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AN APPROXIMATE INERTIAL MANIFOLDS APPROACH 
TO POSTPROCESSING THE GALERKIN METHOD 

FOR THE NAVIER-STOKES EQUATIONS 

BOSCO GARCIA-ARCHILLA, JULIA NOVO, AND EDRISS S. TITI 

ABSTRACT. In a recent paper we have introduced a postprocessing procedure 
for the Galerkin method for dissipative evolution partial differential equations 
with periodic boundary conditions. The postprocessing technique uses ap- 
proximate inertial manifolds to approximate the high modes (the small scale 
components) in the exact solutions in terms of the Galerkin approximations, 
which in this case play the role of the lower modes (large scale components). 
This procedure can be seen as a defect-correction technique. But contrary to 
standard procedures, the correction is computed only when the time evolu- 
tion is completed. Here we extend these results to more realistic boundary 
conditions. Specifically, we study in detail the two-dimensional Navier-Stokes 
equations subject to homogeneous (nonslip) Dirichlet boundary conditions. 
We also discuss other equations, such as reaction-diffusion systems and the 
Cahn-Hilliard equations. 

1. INTRODUCTION 

The Navier-Stokes (NS) equations (see Section 2), in a smooth bounded do- 
main Q, with nonslip Dirichlet boundary conditions, can be written as an abstract 
dissipative evolution equation 

du 
(1) dt + VAu + R(u) = 

in an appropriate Hilbert space H with norm 1.1 (see Section 2) (cf. [6], [23], [38]). 
Here A: D(A) C H -, H is a densely defined, unbounded, self-adjoint and positive 
operator with compact inverse and contains the higher-order spatial derivatives, 
v > 0 is a scalar, and R: D(R) C H -, H is a nonlinear map which gathers lower 
order spatial derivatives and nonlinear terms. 

The eigenfunctions {w1, w2, ... } of A with the associated eigenvalues 0 < A1 < 
A2,... form a complete orthonormal set in H. Let Hm = span{w1,w2,... , wm} 
Pm the orthogonal projection of H onto Hm and Qm I - Pm. Every solution u 
of (1) can be decomposed uniquely into 

(2) u = p + q) p = PmU, q = Qnu. 

The solution u of (1) can be approximated-by the Galerkin approximation, 
Urn(t) E Hm, obtained by integrating the standard Galerkin method (SGM) which 
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is given by the system of ordinary differential equations 

(3) dt + vAurn + PrR(ur) = Prf, Um(O) = PmU(). 

Notice that since urn is sought in H., the Galerkin error u - urn will never be 
smaller that the best-approximation error u - p = q; that is, 

(4) |u-urn > |u-pl = lql 
Thus, for a better approximation of u, we propose the following algorithm to im- 
prove the SGM. We call it the Postprocessing Galerkin Method (PPGM). 

Postprocessing Galerkin algorithm. Suppose that the solution u is wanted at 
time T > 0. Then, 

1. Compute the Galerkin approximation un(T) by integrating (3) with respect 
to time. 

2. Solve the linear elliptic problem vAqn = Qn(f - R(Un(T))). 
3. Add q. to un(T) in order to obtain the new approximation un(T) + qn to 

u(T). 
We will see that the convergence rate of the new approximation is better than that 
of the SGM, or, broadly speaking, that lu(T) - (urn(T) + qm)| = o(lql). Moreover, 
this improvement is obtained at a small computational cost, so that the new method 
is computationally more efficient than the SGM (see Figure 2 below). We note that 
in practice, the whole of qn is nrever computed, and it is replaced by an adequate 
truncation Pm'qn with m' > m sufficiently large. 

The PPGM was introduced and analyzed in [21]. The analysis in [21] relies 
heavily on the properties of Foui'er expansions and the fact that complex exponen- 
tials form an algebra; therefore we restricted our treatment in [21] to dissipative 
evolution PDEs subject to periodic boundary conditions. This may inspire doubts 
about the PPGM improving the SGM when more realistic boundary conditions are 
imposed. This question becomes more relevant in view of recent results like those 
in [4], where, thanks to a clever algorithm for approximating the eigenfunctions and 
eigenvalues of the Stokes operator A, actual computations of (3) are carried out on 
complex geometries. In the present paper we analyze the method independently of 
the properties of the eigenfunctions wj. We present here a new analysis with much 
simpler ideas than those presented in [21]. These simpler ideas have allowed us to 
extend the PPGM to more technical situations [18], [22]. Although for simplicity we 
concentrate on the Dirichelet (nonslip) boundary conditions and the NS equations, 
the techniques used here are easily adapted to other situations. 

The PPGM is reminiscent of classical defect-correction techniques for steady 
state problems. To better appreciate this fact, suppose that we are dealing with 
the steady state problem, so that instead of (1) and (3) we have 

(5) vAv+ R(v) = f, v E H, 

(6) vAvn + PmR(vn) = Pmf, Vrn E H, 

respectively. Thus, in this case the PPGM method would be: 
1'. Find the Galerkin approximation vn E Hm by solving (6). 
2'. Find Zn E QnH by solving the linear elliptic problem vAzrn 

Qrn(f - R(vrn)). 
3'. Add zn to vn in order to obtain the new approximation vn + Zn E H to u. 
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Thus, the whole technique amounts to solving in step 1' the full nonlinear prob- 
lem in the finite dimensional space Hm, where nonlinearities are more easily treated, 
and then computing a correction on its orthogonal complement (or, in practice, an 
adequate truncation of it) in step 2'. Notice that in step 2', we just compute the 
high-frequency component Zm of the solution v = vm + Zm of the (more familiar) 
linear elliptic problem 

(7) vAv = f-R(vm). 

