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NUMERICAL DETECTION 
OF SYMMETRY BREAKING BIFURCATION POINTS 

WITH NONLINEAR DEGENERACIES 

KLAUS BOHMER, WILLY GOVAERTS, AND VLADIMIR JANOVSKY 

ABSTRACT. A numerical tool for the detection of degenerated symmetry break- 
ing bifurcation points is presented. The degeneracies are classified and numer- 
ically processed on 1-D restrictions of the bifurcation equation. The test func- 
tions that characterise each of the equivalence classes are constructed by means 
of an equivariant numerical version of the Liapunov-Schmidt reduction. The 
classification supplies limited qualitative information concerning the imperfect 
bifurcation diagrams of the detected bifurcation points. 

1. INTRODUCTION 

We consider equivariant vector fields depending on several parameters. The 
aim is the numerical computation of symmetry breaking (steady state) bifurcation 
points with higher codimension. We concentrate on nongeneric behaviour in the 
leading terms of the Taylor expansion of the bifurcation equation. Let us call 
this phenomenon the nonlinear degeneracy to distinguish it, say, from the mode 
interaction that is a typical linear degeneracy. An example of symmetry breaking 
bifurcation points of this kind is presented in [6, XV, Case Study 5]. 

The qualitative analysis in [6] is based on contact equivalence of bifurcation 
problems. It classifies bifurcation problems by their codimension and a normal 
form. It allows us to understand the bifurcation point as a local organizing center 
of the vector field via a universal unfolding of the relevant normal form. Though 
the basic tools are developed, a systematic classification of symmetry breaking 
bifurcations with nonlinear degeneracies is missing. Certainly, it would be tedious 
and highly dependent on the particular group of the underlying symmetry. We 
refer to [4] for recent progress in this direction that exploits Computer Algebra. 

Since we need a well-defined object of the computation, we introduce a classi- 
fication. It is based on a qualitative classification of the secondary branches that 
break the symmetry of the problem. Essentially, it leads to the classification of 
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Z2-equivariant (scalar) bifurcation problems (see [5]). From this point of view, the 
1-D action of the symmetry group on the tangent to the secondary branch is the 
only relevant group theoretic input. 

Obviously, such a classification does not yield a normal form and its unfolding. 
On the other hand, we obtain a comparatively simple tool to ascend/descend a pre- 
defined hierarchy of singular points using standard numerical techniques (namely, 
pathfollowing). To understand the organizing role of a detected bifurcation point, 
we combine the qualitative information (concerning the behaviour of the secondary 
branches) with some additional numerical effort to discover the full bifurcation 
diagram. 

In Section 2, we review basic facts concerning the spontaneous symmetry break- 
ing and clearly formulate the classification idea. In Section 3, we resume the clas- 
sification results for the equivalence classes up to codim = 3. We shall essentially 
follow [5]. For computational purposes, we modify the list of t and Z2-equivalence 
classes in the spirit of [7]. 

Our aim is the numerical detection and computation of symmetry breaking bi- 
furcation points with nonlinear degeneracies. In Section 4, we briefly recall the 
equivariant version of the generalised Liapunov-Schmidt reduction (see [8]). The 
reduction is applied in order to construct the relevant test functions for each item 
of the classification list. 

We conclude with a numerical example in Section 5. 

2. SYMMETRY BREAKING BIFURCATION SCENARIO 

Let F: RN x R > RN be a smooth mapping. We consider the equation 
F(u, A) = 0. It defines implicitly a dependence of the state variable u E RN on the 
control parameter A. 

Let F be a compact Lie group with a faithful representation in the state space 
R so that we can identify each group element ay E F with its action on RN, i.e., 
a linear transformation - E GL(N) on RN. We assume the mapping F to be 
F-equivariant, i.e., 

(1) F(yu, A) = yF(u, A) 

for (u, A) E RN x IR and y E F. The set Fix F _ {u E RN : YU = U for all a E F} 
of fixed points- (of F) is the set of all states u E RN that exhibit the symmetry of 
the given group F. 

