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ERROR ESTIMATION OF HERMITE SPECTRAL METHOD 
FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 

GUO BEN-YU 

ABSTRACT. Hermite approximation is investigated. Some inverse inequalities, 
imbedding inequalities and approximation results are obtained. A Hermite 
spectral scheme is constructed for Burgers equation. The stability and conver- 
gence of the proposed scheme are proved strictly. The techniques used in this 
paper are also applicable to other nonlinear problems in unbounded domains. 

1. INTRODUCTION 

A number of physical problems are set in unbounded domains. Some conditions 
at infinity are given by certain asymptotic behaviors for solutions. When we use the 
finite difference method or the finite element method to solve such problems numer- 
ically, we often restrict calculations to some bounded domains, and impose certain 
conditions on artificial boundaries. They cause numerical errors usually. If we use 
spectral methods associated with some orthogonal systems in unbounded domains, 
then the above troubles could be avoided. While the spectral methods provide 
numerical solutions with high accuracies. Maday, Pernaud-Thomas and Vandeven 
[1], Coulaud, Funaro and Kavian [2], and Funaro [3] used the Laguerre spectral 
method for several linear partial differential equations. Iranzo and Falques [4] pro- 
vided some Laguerre pseudospectral schemes and Laguerre tau schemes. Mavriplis 

[5] and Black [6] developed the Laguerre spectral element method. Also, Funaro 
and Kavian [7], and Weideman [8] considered the Hermite spectral method and 
the Hermite pseudospectral method. In particular, Funaro and Kavian [7] proved 
the convergence of a spectral scheme using the Hermite functions for some linear 
problems. But so far, there is no paper concerning error estimates of the Hermite 
spectral method using Hermite polynomials. Another spectral method for partial 
differential equations in unbounded domains is based on the rational basis func- 
tions, see Christov [9], Boyd [10], Iranzo and Falques [4], and Weideman [8]. The 
purpose of this paper is to study spectral approximation using Hermite polynomials 
and their applications to nonlinear problems. Some inverse inequalities, imbedding 
inequalities and approximation results are given, which play important roles in 
analysis of the Hermite spectral method. We use the Burgers equation as an ex- 
ample showing how to construct Hermite spectral schemes for nonlinear problems. 
The generalized stability and the convergence of the proposed scheme are proved 
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strictly. The main idea and techniques used in this paper are also applicable to var- 
ious nonlinear problems arising in fluid dynamics, quantum mechanics and other 
fields. 

2. HERMITE APPROXIMATION 

Let A {x} -oc < x < oo} and w(x) ex . For 1 < p < oc, set 

LP (A) = {v v is measurable and 11 V IILp (A)< oo}, 

where 

1 V IIL {A (j v(x)lPw(x)dx)l, 1 p < 00, 
ess sup IV(x) 1, p 00o. IIVIILP(A)=~~~ i- A }() 

xCA 

In particular, L2 (A) is a Hilbert space with the inner product 

(U, V)L2 (A) ju(x)v(x)w(x)dx. 

Further, let 9xv = , and for any non-negative integer m, 

HjT(A) = {Vlkv E L2(A), 0 < k < m}. 

The semi-norm and the norm of HJm (A) are given by 
m 

IVHWm(A) v11 AX V IIL(A), || V IHm(A)= (ZK'k(A) 2 

k=0 

For any real r > 0, we define the space H,(A) with the norm 11 VHJ(A) by the 
space interpolation as in Adams [11]. For simplicity, we denote the inner product 
(u, v)L2 (A), the semi-norm IVIHr(A), the norms 11 v ||Hr(A) and 11 V IILP(A), by 
(u,v), IVIr,w, 11 v llr,w and 11 V IILP respectively. In particular, 11 v II,_II v llo, 
Besides, let c denote a generic positive constant in this paper. 

The Hermite polynomial of degree 1 is defined by 

Hi(X) = (_1)jex2 (e_x2). 

It is the l-th eigenfunction of a singular Liouville problem 

(2.1) OX(eX2X 8v(X)) + Ae-X2v(X) = 0, x E A. 