Furthermore, once v is computed, a better approximation v can be computed by 
replacing vm by v in the nonlinear term R in (7). The process can be further 
iterated until a prescribed accuracy is reached, or one can use Newton's iteration 
to converge faster to v. Notice also that solving the steady state problem in step 2' 
instead of (7) is feasible due to the fact that we are dealing with spectral methods 
and both Pm and Qm commute with A. For finite-element methods, one should 
use (7) instead of step 2' [11], [22], [43], [44]. 

Defect-correction techniques, or the related two-grid, two-level or multilevel 
methods, are a well established technique for nonlinear steady state problems (see 
e.g. [3], [11], [31], [43], [44], and the references cited therein). That is, the three steps 
VA' are nothing new. For evolution problems, similar defect-correction techniques 
are used on the steady state problems that arise when doing implicit time-stepping. 

More recently there has been renewed interest in multilevel methods for evolu- 
tion problems (see e.g. [2], [7], [10], [32], [33], [34]). Part of the recent interest in 
multilevel methods for evolution problems arose from studies initiated by [14], [16], 
[13] and [41] in connection with inertial manifolds (IM) [15] and their approxima- 
tions. In fact, the multilevel methods developed from this approach are not called 
that, but rather nonlinear Galerkin methods (NLG) [13], [26], [32]. It was through 
this approach that we arrived at the PPGM. 

It may be clarifying then to summarize the main facts of this approach. To do 
this, notice that, using (2) and the fact that both Pm and Qm commute with A, 
equation (1) can be rewritten as the coupled system 

(8) dt + vAp+PmR(p+q) =Pmf, pEHm, 

(9) dt + vAq + QmR(p + q) =Qmf, q EQmH. 

It is shown in [14] that, under certain circumstances which are motivated by the 
dynamical systems approach, the q terms other than vAq in (9) can be considered 
negligible as compared to the other terms. Thus, the authors of [14] suggested the 
following approximation model for the high-frequency component q of u: 

(10) q 1- 4b(p) = (VA)-Qm(f - R(p)). 

It is noteworthy that in [16] the authors used a totally different technique, which is 
also motivated by a dynamical systems approach, which led them to a model similar 
to (10). Notice the similarity of the above approximation with step 2' of the defect- 
correction technique (we will discuss the differences later). In [14] it is also shown 
that 41(P) is a good approximation to q, in the sense that Iq - 41(P) o( q ) (see 
Section 2 for a more precise statement). Based on this fact, the NLG method was 
developed. In the NLG method, the exact solution u of (1) is approximated by 
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Ym(t) + i1(ym(t)), where Ym E Hm is obtained by solving 

dy(dm + vLAym + PmR(ym + bi(Ym)) Pmf, Ym(O) = PmU() 

41?(Ym) = (vA)->Qm(f - R(ym)), 

or certain variants of the above equation which preserve the dissipative nature of (1) 
(cf. [27], [10]). 

The NLG error satisfies |u(t) - (ym(t) + 4bi(ym(t))1 q - 4bi(P)[ = o(|ql) [10], 
which (recall (4)) should imply a better computational performance than the SGM. 
However, the continuous update of (Dl(Yin) along the time evolution is so compu- 
tationally costly that the NLG, in spite of its o(lql) error, is generally less efficient 
than the SGM. 

Let us clarify this point now with an example from [21]. Consider the 2- 
dimensional NS equations (see Section 2) in the vorticity-streamfunction formu- 
lation 

a-vAw + Vw x ViF = g, 
(12) 

in the spatial domain Q = [0, 2wr]2, with v 0.01 and subject to periodic boundary 
conditions. Here the vorticity w = (V x u) . k, the velocity u = V x ('Tk), the 
streamfunction is IF and g = V x f. We set the forcing term g as g(x, y, t) 
fi (x, y) (2 + cos(t))/3, where 

['(1 + cos(4r+))2/8, if r+ < wr/4, 

fi(X,y)= -(1 +cos(4r_))2/8, if r_ < 7r/4, 

1O, otherwise, 

r? = |x + iy - (r(1 + i) ? e&0r/2) , and 0 = 0.7. The function fi represents stir- 
ring the fluid in opposite directions at the locations wr(1 + i) ? eior/2. Let us fix 
the vorticity w at t = 0 by w(x, y, 0) = wO(x, y), where w0 = (vA) -1fl. 

Figures 1 and 2 show the errors of the different methods when they use several 
values N of Fourier modes in each spatial direction. The results correspond to 
runs from t = 40wr to T = 44wr. Results corresponding to the SGM are marked 
with asterisks and joined by continuous lines, and those of the NLG are marked by 
small circles and joined by dotted lines. Since in the present example w is in the 
Sobolev spaces H' for all ca < 13/2, following suggestions in [41], Ib, was truncated 
to N13/11 Fourier modes in each spatial direction (see also [10], [28] and [37]). 