Let (u*, A*) E Fix]? x R' be a singular point of F with corank = m > 1, i.e., 

(2) F(u*,A*) = 0, dimKer Fu(u*,A*) = m. 

We recall briefly the analysis of the generic spontaneous symmetry breaking bifur- 
cation (see [6, Chapter XIII]): 

The solution set of F(u, A) = 0 is locally identified with the solution set of the 
bifurcation equation g(x, t) = 0, where g I Rm x R R' g = g (x, t) , is the 
reduced version of F obtained via the classical Liapunov-Schmidt reduction (see [5, 
Chapter VII]). The space Rm of the reduced state space variables x is identified with 
KerF,(u*, A*) by the choice of a basis in KerF,(u*, A*). The parameter t is the 
shift of A namely, t =A - A*. The isomorphism between the solution sets of F and 
g relates the singular point (u*, A*) (E RN X R to the origin of R"t x R1. 

The reduced operator g shares the invariance property of F: there exists an 
rn-dimensional representation of F on Ker Fu (u*, A*) (identified with Rm), i.e., a 
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homomorphism 0: F -- GL(rn), such that g('0(-y)x,t) = O(Qy)g(x,t) for each 
(x, t) E R" x R' and each group element Fy E F. For details, see [5, Proposition 
3.3, p. 306]. 

Generically, d is an absolutely irreducible representation (see [6, Proposition 3.2, 
p. 82] ). Apart from the absolute irreducibility, we shall assume O to be a nontrivial 
representation; i.e., FixRr- F ={x E ': Q (y) x = X for all -y E F} is trivial. In 
other words, KerF,(u*, A*)nFixF {0}. Consequently, the solution sets F(u, A) = 
0 and g (x, t) = 0, restricted to the symmetric states u E Fix F and x E FixR IF, 
respectively, consist (locally) of just one branch that can be parametrised by A and 
t. The Liapunov-Schmidt reduction links the symmetric branch of F(u, A) = 0 with 
the trivial branch of g (x, t) = 0. The other branches, if they exist, do not possess 
the full symmetry of F. 

Let us consider an isotropy subgroup Z of F. We shall assume 

(3) dimFixR1m E = 1, FixRm =_{x E Rm : (-y) x = x for all E}; 

i.e., dim(Ker F,, (u*, A*) n Fix E) = 1. By the Equivariant Branching Lemina (see 
[6, Theorem 3.3, p. 82]) the operator g, restricted as g: FiXDR11 Z x R' - FiXRmll Z, 
generically has a nontrivial solution branch emanating from the origin. By the 
isomorphism of the solution sets of F(u, A) = 0 and g (x, t) = 0, there is a nonsym- 
metric solution branch of F: Fix E x R' - Fix E emanating from (u*, A*). 

Let us choose a vector d E R" that spans FixDR11 Z; we shall call d an isotropy 
vector. It can be identified with a maximal isotropy subgroup, i.e., the largest Z 
that fixes d. For details, see [6, p. 78]. In what follows, we shall always scale d as 
a unit vector, i.e., dTd = 1. 

The symmetry group of the operator F: Fix Z x R' - Fix Z is the normalizer 
Mr,V(Z) of Z on F, i.e., the largest subgroup of F that leaves FixE invariant. By [6, 
Exercise 2.2, p. 79], the normalizer Afr (Z) acts on FixDRtn Z either as the identity or 
as a Z2-group. Choosing a particular isotropy direction d, we define h : R' x R' 
R' by setting 

(4) h((;, t)--=dTg (( d, t) . 

The solution set of h(;, t) = 0 is constrained to have a trivial branch, namely, 
h(O, t) 0_ . If the normalizer acts as the identity, then h(., t) : R1 > R' exhibits 
no symmetry. If the normalizer acts as Z2, then h(., t) : R' - R' is Z2-equivariant 
for each t. Hence, h(-;, t) =-h(;, t) on a neighbourhood of the origin. 