The corresp?onding eigenvalue A1 = 21. Clearly Ho(x) = 1 and H1(x) 2x. The 
Hermite polynomials satisfy the recurrence relations 

(2.2) Hl+ (x) - 2xH1(x) + 21H1_j(x) = 0, 1 > 1, 

and 

(2.3) 9xH1(x) = 21H1_j(x), 1 > 1. 

The set of Hermite polynomials is an orthogonal system with the weight function 
w(x) on the whole line A, namely, 

(2.4) Hl(x)Hm(x)&(x)dx = 211! 7F61,m. 

By (2.3), the set of 8xHi(x) is also an orthogonal system with the same weight, i,e., 

(2.5) j9 xHi(x)8xHm(x)w(x)dx = 21+111! lr6i,m. 
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For any function v E L2 (A) 
00 

v(x) = EZ vHi (x), 
1=0 

where P1 is the Hermite coefficient, 

il (X) 21! j v (x) Hi (x) w(x) dx, 1 > 0. 

We now consider the Hermite approximation. Let N be any positive integer and 
PN be the set of polynomials of degree at most N. In numerical analysis of the 
Hermite spectral method, we need some inverse inequalities. The first is due to 
Nessel and Wilmes [12], stated in the following lemma. 

Lemma 2.1. For any q$ C PN arnd 1 < p < q < oo, 

|| C) |lLq <c CN6(P q) 11 X IILP 

The next lemma gives another inverse inequality. 

Lemma 2.2. For any q C PN, 

1011,w < N1q2N . 

Proof. By (2.3), 
N 

ax?)(x) = 2 1 IXHj-j (x). 
1=1 

Thus (2.4) leads to 

N-1 

k/l,2 < 4 E 21(1 + 1)21!/7-r?2 < 2N 11 112. 
1=0 

Some imbedding inequalities are useful in numerical analysis of the Hermite 
spectral method. We list two of them. 

Lemma 2.3. For any v E H1 (A), 

1xv IW?<I V 111,w 

Proof. Integrating by parts, we obtain that 

jxv2(x)w(x)dx jv(x)oxv(x)w(x)dx ?1 v II, lvll,. 

Thus xv2(x)w(x) - > 0 as xl- oc. By integrating by parts and the Cauchy 
inequality, 

j v2(x)w(x)dx + xv(x)8xv(x)w(x)dx 

< 11 V 112 +211 XV 112 +11VIl2( 1 21 21 

o te de r 11s2rl +t fo Xv 112 

So the desired result follows. 
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Lemma 2.4. If v e Hj (A), then for any x c A, 
2 1 

Iv(x)l < e~ 2 2 (Vi,+ 11 V 11 

Moreover, 

|| e 2 v 4 < 16 w1 'V V 

Proof. We have 

e-2v2(x)= ay(e_y2v2(y))dy 
-00 

=21 j v(y)8yv(y)w(y)dy -21 yv2(y)w(y)dy. 

By Lemma 2.3 and the Cauchy inequality, 

e-X2v2(X) < 2 11 v II,, (Ivll,w+ 11 v 111,) 

This leads to the first conclusion. Moreover, 

e,2V 1 ~4?16 V71F1 12w V 11w1 1w2 || v 16||v 2 v2 4 16 Jw(x)dx = 16 v2 | 2 

The proof is completed. 

The L2 (A)-orthogonal projection PN: L2 (A) - 1PN is such a mapping that for 
any vE L2e(A) 

(V-PNV,q )w = O-, Vq EE 'PN 
or equivalently, 

N 

PNv(x) = ZiiHi(x). 
1=0 

Lemma 2.5. For any v E H,J3(A) arnd r > O0 

V-PNV II,< cN-2 11 V 

Proof. We have from (2.4) that 
00 

IIV _ pNV 1 2= V/7 21 1!Vb2. 
1=N+1 

According to (2.1), we define the operator A by 

Av(x) =-eX2 9x (ex2 xV(x)) =-_,V(x) + 2x9xv(x). 