Figure 1 is a convergence diagram where the errors in the vorticity w committed 
by the methods, measured in the H1 norm, are plotted versus the number N of 
Fourier modes in each spatial direction. The slopes of least-squares fits to the last 
four points of each method are shown in Figure 1. We see that whereas in the SGM 
the errors decay like N5 5, in the NLG they decay like N6 5. Thus, the NLG has 
a better convergence rate than the SGM, because its error decays faster with the 
number of modes (m= N2 in this example) than the SGM. 

However, efficiency (ratio of cost to error) is another matter. In Figure 2, the 
same errors as in Figure 1 are plotted versus the smallest amount of computing 
time (in seconds) that the methods needed to achieve those errors. It is clear from 
Figure 2 that the NLG takes more than twice the computing time of the SGM for 
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FIGURE 1. Convergence diagram; * SGM, + PPGM, o NLG 

any error. This can be seen by drawing any horizontal line (i.e., selecting a desired 
accuracy); then, its intersection with the continuous line of the SGM is on the right 
of its intersection with the dotted line of the NLG by a factor of more than two 
(i.e., to achieve that desired accuracy, the SGM needs less than half the computing 
time of the NLG). 

The poor practical performance of the NLG led us to develop the PPGM. The 
aim was to obtain the better accuracy of the NLG at the cost of the cheaper SGM. 
This, as shown in Figures 1 and 2, is achieved by the PPGM, whose results are 
represented by + sings and joined by dashed lines. In, Figure 1, the NLG and the 
PPGM commit virtually the same errors for a given N (o and + signs are plotted 
on almost the same locations). Furthermore, in Figure 2, the + sings of the PPGM 
and the * of the SGM are (almost) on the same vertical lines (i.e., same cost) but 
since the PPGM error is smaller, it turs out to be more efficient. Again, this can 
be checked by noticing that the broken line joining + sings is the leftmost (i.e., the 
PPGM needs less computing time to reach a given accuracy). 

Two final comments are pertinent in this example. First, following standard 
practice with spectral Fourier methods, nonlinear terms were approximated by 
interpolation, in what is known as pseudospectral methods; we made sure that the 
aliasing error arising from this practice was not dominant (i.e., that the errors were 
the same as those of the more costly pure spectral methods). Second, we were very 
careful in checking the sources of error and cost to avoid reaching wrong conclusions 
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FIGURE 2. Efficiency diagram 

on the relative efficiency of the methods (see [19], [20]). We refer the reader to [21], 
where full details of the methods used are provided, and where L2 errors are shown. 

Let us turn to the relation of these methods with defect-correction techniques. 
Notice that both the NLG (11) and the PPGM in steps 1-3 are defect-correction 
methods for evolution problems: the corrections 4b(Ym) in the NLG and q, in the 
PPGM are obtained through solving linear elliptic problems. Notice also that, 
for the correction, both the NLG and the PPGM use the Foias-Manley-Temam 
mapping 1 in (10), since q, in step 3 is q, = i1(um(T)). Let us then look more 
closely to the relation between Ibi and the standard defect-correction approach for 
steady state problems in steps 1'-3'. Observe that on going from (9) to (10), the 
dq/dt term is dropped. Thus, in the steady state case 2,' we have the full forcing 
(source) term f of the original problem (5), whereas in the evolution case (10), only 
Qmf instead of Qmf -.dq/dt is present. This implies that while in 1'-3', continuing 
iteration of the process might bring better and better approximations, this is not 
(necessarily) so in (10) unless some approximation to dq/dt is included. Procedures 
for doing this can be found in [8], [9], [10], [39] and [40]. Our practical experience 
with them [20] inspired us to use only D1I in (10). For the possibility of using 
Newton's or another iteration method see, for instance, [16], [26], [35] and [41]. 

Observe also that in the PPGM the correction q, is computed only once, as 
opposed to more standard defect-correction practices for evolution problems like 
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the NLG or the method presented in [7], where the correction is computed at every 
time step over the interval [0, T]. 

A quick explanation of the o(lql) error of the PPGM may make things clearer. 
For linear problems with constant coefficients ur is p, so that the error p - ur = 0. 
However, u - ur = q, which is not negligible (and hence (4)). For nonlinear 
problems, we show here that IP - um = o(lql), and this allows 4Di(um) to be a 
good approximation to DI (p) q. In fact, since (DI is Lipschitz-continuous (see, 
e.g., [10]), then kI I(um) - >I(P)) < CIum -p. Thus, by adding + >(p), for the 
error we have that 

|Um + Di(um) - p - ql < (1 + C) lum - P| + k11(p) -ql = o(lQl). 

We perform the analysis summarized here for both L2 and H1 norms. 
We point out that in [14], the graph of (DI, that is, {p + (i(P) I P E Hm}, 

was called an approximate inertial manifold (AIM) (see also [16], [41]), in reference 
to the IMs, where q = ??(p) for some mapping (D, which is sometimes known to 
exist but is hardly ever known explicitly. We do not discuss here whether AIMs 
approximate IMs or not. We simply use 41? and use the term AIM that other 
authors coined before us. 