Let us use the label F-symmetry breaking bifurcation point for a singular point 
(u*, A*) that satisfies the above-resumed assumptions. Such a point is classified 
by the particular irreducible representation '. Hence, m and V are group theoretic 
data that characterise a particular F-symmetry breaking bifurcation point. More- 
over, nonsymmetric branches can be referred to (up to a conjugacy) by an isotropy 
direction d. Obviously, this information matters only if m > 2. We refer to [6, pp. 
132-137], for the discussion of the genericity of the sketched scenario. At any rate, 
in numerical experiments we shall confine ourselves to F being a dihedral group 
Dk, where the above-made assumptions are generically satisfied (see [6, Chapter 
XIII, Section 5]). 

Let us consider an n-parameter family of vector fields F: RN x R1 > RN; 
namely, let 

(5) F: RIN x R1 x Rn. - RN F-F(u, A, a) 
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We say that (u*, A* a*) E RN x R1 x IR is a singular point of (5) if F(., , 
RN x Rl - RN has a singular point (u*, A*) in the sense of (2). The classification 
carries over naturally. 

The bifurcation equation at (u*, A*, a*) obviously depends on the unfolding pa- 
rameters. In particular, g (x, t, a) = 0, where 

(6) g: Rr x IR1 x -R -I R` g = g (X) t, a) 

Note that a = a* + a. Again, the reduction links (u*, A*, a*) with the origin of the 
domain of (6). 

In the n-parameter family (5), one may expect degeneracies of the above-sketched 
scenario of symmetry breaking. For example, the assumption concerning the irre- 
ducibility of the representation on Ker Fu (u*, A*, a*) can be violated. This leads to 
the scenario of mode interaction. Also, the dimension m of Ker Fu (u*, A*, a*) might 
be different from the dimension of Ker (FL, (t*, A*, a*))2, as one generically expects 
for an operator F: RN >, R1 -- RN. This leads to a Takens-Bogdanov bifurcation 
scenario. Let us call all degeneracies affected by the properties of the Jacobian 
Fu (u, A*, a*) linear degeneracies. On the other hand, a degeneracy may be caused 
by nongeneric properties of the Taylor expansion of F(., , a*): RN x R1 RN at 
(u*, A*). We refer to [6, pp. 218-223], for an example of a nonlinear degeneracy of 
a D3-symmetry breaking bifurcation that can happen generically if, in the above 
agreed terms, n = 1, F = D3, and m = 2. The representation does not have to 
be specified, since there is only one 2-dimensional irreducible representation of D3. 
Let us call this kind of degeneracy a nonlinear degeneracy. 

The nonlinear degeneracy of a particular F-symmetry breaking bifurcation point 
can be classified by the properties of the bifurcation diagram of g(x, t, 0) = 0, where 
x is restricted to the one-dimensional state space spanned by a chosen isotropy 
direction d. Hence now h (see (4)), should be redefined as h((, t)- dTg(d, t, 0). 
If the normalizer Afr (Z) acts on FixR r Z as the identity, then, generically, the 
bifurcation diagram of h consists of the trivial branch and the nontrivial transcritical 
branch. If the normalizer acts as Z2, then h has generically a (symmetric) pitchfork 
bifurcation diagram. 

3. CLASSIFICATION OF NONLINEAR DEGENERACIES 

We have explained our aim to characterise the nonlinear degeneracies via a clas- 
sification of the scalar bifurcation equation h(;, t) = 0 (see (4)). In this section, we 
recall the notions of Z2 and t-contact equivalence and present the corresponding 
classification results in a form that unifies both cases. 

Let F be the space of germs of smooth mappings R2 > R1 centered at the 
origin (see [5, p. 55]). Each germ h E 5x is represented by a smooth function 
h: R2 -- 1R1, h = h (x, A), which is defined in a neighbourhood of (0,0). Since this 
section closely follows [5], we use the standard label for the argument of h e Sx in 
the quoted book. 

Let us introduce the following subspaces of 5x: 

5 (t) = {g Ex, : g(?,A) -0} , 
5 (Z2) = { :9 E S\ g(-x, A) =-g(x, A)}. 

