector
products in line 7 of the half-gcd algorithm and in line 8 of the gcd algorithm more
efficiently. If

then only the first [(deg(f) - s)/32j + 1 computer words (32 bits) of f and g
are needed to compute the matrix-vector product, since we know that deg(h) =
deg(f) - s < deg(g) and either j = 0 or deg(j) < deg(f) - s This speeds up the
gcd computation considerably.

5. RUN TIMES

This section presents run times of the implementations. All programs were
written in C and were optimized for speed. Techniques for improving a program's
performance can be found in [4] and [10]. The IBM AIX XL C Compiler/6000 with
optimization option -03 was used to compile the programs.

The sequential run times (in seconds) for the fast polynomial arithmetic in Ta-
ble 1 were obtained using an IBM RS6000 - 590 with a POWER2 processor, rated
at 67 Mhz. The times represent average running times for multiplying two polyno-
mials of degree d, computing the quotient and remainder when dividing a degree
2d polynomial by a degree d polynomial, and computing the gcd of two degree d
polynomials, respectively. All polynomials were selected pseudo-randomly, using
the standard C rand() function. It should be mentioned that the times for the
division based on Newton inversion and the half-gcd algorithm can be improved by
saving some multi-point evaluations of polynomials, e.g. in the matrix product in

878 PETER ROELSE

TABLE 1. Sequential CPU times for polynomial arithmetic in F2 [x]

Degree | Multiplication
ll

Division GCD's
| d ||Karats. Cantor || Classical Newton| Bin.-gcd gcd-alg.

8000 0.02 0.03 1 0.05 0.05 0.17 0.17
16000 0.05 0.06 0.19 0.15 0.64 0.64
32000 0.14 0.13 0.76 0.42 2.52 1.94
64000 0.41 0.26 2.93 0.98 10.17 5.72
128000 1.22 0.61 12.35 2.26 40.42 15.22
256000 3.76 1.34 49.86 4.98 162.62 39.82

line 18 of the half-gcd algorithm. This was also pointed out in [15]. At the moment
this is not implemented.

The parallel run times for the complete factorization were taken at IBM SP2
installations. The ones in Table 2 were obtained in Bonn (Germany). The times in
Table 3 were obtained in Cornell (USA), where more nodes are available. One node
corresponds to an IBM RS6000 as described above with 128 MB main memory.
The library used for the communications between the nodes is Parallel Operating
Environment (POE) with the Userspace (US) protocol. This was specially designed
for the IBM SP and uses its high performance switch. The run times represent the
time for factoring one pseudo-randomly selected (dense) polynomial of degree d.
They are split into three parts: the time to set up the matrix, the time for the
Gaussian elimination and the (sequential) time to extract the irreducible factors
from the polynomial using the basis for the nullspace. These times are all in seconds,
while the total run time is in hours-minutes-seconds. The parameter A represents
the amount of precomputation, i.e. the number of rows that are eliminated in one
single turn. The missing times in Table 2 are due to a lack of main memory. Note
that storing the d x d matrix needs d2/8 bytes of main memory. For the largest
example, the degree 300000 polynomial, this corresponds to 11.25 GB. This is about
44 MB for one workstation. The precomputation needs 2Ad/8 bytes of memory. For
the degree 300000 polynomial, this equals 2.4 MB for one node.

To the best of our knowledge, the largest instances of polynomial factorization
over the binary field in the literature are a trinomial of degree 216091 (see [5])
and a pseudo-randomly selected polynomial of degree 262143 (see [7]). With the
factorization of the pseudo-randomly selected polynomial of degree 300000 a new
"world record" is set. This shows that Niederreiter's algorithm for polynomial fac-
torization over F2 (for which the algorithm looked particularly promising from the
very beginning) is the fastest factorization algorithm currently available inpractice.

FACTORING HIGH-DEGREE POLYNOMIALS OVER F2 879

TABLE 2. Parallel CPU times for polynomial factorization in F2 [x] (Bonn)

[Degree [| Number of processors Degrees
d A Task 8 16 32 L of factors

8000 10 setup 0.03 0.02 0.02 1,5,10,16,29,59,
nullspace 26.0 21.3 19.4 152,234,256,697,
extract 0.76 0.76 0.76 725,1433,1587,
total oh00'27" oh00'22" oho0020" 2796

16000 11 setup 0.10 0.06 0.04 8,12,13,14,19,42,
nullspace 134 103 89.2 519,7374,7999
extract 2.09 2.09 2.09
total oh02'16" OhO1'45if oh01'31u

32000 11 setup 0.35 0.20 0.12 7,11,96,381,436,
nullspace 718 548 436 777,912,2235,
extract 8.79 8.79 8.79 11485,15660
total oh12'07" OhO9i17" oho0725"

64000 12 setup 1.36 0.75 0.41 1,1,5,25,30,125,
nullspace 4396 2941 2107 340,668,2369,
extract 29.0 29.0 29.0 5388,16244,
total 1h13'46" oh49i30i ohh35i36i 38804