We remark that our results are not restricted to time-independent forcing terms f 
in (1), and are valid for H6lder-continuous (in time) f (see Remark 2 in Section 3). 
We also show how to extend our analysis to dissipative equations other than the 
NS equations, such as reaction-diffusion systems and the Cahn-Hilliard equations. 
We note that there are in the literature AIMs other than the c1i used here [8], [9], 
[14], [16], [17], [30], [38], [39], [41]. Our results hold also for the Euler-Galerkin 
approximate inertial manifold which was introduced in [16] (see also [13] and [26]). 

The rest of the paper is organized as follows. In Section 2 some standard prelim- 
inary material is introduced. Section 3 is devoted to studying the PPGM for the 
NS equations. Finally, in Section 4, the extension of the results to other equations 
is discussed. 

2. PRELIMINARY RESULTS 

We consider the NS equations 

ut + (u V)u + Vp = vAu + F, 
div(u) = 0, 

in a smooth bounded domain Q C R2, subject to the homogeneous (nonslip) Dirich- 
let boundary condition ulaQ = 0. In the rest of the paper, we use the spaces 

H {u E L2(Q)2 div(u) = 0, u nlaQ = 0} 

and the space 

V = {U E Ho (Q)2 div(u) 0}. 

Let HI be the orthogonal L2 projection Hl: L2(Q)2 - H. Projecting onto H, the 
NS equations become- equation (1) with A =-HzX, R(u) = B(u,u) = H[(u V)u], 
and f = HF (see, e.g., [6]). It is well known that then D(A1/2) = V. Following the 
notation of [6], we denote by (,.) the inner product in H (i.e., in L2(Q)2), and by 

and 1 the norms 

IUI = IIUIIL2(Q)2 , llvll = A'/2v 
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in H and V respectively. We will also denote by K the L??(Q) norm. For k an 
integer, we consider the Sobolev space Hk = Hk (Q) with its usual norm rescaled 
to 

(13) 11U1 Hk ( lk A1 IIDu L()2 1/) 

This norm is readily extended to Hk (Q)2. We will use the inequalities 

(14) IIWIIHk(Q)2 < c1 Ak/2W , Vw E D(Ak/2), k 1, 2 3 

where, throughout this paper, c, c1, c2,... will denote dimensionless constants. (See 
[6], pp. 36-41, on the regularity requirements on the domain Q for (14) to be valid). 

We recall the Brezis-Gallouet [5] inequality in two dimensions: 

IUIIH2 ~1/2 VU(H2 (15) IUI ILO(Q) < C2 lluTIH1 (10+9log A1/ u2 ) Vu 2 

This inequality is also valid for u E H2 (Q)2, and as a result we have 

(16) IIVIlc? < C3 lIvll Lm, Vv E Hmr 

where 

Lm=(1+log Am) 1/2 

The bilinear form B satisfies the following skew property: 

(17) (B(u, v), w) =-(B(u, w), v) for all u, v, w E V 

(see, for instance, [6], p. 53). Moreover, for any 6 with 1/2 < 6 < 1 we have 

(18) IA-6(R(u) -R(v))l < L ju-vl, Vu,v E V, 

with L = c4 A1/2(u + v)) (see, e.g., [6], p. 55). 
We recall the following property of the NS equations. There exist constants Mo 

and M1 such that for any solution u of (1), there is a time To = To( u(0) I If f) such 
that 

(19) u(t)I < Mo, |A1/2u(t)I < M1, t > To. 

Here and below, M, Mo, M1,... and K, Ko, K1,... denote constants that may de- 
pend on the data of the problem (i.e., v, f, lu(O)I and A1). A simple modification 
to the argument given in [14] allows us to choose the time To large enough so that 

(20) Iq(t)I < Ko v Ko= 5 (QmfI +M) 

(21) IIq(t)II < K,Lm2 K, = c6 lIQmfl + M2 + MO M12 

for every m and for every t > To. In particular these estimates hold, for all -oco < 
t < oc, for any solution in the global attractor. We now summarize some results 
concerning (DI and the rates of convergence of the SGM and the NLG. First of all, 
we notice that the convergence properties of the discretizations of (1) depend on 
the approximation capabilities of the space where the solution is sought. For the 
SGM, the solution um is in Hm, so that, for example, the L2 error cannot be better 
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than the L2 norm of u-Pmu = u-p = q. In fact, if (19), (20) and (21) are satisfied 
for To = 0 then 

(22) Lu(t)-um(t)m ? C(t)Am: and lu(t) - Um(t)lI < C(t)? 
L 

Am+l1 Am+ 1 

(see, for instance, [10] and [36]). Moreover, the above estimate (22) is sharp, as has 
been demonstrated by an example in [41]. For the NLG, the solution Ym + (il (Ym) 
lies in the manifold M1 = graph((DI). The L2-distance and the Hl-distance of 
the solution u of (1) to this manifold are Iq- (i(p)I and llq - (i (p), respectively. 
These quantities can be bounded [14] by 

(23) Iq-I(p)l < K3 L m < 3 Lm 3 3/2' Hlq -(I(p) I ?<K Am, 

with K3 =K3(v-1, If I, Al, M3). One can then prove that 

(24) lu(t) - ym(t) - (DI(ym(t))I < C(t) - 
A3/2 
m+i 

L2 
(25) ||u(t) - ym(t) - 4I1i(ym(t)) 1 < C(t)Am 

Am+l 

3. MAIN RESULTS 

This section is devoted to proving the following theorem. 