Remark 3.1. Note that the germ h constructed by means of (4) belongs to either 
5 (t) or 5 (Z2) depending on the action of J.r(Z) on FixRrn S. 
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Remark 3.2. A germ g E Fxl belongs to 5 (t) and 5 (Z2) if and only if there exists 
an r E Fxl such that g (x, A) = x r (x, A) and g (x, A) = xr (x2, A), respectively (see 
[5, p. 129 and Corollary 2.2, p. 249]). 

As a consequence, 5 (t) = F5I {x} and I (Z2) = F5I {x} with u = x and u = x9; 
i.e., S (t) and I (Z2) are modules generated by x over the ring Fu5 with u = x and 

U = x. 

For the motivation of the following definitions, see [5, Excercise 2.2 on p. 129 

and Remark on p. 251]. 

Definition 3.1. Let g E S (t), h E S (t). We say that g is t-contact equivalent 

with h, and write g t h, if there exist X SEFx) A E Sl and M E E S such that 

(7) g (x, A) = M/ (x, A) h (x X (x, A) , A(A)) 

and X(0,0) >0,) A(0) >0, M (0),0) >0. 

Definition 3.2. Let g E S (Z2), h E S (Z2). We say that g is Z2-contact equivalent 

with h, and write g Z_ h if there exist X E xl) A E Sl and M E Fxl such that 

(8) g (x, A) = M (x2, A) h(xX (X2, A) A(A)) 

and X (0, O) > 0, Ax(0) >0, 1M (0, O) > 0. 

The codimensions codimt(g) and codimz2 (9) of germs g E S (t) and g E S (Z2) 

under t and Z2-equivalence are defined in [5, Excersise 2.3, p. 129 and Definition 

3.1 on p. 258], respectively. 

Remark 3.3. If r E Su\) then codimt(r) is defined as--the codimension of T(r; t) 
(r, uru) + S {rA} in Su; u is just a label for a 1-D state variable. The subspace 

T(r; t) could be interpreted as the formal tangent space to r r (u, A) under t- 

equivalence on Su. Note that if g (x, A) = xr (u, A), u = x and u 9 2, respectively, 
then the tangent spaces T(g; t) and T(g; Z2) to g under t and Z2-equivalence 

factor through x, see [5, formulae (2.22) and (3.2) on pp. 129 and 258]. In fact, 

T(g;t) = T(r;t){x}, u= x, and T(g;Z2) = T(r;t){x}, u = X2. By using the 

factorisations S (t) = SFu {x} and S (Z2) = SFu {x} with u = x and u = x2 one can 

prove that codimt (r) = codimt (g), and codimt (r) = codimz2 (g), respectively. 

In [5, pp. 263-267], all Z2-equivalence classes of germs g E S (Z2) with codimz2(g) 
< 3 are described. Though there is not a direct reference, it is clear that an 

analogous description holds for t-equivalence classes on S (t) with codimt (g) < 3. 

For some brief comments on this theme, see the following 

Remark 3.4. If g E I(Z2) and g(x,A) = xr(u,A), u = x9, then the orbit of 

g under Z2-equivalence is naturally linked with the orbit of r E 5u/ under t- 

equivalence. In particular, 9 Z_ h, h (x, A) = xs (u, A), u = x9, codimz2 (9) < 00, if 

and only if r t s, codimt(r) < oo. Similarly, if g E 5 (t), g (x, A) = xr (x, A), and 

h E 5 (t), h (x, A) = xs (x, A), then g t_ h (in 5 (t)) if and only if r t- s (in e) 
Hence, [5, Tables 5.2-5.4 on pp. 264-266], classify t-equivalence classes onFu/ with 

codimension < 3. 