By Lemma 2.3, A is a continuous mapping from H?+2 (A) into Hg (A), where 3 
is any non-negative integer. When r is an even integer, we have from (2.1) and 
integrating by parts that 

I V(x)Hi(x)W(x)dx 

j Av(x)Hi(x) w(x)dx = (21) j A2 V(x)Hi(x) w(x)dx. 

Thus 

(2.6) (2l)- HA -2 j V(xH ()H(x)w(x)dx. 
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Hence 
00 

11 V-PNV 1^ ?< (2N) Sv1 Hl 52 fA) (x)H1(x)w(x)dx2 

(2N)r 11 A2v 2<cN-j 1 

When r is an odd integer, we obtain that 

j v(x)Hi(x)w(x)dx (21)- 2 AA2 v(x)Hl(x)w(x)dx 

= (21) - r+' ax (A v v(x))ax Hi (x) w(x) dx. 

Finally, we derive from (2.4) and (2.5) that 

V _-PNV _I2 < 1 > (21+r+llr+ll!Y1( ) - (A 2 v (x))Oax Hl (x)W (x) dx) 2 

< (2N) 11 ax(A 2 v) )? CNr . 

Theorem 2.1. For any v e Hr?(x) arnd 0 < 11 ? r, 

11 V - 

PNVf t 
, 

c,<cN2t- 

11 

Vlr,w. PrOOf. We first consider the case with integer ,u. We shall use the induction. Ob- 
viously Lemma 2.5 implies the desired result for u = 0. Assume that it is true for 
u- 1. Then 

V-PNV Vw?| v-PNV wI, + || axV-PN&XV i-w + || PN&xV-axPNV flt-1,w 

We know from Lemma 2.5 that 

1 axv- PNO9xV cN,i 2< CN ax 2 V Kr-l,< cNY f2l V llr,w 

On the other hand, (2.3) leads to 

PN8xV - aXPNV = 2(N + 1)bN+1HN(X)- 

Using Lemma 2.2 and (2.4), we get that 

11HN 11 2 ->< c2N N - 1N!. 

Moreover by (2.6), 

lVN+1 22 c c(2 N+lNr(N + 1)!)-1 V12 

Therefore 
11 PNXV -_ PNV 212_1,< cN1r 11 V 112 

So the induction is completed. The previous results with space interpolation lead 
to the conclusion for any r > 0. 

In order to obtain the optimal error estimation in the Hermite spectral method 
for partial differential equations, we need the H2 (A)-orthogonal projection PN: 
H1 (A) -, 1PN It means that for any v e H1 (A), 

(2.7) (0x(V-PNV), 9x0),, = VqeO P 1N. 

Let il be the coefficients of the Hermite expansion for v(x), and 
N 

PNVv(X (x) 
1=0 
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By (2.3), 
N-1 

axPNV(X) = 2 E (1 + 1)&i+liHi(x). 
1=0 

Similarly 
00 

09Xv(x) = 2 E(l + 1)vI+,Hj (x) . 
1=0 

By (2.3) and (2.7), we know that al =91 for 0 < 1 < N. Thus the projection PN is 
exactly the same as PN. 

3. APPLICATION TO BURGERS EQUATION ON THE WHOLE LINE 

In this section, we consider the Hermite spectral method for Burgers equation 
on the whole line. We first change it to a new representation by the similarity 
transformation, which is suitable for the Hermite approximation. We shall prove 
the stability and the convergence of the designed scheme strictly. 

Let A = yI- oo < y < oo} and p > 0 be the kinetic viscosity, while g(y, s) and 
Vo(y, s) are the source term and the initial value, respectively. T is a fixed positive 
number. We consider the following problem 

(3.1) {8?9 V + I8 (V2) -_tpt2V 
= g, ye A,O < S < T, 

V(y,O) = Vo(s), y EA. 

In addition, V and &9yV satisfy certain conditions at infinity. Let 

a. (U, V) = 9 ,/ 3v(y) o9y (v (y) w(y)) dy. 