128000 12 setup 1.47 6,36,83,92,133,
nullspace 11377 140,368,958,
extract 67.0 2213,4849,9051,
total 3h10'45" 17211,92860

TABLE 3. Parallel CPU times for polynomial factorization in F2[x] (Cornell)

Degree T Degrees
d #procs A Task II CPU time [of factors

75000 64 12 setup 0.27 1,17,35,40,81,
nullspace 2641 311,622,12225,
extract 26.9 21515,40153
total oh44/28//

150000 128 13 setup 0.54 2,5,27,36,47,66,276,
nullspace 9623 284,316,948,3690,
extract 106 5066,8536,14534,
total 2h42'10" 27871,88296

300000 256 14 setup 1.25 2,4,165,233,275,
nullspace 36540 10965,18709,
extract 236 41770,100948,
total ioh 12'57"i 126929

ACKNOWLEDGMENTS

The author is very grateful to the Cornell Theory Center, Cornell University,
Ithaca, NY and the GMD, St. Augustin, Germany for offering us the CPU time
on their IBM SP2 installations. Without their support these computations would

880 PETER ROELSE

not have been possible. Special thanks go to Michael Weller for permission to
modify and use his parallel nullspace algorithm. He also wants to thank Reiner
Staszewski, who implemented the classical multiplication of polynomials and several
subroutines of the nullspace program. Helpful discussions with Peter Fleischmann
are also highly appreciated. He thanks the referee for valuable remarks and for
bringing the article [5] to his attention.

REFERENCES

1. A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974. MR 54:1706

2. E. Bach and J. Shallit, Algorithmic Number Theory - Volume 1: Efficient Algorithms, The
MIT Press, 1996. MR 97e:11157

3. D.G. Cantor, On arithmetical algorithms over finite fields, J. Combin. Theory Ser. A 50,
(1989), 285-300. MR 90f: 11100

4. K. Dowd, High Performance Computing, O'Reilly & Associates Inc., 1993.
5. A. Diaz, E. Kaltofen and V. Pan, Algebraic algorithms, The Computer Science and Engineer-

ing Handbook (A.B. Tucker, ed.), CRC Press, 1997, pp. 226-249.
6. P. Fleischmann and P. Roelse, Comparative implementations of Berlekamp's and Niederre-

iter's polynomial factorization algorithms, Finite Fields and their Applications (S. Cohen and
H. Niederreiter, eds.), Cambridge University Press, 1996, pp. 73-84. MR 98a:12009

7. J. von zur Gathen and J. Gerhard, Arithmetic and factorization of polynomials over F2, Proc.
ISSAC '96, ACM Press, 1996, pp. 1-9.

8. K.O. Geddes, S.R. Czapor and G. Labahn, Algorithms for Computer Algebra, Kluwer Aca-
demic Publishers, 1992. MR 96a:68049

9. J. Gerhard, Faktorisieren von Polynomen iiber Fq: ein Vergleich neuerer Verfahren, Master's
thesis, University of Erlangen-Niirnberg, 1994.

10. IBM, AIX Version 3.2 for RISC System/6000: Optimization and Tuning Guide for Fortran,
C, and C++, IBM Manual, 1993.

11. E. Kaltofen and A. Lobo, Factoring high-degree polynomials by the black box Berlekamp
algorithm, Proc. ISSAC '94 (J. von zur Gathen and M. Giesbrecht, eds.), ACM Press, 1994,
pp. 90-98.

12. A. Karatsuba and Y. Ofman, Multiplication of multidigit numbers on automata, Soviet Phys.
Dokl. 7 (1963), 595-596.

13. H. Niederreiter, New deterministic factorization algorithms for polynomials over finite fields,
Contemp. Math. 168 (1994), 251-268. MR 95f:11100

14. D. Reischert, Schnelle Multiplikation von Polynomen iiber GF(2) und Anwendungen, Master's
thesis, University of Bonn, 1995.

15. D. Reischert, Multiplication by a Square is cheap over F2, Preprint, 1996.
16. V. Shoup, A new polynomial factorization algorithm and its implementation, J. Symbolic

Comput. 20 (1995), 363-397. MR 97d:12011
17. V. Strassen, The computational complexity of continued fractions, SIAM J. Comput. 12

(1983), 1-27. MR 84b:12004
18. M. Weller, Parallel Gaussian elimination over small finite fields, Parallel and Distributed

Computing Systems, Proc. of the ISCA International Conference (K. Yetongnon and S. Hariri,
eds.), 1996, 56-63.

19. D.Y.Y. Yun, On square-free decomposition algorithms, Proc. ACM Symp. Symbolic and Al-
gebraic Comput. (R.D. Jenks, ed.), 1976, pp. 26-35.

INSTITUTE FOR EXPERIMENTAL MATHEMATICS, UNIVERSITY OF ESSEN, ELLERNSTRASSE 29,
45326 ESSEN, GERMANY

Current address: Philips Crypto B.V., De Witbogt 2, 5652 AG Eindhoven, The Netherlands
E-mail address: roelsefexp-math.uni-essen.de, roelsefcrypto.philips.com