Theorem 1. Let T > 0 be fixed. Let u be a solution of the NS equations on [To, T] 
such that (19), (20) and (21) are satisfied for TO = 0. Then, there exists a constant 
C = C(T, M1) such that for any t E (0, T) the solution um(t) of the standard 
Galerkin method, equation (3), satisfies 

L4 
(26) lp(t) - um(t) < C 

A3/2 
m+i 

L4 
(27) u(t) - (um(t) + >I (um(t))) < C - m 

m+3 

L4 
(28) ||p(t) - um(t)|| < C m 

Am+i' 
L 4 

(29) ||u(t) - (um(t) + 1i(um(t))) < C 
-Am+,' 

The factor L 4 can be replaced by a constant (see Remark 1 below). 
Before proving this theorem, some remarks may be helpful. We first show that, 

as we mentioned in the Introduction, (27)-(29) are implied by (26). In fact, notice 
that since u = p + q, we can write u - (um + (I (um)) = (p - um) + (q - (um)), 
which, on adding ?(iD(p), can be expressed as 

(30) u - (um + 4),(um)) = (p -um) + (q - ?(D p)) + ((Di (p) - >(D um)) 

The second term on the right hand side above is (recall (23)) O(LmA3/l2). The 
last term, since D1I is Lipschitz-continuous [10], can be bounded as 

(31) kIDi (p) - (um) I <? 1 p - um I v| 4)I (p) - 4I (um) 11 < I IIp - um || 
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where 1 can be made arbitrary small by choosing m large enough. It is then 
clear that (27) follows from (26) and (23). Similarly, if we take into account that 

IlP - Umrn < Am lP- UmL, (28) is a straightforward from (26), and by the same 
argument as above we get (29). 

The proof of (26) given below will be divided into a number of separate inter- 
mediate results. We now comment on the main ideas, to facilitate the reading. 
This proof is done by stability plus consistency arguments, reminiscent of finite- 
difference analysis, rather than by the standard error analysis typical of spectral and 
finite-element methods. This allows us to study only quantities in Hm, for example 
ur -p, rather than in quantities H like u - um, and exploit the finite-dimensionality 
in certain inequalities. 

The first step in our proof of (26) is the stability of the SGM. This is no novelty, 
and is presented in Theorem 2 for convenience of the reader. By stability we mean 
that we bound the error lP - ur in terms of the quantity 

(32) W = maxJo e1)(s-r)APPmG(r) dr, 

which is a convenient norm of the residual PmG, where 

G = B(p, q) + B(q,p) + B(q, q). 

Notice that P,nG equals (d/dt)p+ vAp+ PmB(p,p) - Pmf; that is, it is the residual 
or truncation error obtained when ur is replaced by p in the "discrete" equation (3) 
satisfied by um. 

The second step in the proof of (26) is consistency, that is, to show that (32) is 
of order L A3+I. Consistency is presented in Theorem 3. From this theorem and 
the stability of Theorem 2, the main result of this section, Theorem 1, follows. 

We now comment on the proof of Theorem 3 (consistency), which is prepared 
by three lemmas. Observe that we want to show that (32) is O(L4A\<3/2). Since 

G is only of the size of llqll (= Q(A)Jl/ )) ([6]), p. 50, in order to get a better rate 
we must exploit the smoothing effect of e-v(s-r)A in (32) by using the inequality 

el(t-s)AP PG(s) < IlAev(t- s)P" A IL(Hm) IA PmG(s) | 

(Here and in the sequel, II 1L(X) denotes the operator norm in the Hilbert space X). 

Lemmas 1 and 2 below show that |A-1PmG(s) I = O(Lm A- i). This result is not 
valid for A-1 G(s) , so that the finite-dimensional space Hm plays a key role here. 
After Lemmas 1 and 2, W in (32) can be bounded by 

W < KL2A-3<2 1 1 Ae>(T-s)PmA L(Hm) ds. 

Lemma 3 then shows that ft IAe&(T-s)PmA I1(H )dr < cL2, and consistency 
follows. Notice that again we have exploited the finite dimension of Hm, since 
whereas the operator norm I|Ae)(T-s)P,T A 

1C(Hm) is integrable in [0, T], the norm 

IIAezY(T-s)A I1(H) 
is (v(T - s))-1 and, hence, nonintegrable. 

Theorem 2. Let 6 E (1/2, 1) be fixed, and let T > 0 also be fixed. Let u be a 
solution of the NS equations such that (19), (20) and (21) are satisfied for To = 0. 