A weak formulation of (3.1) is to find v c L2(0, T; H12 (A)) n L??(O, T; L2 (A)) such 
that 

( (&sV(s), v)L2 (x) - 1(V (s), (V(S) ))L 

p ,a>, (V(s), ) = 91 V)L2(t) Vv E Hwl(A), 0 < s < T, 

I V=Vo, S =0. 

It can be checked that 

a W(v,v) = || 8yv 112 -2 jYv(Y)0yv(y)w(y)dy 

= 11 9YV 1122L (A) + 11 V 1122 (AA)-2 Jy 2v 2(y)w(y)dy. 

It is not clear whether the bilinear form a, (v, v) is non-negative or not. Thus the 
above weak formulation is not suitable for the Hermite spectral method. To remedy 
this trouble, we try to reform it. Let W(x, t) V(y, s), g(x, t) = g(y, s) and make 
the similarity transformation 

(3.2) x = Y( ) t =l(1 + s). 
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Then (3.1) becomes 

(3.3) 

(atw-x&xW+ _e2Q(W -) -02W=etw xeA,0<t< ln(1+T), 

W = Wo, t = O. 

Further let U = ex2 W and f = eX2 +tg. Then we obtain the following problem 

(3.4) 

[atu+ 2U+ -x8xU 
{ leX2+ t (2x 2u2) -l2U=f 2+ 22 (e- - 

= x A < eA, t<t ln(1+T), 

U = uo, t = 0. 

In addition, U and 9xU satisfy some conditions as lxl - > oo. Let 

B(u,z,v) - it2 ( -X2 0 ) 

The weak formulation of (3.4) is to find U e L2(0, ln(1 + T); Hwl (A)) n 
L`? (O, ln(1 + T); L2(A)) such that 

(3.5) 
1 

i(09tU(t) v)W + 2 (U(t), v), + B(U(t), U(t), v) 

+ 4(axU(t) , 0V)w = (f t)j,v)w , Vv ?c H1l (A) , 0 < t < ln(I + T) 
U0=u, t= 0. 

As in Maday, Pernaud-Thomas and Vandeven [1], we suppose that Vo and g fulfill 
some conditions such that for certain a > 0, 

irm e,Y2(1V(y,s)1 + 8 
YV(y,s)l) = 0, O < s < T. 

jyj-+oo 

Then 
lim e4 /etx2(IW(x, t) I + 8axW(x, t) ) = 0, 0 < t < ln(1 +T) 

and so 

lim e(4aiet-1)X2( U(x,t)j + j8U(x,t)) =0, O < t < ln(1 + T). 

If o l > then we have that for all t > 0, 4a,let - 1 > By Lemma 2.3, 
U c H,1 (A) and so we can use the Hermite approximation for (3.5). 

The Hermite spectral scheme for (3.5) is to find UZN(t) C 'PN for 0 < t < ln(1+T), 
such that 
(3.6) 

(OtUN (t),q5) + -(UN (t), q) + B (UN (t), UN (t), q) 
2 

+(OxUN (t) r Ox)w 
= (f (t) t )W V E 'PN, 

O 
< t < ln(l + T), 

UN = UN,0 = PNUO, t = 0. 

We now consider the stability of (3.6). Since (3.6) is nonlinear, it is not possible 
to prove the stability in the sense of Courant, Friedrichs and Lewy [13]. But it 
will be shown that it is still stable in the sense of Guo [14, 15] and Stetter [16]. 
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To do this, we assume that f and UN,O have the errors f and iN,O, respectively. 
They induce the error of numerical solution UN, denoted by iiN. Then we get the 
following equation: 

(3.7) 

(8t iiN(t),q + -(iN(t), )+ B (iiN(t), QiN(t)) + 2B(iiN(t), UN(t),q) 

1 2 
+(19xfN (t) v xO) =((t) , )w ,VOEE P ,< t < ln(l +T), 4 

iUN UN,O, t =0. 