Theorem 3.1. Let g (x, A) = xr (u, A), u = x, be a germ in S (t) with codimt(g) < 
3, and let 9 (x, A) = xr (u, A), U = X9, be a germ in S (Z2) with codimz2 (9) < 3, 
respectively. Let r (0, 0) = 0. Then the germ r E 5u/, is t-equivalent to one of the 
normal forms listed in Table 1. 
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TABLE 1. Normal forms of t-contact equivalence classes on Sul 

type Normal Form Defining equations 
/codim E ?1, 8 ?)1, b = ?1 / Nondegeneracy conditions 

Eu1+ r = O 
/ E = sgn(ru); 8 = sgn(rA) rA 74 0 
2a,2b,2c Euk+l +86A I < k < 3 r =. = ruk =0 

/ k = 1,2,3 E = sgn(rUk+l); 8 = sgn(r/) ruhk+l 7 0; r/ \ 0 
3a, 3b, 3c Eu + 8Ak+l r = = r k 0 

/ k = 1, 2,3 E=sgn(ru); 8 = sgn(rk+1) rtt + 0; rAk+1 #0 
4 cu2 + 2mAu + 68A2 T= Tu = T/ = 
/ 3 (2) E = sgn(ruu); 6 = sgn(r/\); rTttu 7 0; rT/ 7/ 0; D2(r) 7 0 

m 2 uSE, mn =-u r/ vrT yu jx 
5 EU 2 + 26Au + OA3 r-ru = r= r\\ = 0 
/ 3 - sgn(ru,); 8 = sgn(ru/); TUU 74 0; rA\ 74 0; D2(r) 74 0 

- sgn(r/\\) 
6 Eu3 + 6Au + OA 2 = Tu = Tuu = r\ = O 
/ 3 c sgn(rUUU); 8 = sgn(ru/) ruuu #4 0; r>/ #4 0; D2(r) 74 0 

= sgn(r/\) 
7 u3+ EU2 + 2Au +,EA 2 Tr = Tu = T/\= D2(T) = O 
/ 3 E sgn(r,u); 8 = sgn(ru/); rTttu # 0; r>/ \ 0; D3(r) # 0 

?,- sgn(rTU ruu D3(r)) 

Notation: D2(r) _ ruur /-ru r\ru /, D3 (r) rrutt (D2 (r)) r- ru (D2 (r)u) 

Proof. The proof consists in the interpretation of the result in [5, Theorem 5.1 on 
p. 263]. D 

Remark 3.5. It is understood that the singularity type that Theorem 3.1 assigns 
to r via Table 1, is also assigned to the corresponding g. The normal form of r, 
say s E Su/' yields a normal form h E SX/ of g; namely, h (x, A) xs (u, A), where 
u = x and u = x2, respectively. The value of codim in Table 1 is to be interpreted 
as codimt (g) or codimz2 (g), as appropriate. 

In Table 1, the values of the parameters E, 6 and q are defined by means of 
derivatives of r at the origin. From the numerical point of view, the algebraic- 
geometric classification is the most important: g (x,A) = xr (u, A) is of a type 
listed in Table 1 if and only if the factor r E SU satisfies the relevant defining 
equations and nondegeneracy conditions. 

Remark 3.6. The parameter m in the normal form of the singularity type is a 
modal parameter (see [5, Remark 5.2 (ii) on p. 265]). Hence, it is simultaneously an 
unfolding parameter. We shall consider the singularity type 4 as a moduli family 
(see [5, (6.3) on p. 239]). The topological codimension of this family is 2. 

4. NUMERICAL DETECTION 

The standard numerical tool for detection and pathfollowing of steady state 
bifurcation points (without symmetry) is the generalised Liapunov-Schmidt reduc- 
tion (see [9]). For recent developments of the reduction technique that make use 
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of bordered matrices to define projectors, see [7]. Finally, the Liapunov-Schmidt 
reduction can be applied to operator equations in Banach spaces (see [2]). 

The equivariant reduction procedure is proposed in [8]. The approach is re- 
lated to the construction of test functions for symmetry breaking bifurcation by 
equivariant bordered Jacobians (see e.g., [10], [3]). Let us recall the idea of the 
reduction. 