POSTPROCESSING THE GALERKIN METHOD 903 

Then, there exists a constant C = C(T, M1, 6) such that for any t E [0, T] the 
solution ur of the standard Galerkin method satisfies 

(33) lp(t) - umr(t)I < C( p(O) - um(0)I + max e-V(s-r)APm G(r) dr), 

where 

p(t) = PMU(t) and G(r) = R(u(r)) - R(p(r)). 

Proof. Let us set e p - Um. Subtracting (3) from (8), we have 

dt e =-vAe + Pmr(R(um) - R(p)) - PmG. 

Hence, 
rt 

e(t) e-1tAe(O) + j e-m(ts)APm(R(um(s))-R(p(s))) ds 

rt 
- -j (t-s)APPmG(s) ds. 

Taking norms and using (18) and the fact that flUM(t)fl < Ml for t > To (see [6], 
p. 77), we obtain 

le(t)l ? le-tAe(o), + C4M1 jX (t L le(s)I ds + te- v(t-s)APmG(s) ds 

Now (33) follows from a generalized Gronwall inequality ([24], p. 6). D 

Lemma 1. There exist a constant c such that for any solution u of the NS equations 
satisfying (19), (20) and (21) for To = 0, the following bounds hold: 

(34) jA-lPmB(p, q) I, |A-'PmB(q, p) ? < cMlLm IIqflH_1(Q)2, 

(35) IA-1PmB(q, q) ? < cLm Iq12. 

Proof. For u, v E V we have 

(36) IA-1PmB(u,v)I= max (A-1B(U,v),() max (B(U,v),A14) 
I=1 IWI=1 

= max I(B(U,A-14),v))I 
IWI=1 

where for the last equality we have used the skew property (17). 
Let us put w = A-1 (notice that w E C?(Q) n D(A)). We now replace u and 

v in (36) by p and q respectively. Since div(q) = 0, 

(B (p, w), q) = (q, p.V). 

Moreover, since p E V and w E C??(Q) n D(A)), then p Vw E Ho (Q)2, and as a 

result of the above we have 

I(B(p,w), q) I I(q,p Vw)l < llqlH-1(Q)2- IIP V74H (Q)2 

?c C||q|H-1(Q)2 V(P.Vw) L2(Q)2 

(37) ? c q H1~~(Q) 2 2( Q + Vw V 2(Q)2) (37) < C IlqIIH-1() (IIPII. IIWIIH2() + IIVWII. IIVPIL2Q) 
Applying the Brezis-Gallouet inequality (15) to Vw, we get 

IVw ? CIVWI|H1(Q) 2 (1 + log 1 2 11H(Q) 2I ) 
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Since |VW |Hk(Q)2 < Wa ||Hk+l(Q)2) and using (14) and the fact that IA112w I 

1V1IWL2(Q)2, we can bound 

1|VwH2 1TW11 H___ _2(Q)2_ < II IH3(Q)2 < IA312, 

A1"2 V H1(Q)2 VA IlVIIL2(Q)2 A1 A1/2l w - Al A1/2w 

Hence, we obtain 

11 ?7 I< c Aw Lm. 

Then, from (37), and using (16) to bound flpjj,,, we get 

I(B(p, w), q)ll < C'Lm IlpII IAwl flqjH-1(Q)2 

Since lAwl = 1 and llpII < M1, we conclude that 

(38) IA-1PmB(p, q) ? < CLmMi flqll H-1(Q)2 

For IA-1B(q,p)l, arguing as before, we only have to bound (p,q V7w). Let 
q = (ql, q2)T; then we observe that 

(p,q VJw) = qlp &3xaw dxdy+ jq2p. &yw dxdy. 

Let us estimate the first term on the right hand side from above. As before, since 
p E V and w E C??(Q) n D(A) we have p xw E Ho (Q). Therefore, 

jIpqlP &xw dxdy < c llq IIH-1(Q) ITV(P &xW)IIL2(Q)2 

By using arguments similar to the ones above, especially applying the Brezis- 
Gallouet inequality (15) twice, and the fact that p, w E Hm, we obtain 

|IV(P &XW)IIL2(Q)2 ?< 1TP&XL2(Q)2jj19xWjjIC + IIPIIOO 1jV&xWjIL2(Q)2 

< CLm (IPlI IAwl + IIPII IIWIIH2(Q)2) 

< C'Lm lIplI lAwl < C'Lm lIPll 

because IAwI 1. The term fS q2p &y,w dxdy can be treated similarly, and we 
conclude that 

jA-1PmB(q,p) < cLm lIpIl q 11H-1(Q)2, 

which, together with (38), readily leads to (34), since llpII < M1. 
To prove (35), let us apply (36) with u v = q and use (17) to obtain 

|A-1PmB(q,q) ? < max I(B(q, A-1') q)) I < q2 max VA14_ < CLm Iq2 
m= 

1 
W1= 1 

where in the last step we have applied the Brezis-Gallouet inequality (15) to 

JJVA-'jj 0and used the fact that ( E Hm. El 

Lemma 2. There exist a constant c > 0 such that for any q E V the following 
bound holds: 

(39) qlH1(Q)2 H < c A-K2q 
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Proof. Notice that llqllHH1(Q)2 = sup{l(q,v)l I v E Ho (Q)2, IVJJH1(Q)2 = 1}. But 

(q, v) (q, Ilv) = (AA -q, Hlv) I = I (,\AA-q, Hv) I = 1(VA1Aq, VlIv) I 

< IVA-1ql IVIHvJ = A12A1ql JVIvJ = JA-1/2ql VH,vl 

where we recall that HI is the orthogonal projection of L2 onto H. Since (see 
Remark 1.10 in [6], p. 9) HI: Ho' -- H' is continuous, (39) follows. E 

Lemma 3. Let g: [0, T] -- Hm be such that 

max A-1g(t)J < C. 
0<t<T 

Then for any t E [O,T], 

(40) e-(t-s)vAg(s) ds 
< 

mC. 