By taking q5 2uN in (3.7), it follows that 

d 12 1 12 
11 || U(t)| +-| UiN(t) d 

N(t)W 2 1,W 

(3.8) + 2B (fN(t), UN(t), UN(t)) + 4B (iN(t) UN(t) iUN(t)) 

< 2 11 f(t) ll. 

Using Lemma 2.4, we deduce that for 0 < t < ln(1 + T), 

(3.9) 

12B(iiN(t),iiN(t),iiN(t))j < it-2 IiN(t)_ I || I 2iUN(t) L4 

< cl (T) || iN(t) llwll iiN(t) 1,, 

where 

cT) 2</ir(1 + T)2 Cl (T) = A 

Furthermore, for any p, q > 0 and 1 + 1 1, we know from Hardy, Littlewood and q 
P6lya [17] that 

(3.10) labl < alP+lbl . 
p q 

Thus by using Lemma 2.4 and (3.10), we assert that 

(3.11) 

14B (iN(t), UN(t), iiN(t))| < ,Ii tlN(t)I1,w ||eUN(t)iiN(t) ll| 
i t3 

44w i ~ ~ 1 11 2 
< 4 2 ||UN(t) || 11| UN(t) ||1 fL ||U(t) || N ||(t) 1ll, 

< - || fLN(t) | , +C2(UN,T) || iN(t) 1g 

where 

2(U, ) 1 23%-(l1?T)2 12 2 
C2 (N ,T) 8 2 U1 N L (O,ln(1+T);L2 (A)) II UN IIL(O,1n(1+T);H1 (A)) 

By substituting (3.9) and (3.11) into (3.8), and iiitegrating the resulting inequality, 
we find that 

(.2 N(t) 1 + - cl(T) || UN(%) 2 11 iN(%) 112 dr 

(3.12) t 

<(iUN,O0, f, t) +C2 (UN, T) II i|| U() 112 dq, 
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where 

P(iiN,O, f t) -|UN,0 W +2 J 1 f (rq) II, dq 

We need the following lemma. 

Lemma 3.1. AssuTme that 
(i) the constants b1 > 0, b2 > 0, b3 > 0 and d > 0, 
(ii) Z(t) and A(t) are non-negative functions of t, 

b2 
(iii) d < b- 2 3t for certain t1 > O, 

(iv) for all t < t1, 

t t 

Z(t) + j(bi - b2Z (ri))A(rj)drd < d + b3 j Z(r)drj. 

Then for all t < t1, 

Z(t) < deb3t. 

Proof. Consider the function Y(t) satisfying 

rt 
Y(t) = d + b3 Y (rj)d7 

Then for all t < t1, 

Y(t) =deb3t < - 

Clearly Z(t) < Y(t) for t < t1, and so the conclusion is valid. 

Applying Lemma 3.1 to (3.12), we obtain the following result. 

Theorem 3.1. Let a > IL and uN(t) be the solution of (3.6). If for certian tl, 

P(UN,O,~ f ,tl) < ()e-C(, t a > O~ 
16c2(T) 

then for all t < t1, 

1lU()112 +4 Jo- NX 112 d (N,Xt)eC2(UN,T)t 

Theorem 3.1 indicates that the error of the numerical solution is controlled by 
the errors of the data UN,0 and f, provided that the average error P(iiN,O, f, t) does 
not exceed certain critical value. It means that (3.6) is of generalized stability in 
the sense of Guo [14, 15], and of restricted stability in the sense of Stetter [16]. 

Next we deal with the convergence of scheme (3.6). Let U be the solution of 
(3.5), and UN = PNU. We derive from (3.5) that 

(8tUN(t)) q)w + 2 (UN(t), ) + B(UN(t), UN(t),q) 2 

(3.13) + 
1 

(OxUN(t), 8xo)w + G(t, q) = (f (t), q)W, 4 
Vq5 C RN, 0 < t < ln(l + T), 
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where 
G(t,~ ) = GI (t, ) + G2 (t, ) + G3 (t, 

Gj(t, ) = (OtU(t) - OtUN(t), O)W, 
1 

G2(t,~ ) = - (U(t) - UN (t) 2 
G3(t, ) = B(U(t), U(t), ) - B(UN(t), UN(t), ~5). 