We consider the mapping F (see (5)). Given m, we consider a pair of full 
rank matrices M E C(R'm,RN), L E L(RN, Rm). We define the (open) set - 
{(u, A, a): det J(u, A, a) #4 0}, where 

J(uA,a) ( Fu(u, A,) a ) E/(R N+mR N+m); 

O E C(RmI, Rm) is a null matrix. 
Let (u, A, al) E 0 be fixed. Given (x, t, a) E Ilm x R x R, we define implicitly 

g E Rm and v E RN via the following system of N + m nonlinear equations: 

(9) F(u + v, A + t, a + a) -Mg = F(u, A, a), Lv = x. 

Definition 4.1. Let : F -, GL(m) be a particular m-dimensional representation 
of F. If a pair of full rank matrices M E C(Rm, R N), L E ?C(IRN, Rm) satisfy 

(10) V (-y) L = L-y, MO (-y) =- -yM 

for each -y E F, we say that M, L are symmetry adapted bordering matrices (with 
respect to F and O). 

For the construction of symmetry adapted bordering matrices, see e.g., [8], [10]. 
Let us resume the basic idea for finite groups F: Given a unit vector e E Rm and a 
seed vector E IERNk, ( 7 0, we can set M = E,9,cy, eT"O (ay-1) E C(Rm,IlRN). A 
similar formula defines LT; we may choose a different e and 5. It is easy to check 
that M and L satisfy (10). 

Observation 4.1. Let M and L be symmetry adapted bordering matrices with re- 
spect to F and a representation : F -, GL(m). Let us consider the relevant D 
and choose a point (u, A, al) E S. Then 

(Il W(-y) g(xv t,a; u, A, a) = g(,O(-y) x, t,a;-Yu, A, oz) 

for each -y F F and each (x, t, a) from the domain of both 9(, , U , A, al). 

Proof. See [8, Theorem 2.2]. O 

Let V : F -, GL(m) be an m-dimensional irreducible representation of F. Let 
d E Rm be an isotropy direction; namely, let span{d} = FixRin Z and dTd = 1. If 
(U, A, a) E FixF x R1 x R , then as a consequence of Observation 4.1 

g( , ;lu, A, oa): FixRm Z x R1 x IRn- - FixRn S. 

Hence, we may define h(,, u u, A, a) E + as 

(12) h(x, t,a; u,A, a) d dTg(xd, t,a;U, A,ol1) 

for each (x, t, a) from a small neighbourhood of the origin 0 E R' x R'x xR 
The singular points of a given type are sought as regular roots of 

(13) F:FixF x R1 x R n -> FixF x RcodiT+l, In > codim, 
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where F(u, A, c) {F(u, A, c); f(u, A, ), ,fcodimr+-(u A, at)} while fi(t, A, a) 
Fix F x R' x RT -R are the particular test functions. The test functions can be 
retrieved from Table 1 (defining equations); see [1] for details. 

5. NUMERICAL EXAMPLE 

We developed a code in MATLAB 4.0 for the detection and pathfollowing of 
F-symmetry breaking bifurcation points discussed in this paper. The aim was to 
verify that the proposed numerical treatment can really work. By the restrictions 
of the programming environmeent we could treat small dimensional problems only. 

In the following example we consider the 4-box Brusselator (see [3]). It yields a 
mapping (5) with N = 8 and n = 2; we denote the parameter vector (B, A) by c. 
The number of parameters suggests that singularities with (topological) codimn < 2 
(see Table 1) can be expected and indeed they were found. The problem has the 
symmetry of the group F = D4 = K, p,Kp, Kp2, p3, p2, p3}; the actions of the 
flip r, and the rotation p are described in [3]. The particular action admits the 
following nontrivial irreducible representations: 

0(2) (S) 
I 0 (2) (p) = 

0 
-1) 0((K= 01(p=- 

We have used L 1 (1 0 0 0 -1 0 0 01 M(2) - L(2)T, and 

L(1) = ( 1 0 -1 0 1 0 -1 0 ), =) - L(1), as the relevant symme- 
try adapted bordering matrices in the tests reported below. 