Proof. We start by noticing that 

ite-(k-s)vAg(s) ds - Ae-(t-s)vAA-1g(s) ds. 

Since g(s) E Hm for s E [0,T], we have 

Ae-(t-s)vAA-lg(s) PmAe-(t-s)vPmAA-lg(s), 

so that 
t ~ ~ ~~~ t 

(41) I e(t(s)Ag(s) ds < C- I|vPmAe-(t-s)vPmALH ds 

In the sequel, we change variables r = t - s in the integral above. Observe that 

vPmAe -rwPm-A = max vAjeAjr < max ze-rz m C~11(Hm) 1?j?m zE [vAi1,vAm] 

VAme wAmr (r < 1/(vAm)), 

= I er (1/(vAm) < r < 1/(vAi)), 
vA,e-vA,r (r > 1/(vA,)). 

In order to estimate the right hand side of (41) we decompose the interval [0, t] 
as the union of 

A1 = [0 ] n [0, t], 12 [ .] n [0, t], 13 =[ t] n [0,t]. 
v/Am v/Am' vAl vA1 

We then have 

|vPmAe6 Ir,, (H ) dr < VAme6>>A,rr dr < 1 -, 

f /; PmA&-riPm4A|( )drK-] / -dr < 
L(Hm) Ie12 

and 

f |l/PmAervPmAe dr f vA< rdr< 1< _ eA1t 

Combi3e theabvewih(41tootain)L(Hm) 1 

Combine the above with (41) to obtain (40). D 
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Theorem 3. Suppose that the conditions of Theorem 2 hold. Then there exists a 
constant c > 0 such that 

(42) max e- ve(t s)APmG(s) ds < m (LmM, A / q + cLm Iq ) 
(42) max + CLm q 2)L cLmK 

< M 
(M1? + 

Proof. Let us recall that 

PmG =PmB(p, q) + PmB(q,p) + PmB(q, q). 

Then (42) follows immediately from (20), (21), and Lemmas 1, 2 and 3. D 

Remark 1. The leading term v-1L4KoMiA 3/l2 on the right hand side of (42) can 

be replaced by v-2LL Mf KoAM7< in the following way. Let us denote g(s) 
B(p, q) + B(q, p). Using integration by parts we can write 

c(t )eV(t-s)Ap g(s)ds =-(AlPmg(t) -etA AlPmg(0)) 

1 t 
-V(t-s)AA1Pmd ) ds. 

v 0 ~~~~ds 

Notice that no term Ae'(t-s)A appears now, so that the L2 factor arising from 
Lemma 3 will not be present in the corresponding bound. Then the result follows 
from the the fact that for t > To, 

du M_2 dq MI? Lm 
(44) dt (t) < C MM, (t) < c Ko 

dt - i dt - i Am-li 

(Here, we are assuming that If I is not too small; see [14] for a more precise statement 
of (44)). Notice that the above estimate (44) holds for all t E (-oc, xc) for solutions 
in the global attractor. Let us remark, however, that this approach provides a more 
favorable estimate than (42) only if m is sufficiently large so that Lm > Mj2/V. 

Furthermore, all terms Lm can be removed from (42) at the price of replacing all 
constants depending on M1 by constants depending on M2 = maxt>?T lAul, which 
is several orders of magnitude bigger than M1. 

Remark 2. Theorem 1 is not restricted to time-independent forcing terms. If f 
f(t) satisfies foo = maxt>o If(t)I < +oo and for some 0 > 1/2 

If (tl) - f (t2)1 < Lf tl - t21 ) Vtlt2 > 0, 

then it can be shown (see [29]) that (23) holds (inequality (23) was first proved 
in [14] for time-independent forces f). Since f plays no role in the results in this 
section, they are also valid for f = f(t). 

It is important to notice that for time-dependent forces, the estimates (44) do 
not necessarily hold (except for f analytic in a strip of the complex plane around 
the positive real time axis). Hence the approach provided by (43) is of no use, and 
Lemma 3 has to be used. 
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4. FURTHER EXTENSIONS 

The fact that the postprocessed Galerkin method has the same rate of conver- 
gence as the NLG with 4%app (DI is not an exclusive property of the NS equations. 
It applies also to other two-dimensional (and three-dimensional) dissipative PDEs. 
In fact, none of the properties of the solutions of the NS equations that have played 
a key role in our analysis are exclusive to the NS equations, nor are the three 
lemmas in the previous section applicable only to the NS equations. 