Let UN be the solution of (3.6), and UN = UN - UN. By subtracting (3.13) from 
(3.6), we obtain that 

(3.14) 

(8t UN (t) '$)w + - (UN (t), )S + B (UN (t), UN (t), ) 2 
1 

+ 2B(UN (t), UN(t), )+ -(O UN(t), 8 xq) = G(t, q), 
4 

Vq E PN, 0 < t < ln(1 + T). 

In addition, UN(0) - 0. Comparing (3.14) to (3.7), we can derive a result similar 
to that of Theorem 3.1. But UN, )N, iiN,o and f are now replaced by UN, UN, UN,0 
and G(t, 0), respectively. Therefore we only have to estimate the term JG(t, UN(t))I. 
We first have from Theorem 2.1 that for r > 1, 

JGI(t, UN(t))j < CNr 21 ||tU(t) jlr,wjl UN(t) jjw7 

jG2(t, UN(t))1 < CN- 2 | UMt llr,jjl UJN(t ll - 

An argument, as in the derivation of (3.9), leads to that for all t < ln(1 + T), 

|G3 (t, UN (t)) l? e 2 1 (e (UN (t) + U(t)) (UN (t) - U(t)), UN (t))a | 

< 2 C1(T) 11 UN(t) + U(t) || 21| UN (t) + U(t) 1,| UN (t)-U(t) 2 

X || UN(t) -U(t) 1,wll UN(t) 111,w 

By Theorem 2.1, 

G3 (t UN (t))l<8 < U WN(t) 1,x, +cC2(T)N2 || UN(t) 114 

Hence 
(3.15) 

|G(t,UN(t))j < 8 | UN(t) 1l, 
2 

+|UN(t) 112 

+c(c2(T) + 1)AT-r(Il UN(t) 114,w + 11 atU(t) r12 

Obviously, the last term in (3.15) tends to zero as N goes to infinity. Therefore we 
obtain the following result. 

Theorem 3.2. If a > 1 and 

U E L2 (0, ln(1 + T); Hr, (A)) n H1 (o, ln(1 + T); H7, 2(A)) 

with r > 1, then for all t < ln(1 + T), 
t 

|| UN(t) - U(t) + | UN(X) -U(r) 1c,W dr < c*N2 r 

where c* is a positive constant depending only on ,u, T and the norms of U in the 
space mentioned above. 
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Remark 3.1. In the proof of Theorem 3.1 and Theorem 3.2, we require that U E 

H,'(A) and so e- (tU(x,t)I + IxU((x,t)I) - 0 as Ix* oc. A sufficient condition 
is that for certain a > 81 eY ( V(y, s)+ 8a2V(y, s))-0, as YI - o. It means 
that V(y, s) should decay fast enough. It agrees with the experience in actual 
computations as described in Funaro and Kavian [7] and other papers. 

Remark 3.2. In this paper, we use the variable transformation (3.2) and so obtain 
the error estimations. In fact, a similiar transformation was used in actual compu- 
tations by Funaro and Kavian [7]. This trick can be generalized to other problems, 
such as the two-dimensional heat equation and the Navier-Stokes equations. 

In actual computations, we need to discretize the term 8tUN in (3.6). We can use 
Lemmas 2.1-2.4, Theorem 2.1 and an argument as in the proof of Theorems 3.1 and 
3.2, to prove the generalized stability and the convergence of a fully discrete scheme, 
provided that the value of TN satisfies certain reasonable conditions, where T is the 
step size in time t, and N is the number of terms used in Hermite approximations. 
For instance, by Lemma 2.2, TN should be bounded in the case of explicite schemes. 

We can also approximate nonlinear partial differential equations by the base 
functions 

Hi(X) = (211!V r)-2e-a 2Hi(x), a > 0 I > 0 

The set of Hi (x) is an orthogonal system associated with the weight e(2a 1)x . For 
the application to linear problems with a = 1, we refer to Funaro and Kavian [7]. 
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