In the case of the representation 0(2), there are two nonconjugate isotropy di- 
rections, namely, d(2) = (1,0)T and d(2) - 22 (1,-1'_, plus one conjugate copy 
of each. The relevant isotropy subgroups are (2) {t, i} andc (2) = { , Kp, 

respectively. Both E(2) are representations of Z2. 
The 1-dimensional representation d(1) has d(1) - 1 as an isotropy direction. 

The relevant (maximal) isotropy subgroup is M1) {t, K, Kp2, p2}. Hence, it is a 
representation of Z2 D Z2. 

The normalizer MAr(E) acts on each of the spaces span{d(3)}, j 1,2, as Z2. 
Hence, the classification of Z2-equivalence classes in Section 3 will be appropriate 
for our characterisation of nonlinear degeneracies. 

In Figure 1, we show (in the projection onto the unfolding parameter space) all 
detected D4-symmetry breaking bifurcation points with codim > 1. There is always 
a pair of symmetry breaking bifurcation points of the same type that correspond to 
each of the depicted unfolding parameters. They have different A and state variable 
values and also differ by the group theoretic data (namely, by the representations 
,d(2) and &(1)). It should be noted that the degeneracy r, = 0 that defines the 
type 2a-points is, in the case of d(2), detected only along the isotropy direction 
d(2) = V/2 ) ( 1) T and its conjugate. 

The imperfect bifurcation analysis in a neighbourhood of the detected type 
4-singular point is significantly affected by the mode interaction (namely, the d(2)_ 

mode colliding with the t9(1)-mode). This is also a phenomenon with codim = 1. 
In the scale of Figure 1, the projection of these mode interaction points onto the 
unfolding parameter space is a curve very close to the curve of type 2a-singular 
points. The zoom on Figure 1 can distinguish the mode interaction branch. 
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FIGURE 1. 4-box Brusselator: Symmetry breaking bifurcation 
points with codim = 1 and codim = 2. On the bottom: Zoom-in 
with the branch of mode interaction points. 
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FIGURE 2. 4-box Brusselator: Secondary and tertiary branches. 
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FIGURE 3. 4-box Brusselator: Secondary branches. 

Since two modes are involved in the F-symmetry breaking numerical analysis, 
it is natural to define the 3-D reduced vector field g(., ,.; u, A, ): R3 x X 

R' - 2R3 by means of the bordering matrices M = (M(2), M(1)) E C(R3, R8), 
L = mT C L(R8,R3). Obviously, M and L are symmetry adapted w.r.t. F and 
the representation d9 diag(Qt(2), 11)). The isotropy directions are d (1,0, O0)T, 

d = 2 (1, o) T, d (0, 0, 1)T, and their conjugates. For each of these isotropy 
directions, one can formally proceed with the definitions of the test functions for 
nonlinear degeneracies. Simultaneously, the particular definition of g allows us to 
construct test functions for the mode interaction (see e.g., [8]). 

To illustrate the complexity of an unfolding of the type 4-singularity in the ex- 
ample studied, let us consider a = (8.5, 6)T. Significant branches of the bifurcation 
diagram {(u, A) E R8 x R1: F(u, A, a) = 0} are depicted in Figure 2. The circles 
mark the F-symmetry breaking bifurcation points of type 1. These are the primary 
bifurcation points. The secondary branches that emanate from these points have Z- 
symmetry. In Figure 2, they have Z(2)-symmetry. The kidney-like branch in Figure 
3 has (1)-symmetry, while the remaining two branches have Z(2)-symmetry. 

The secondary bifurcation points organized by the type 4-bifurcation point (cor- 
responding to the 0(2) representation) are marked as stars. The star-shaped ter- 
tiary branch in Figure 3 makes a closed loop connecting both visualised secondary 
branches and their conjugate copies. 

The remaining secondary bifurcation points (marked as the combined circles 
and stars) are inherited from the above mentioned mode interaction. In these 
bifurcation points, the Z2 E Z2-symmetry of the kidney-like secondary branch in 
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Figure 3 is broken into Z2-symmetry of the secondary branches emanating from 
both type 1-primary bifurcation points (with L9(2) representation) in the isotropy 
direction d = (1, 0, 0)T (and its conjugate, respectively). 
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