Let us review first the properties of the NS equations that we have used. These 
are (19) (i.e., dissipativity) and (14) (i.e., the continuity of the embeddings of D(A') 
into the corresponding Sobolev spaces). Notice that we have used (14) in order to 
have some control on the L? norms of both p and ur (and their spatial derivatives) 
in the nonlinear terms. To avoid the presence of lAul in our error bounds we 
relied heavily on the Brezis-Gallouet inequality (15). This works nicely for two- 
dimensional problems; however, for three-dimensional problems we will have to use 
the estimate 

(45) M2 = max Aul 

instead. 
As for the lemmas in the previous section, Lemma 3 is valid even for sectorial 

operators, while Lemma 2 depends on the boundary conditions and the relation 
between Sobolev spaces and the the fractional powers of A. Lemma 1, however, 
depends on the particular nonlinearity of the equation. 

We show now how to extend the results of (he previous section to reaction- 
diffusion (RD) equations of the form 

(46) Ut- vAu + R(u)f, 

where R is a polynomial nonlinearity 

2k+1 

(47) R(u) = a 3%u, a2k+I > 0. 
j=l 

We consider the equation on a bounded domain Q in Rd, d < 3, subject to ho- 
mogeneous Dirichlet boundary conditions u = 0 on &Q. Notice that the operator 
A is A -i\. We refer the reader to, for instance, [38] for the properties of the 
solutions of this equation. 

For the RD equation (46), the mapping bi possesses the following approximation 
property [8]. For u p + q satisfying (19) and (45) 

(48) Iq- 1(p 
K4 

Am+l 

where K4 depends on M2 (in fact, on M22k). All the bounds that we obtain here 
for the RD equation will depend on this constant M2, rather than on M1. 

We present a version of Lemma 1 for the RD equation. 

Lemma 4. There excists a constant c such that for any solution u of the RD equa- 
tion (46) such that (19) and (45) are satisfied for To > 0, the following bound 
holds: 

(49) A- 1 (R(u) - R(p)) I < KM 1/2MkA/2 IA-1q 
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Proof. Reasoning as in Lemma 1, we have to bound |(R(u) - R(p), A-() I with 
161 = 1. Notice that R(u) - R(p) is a linear combination of terms that are either 
q, or qlpn with 1 > 1 and 2 < l + n < 2k + 1. Then for w = A-14 we denote 
v = ql-lpnw and Q = A-lq. Since D(A) is an algebra, and since q, p and w belong 
to D(A), then Vv = 0 on oQ. As a result we have 

(qlpn, W) = (q, v) = -(div(VQ), v) = (VQ, Vv) =(Q, A v) 

where, for the last equality, we have used the fact that QVv = 0 on OQ. Then, if 
we show that l/\v < KM1 1/2Mk+1/2 1 1, (49) will follow. Assume for simplicity 
that 1 = 1 (the case 1 > 1 is treated similarly). Then 

(50) L\v = npn-lAp + n(n - 1)wpn-2VP. Vp + 2npn'Vp. VW + pnAzw. 

We bound each term on the right hand side above separately. Take the first term. 
Using Agmon's inequality [1], [38] in three dimensions 

(51) IlfKl?cf < ci Vf /2 If /2 Vf C H2(q) 

and (13), we have 

1 Z I< II II In- 1,,0 < CM, 2 M2 2 II1g 1I Hl111 H2 

< cA- -/4 k-c/2MMMk+1/2 1 

where for the last inequality we have used the fact that IIWIIH1 < A /2 H2 For 
the first term on the right hand side of (50) we write 

lpn wl< lpln IA | < 11 PIn/2 IIPIIn/2 141 < C llPll|H/2 nM 
1 

nM 2 1 

pTh-1/4 ,PI,/1/2 n-1 ?n/2 1p 1 < 1/4?c -1/2M+1/2 

For the third term on the right hand side of (50) we first notice that, using 
H6lder's inequality and Sobolev's inequalities in three dimensions, we have the 
bound 

IVp *VWI < IVPII L3(Q)2 IIVWIIL6(Q)2 < C IIVPIIH1/2(Q)2 IIVWIIH1(Q)2 

1 H2 IIWIIH2' 

so that 

p1VP 1 < p ln-I IVP Vp W < cAl 1/4M2 2M2 2 

< cA1l/4Mk-l/2Mk+l/2 

Since the second term on the right hand side of (50) can be treated similarly, the 
proof is complete. 

After this lemma, if we want to show that, for the RD equation, the solution 
um of the SGM satisfies lp - um = O(L2/A2+1), we can proceed exactly as in the 
case of the two-dimensional NS equations. For the three-dimensional case, one 
always has to replace the Brezis-Gallouet inequality (16) by Agmon's inequal- 
ity (51). 

Remark 3. The results on the RD equation can be also extended with minor mod- 
ifications to the Cahn-Hilliard equation 

Ut + 2U+ /R(u) = f 
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(R as in (47)) with boundary conditions 

anU = an/\U = 0, 

where an denotes normal derivative (see [38]). If A = -/\, then IP - ur - 

O(L2 /A3 +1); that is, the same order of convergence (except for the L2 term) 
as the approximation order of 4i [8]. 
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