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SHARP ULP ROUNDING ERROR BOUND 
FOR THE HYPOTENUSE FUNCTION 

ABRAHAM ZIV 

ABSTRACT. The hypotenuse function, z = x+ y2, is soinetimes included 
in math library packages. Assuming that it is being computed by a straight- 
forward algorithm, in a binary floating point enviroinment, with round to 
nearest rounding mode, a sharp roundoff error bound is derived, for arbi- 
trary precision. For IEEE single precision, or higher, the bound implies that 

Z- zl < 1.222ulp(z) and z -zl < 1.222ulp(z). Numerical experiments 
indicate that this bound is sharp and cannot be improved. 

1. INTRODUCTION 

The hypotenuse function, z = +y, is sometimes included in math libraries. 
Often error bounds for math library subroutines are given in ULP's (units in the 
last place) rather than as relative error bounds. In this paper we find, by a rigorous 
error analysis, a ULP bound. Namely, a bound of the form Iz - zl < a x ulp(z) 

or Iz- zl < a x ulp(Iz), where z is the approximation computed for z and cv is a 
constant. The algorithm analyzed is the straightforward one: 

XI = X, X2 = Y, X3 = XI X XI X X4 = X2 X X2 = 2 

x5~x3+x4~x+y2 x6 x- X2?y2~ =Z. X5 = X3 + X4 =XS + y X6 VI 5= = Z 

The floating point arithmetic assumed is binary with round to nearest rounding 
mode. The precision (number of binary digits of the mantissa) assumed is p E 

{3, 4, 5,.. }. It is assumed that neither overflow nor underflow occurs during the 
computations. 

Usually, the function ulp(x) is discussed only for values of x which are machine 
numbers (see, e.g., Higham [1], Section 2.1). It is very easy, though, to generalize 
its definition for general real numbers. The following definition, for instance, is 
meaningful for all real x: Define the mantissa rn(x) and the exponent e(x), for 
x :A 0, by the relations Ix =in x 2e, e E {O, ?1, ?2 ....}, < m < 1. Then, for a 
given precision p E {1, 2, 3,.. }, define ulp(x) by ulp(x) 2'-P, ulp(O) = 0. 

The main part of the error analysis is performed by the method described in [5]. 
Namely, we compute linearized relative error bounds 1l for xi (i = 1,... 6) and 
convert the approximate bound 1 = 16 into an exact bound by Theorem 3.1 of [5]: 
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Theorem (Ziv [5]). Let 6 be equal to (2ni + 1)B, where n? is the total number 
of ? operations in the algorithm and B = max li. If 6 < 1, then the accumulated 
relative error is bounded by 1/(1 - 8), where l is the accumulated linearized error 
bound. D] 

The analysis for a constant bound, independent of x and y, for the relative error 
is very simple: Let l denote approximate linearized bounds of the relative errors 
x - xil/lxil, where xi are the approximate values computed for xi. One gets 

= =0, 13 =14 =2 , 15 = (X313 + X414)/X5 + 2 6 - 5+2-P; SO 15 -P 

- = 16 - 21-P, and from the theorem one gets the bound Iz- zl/z < 2l-P/(l - 8), 
where 6 = 6 x 2-P. 

This bound for the relative error can be translated into a ULP bound by the 
relation ulp(z)/z > 2-P, which implies 

IZ- - Zl < 2 ulp(z)/(l - 6), 6 = 6 x 2-P. 

Our purpose is to improve (reduce) the value of the factor 2, in the numerator, as 
much as possible. In order to do this we assume, for the local roundoff errors, The 
tighter bound 2ulp instead of the relative error bound 2-P used in the last analysis. 

In ?2 the main result of this paper, formula (2.1), is stated and proved. In ?3 
number experiments are discussed. Their purpose was to find out how close to the 
theoretical bound the actual accumulated roundoff error may be. It turns out that 
the theoretical bound is quite sharp and practically cannot be improved. 

It is worth mentioning that often the algorithm used for the hypotenuse func- 
tion is not the one we analyze here, but the following: z = a l + (b/a)2, where 
a = max{lxl, lyl}, b = min{flxl, ly}. This algorithm has the advantage of not over- 
flowing, unless z is too large. It also does not suffer accuracy loss if (b/a)2 under- 
flows. On the other hand, this algorithm is somewhat less accurate and somewhat 
slower than the algorithm discussed here. The intermediate overflow/underflow 
problem of our algorithm may be solved without any loss of accuracy by scaling; 
that is, by computing 2e (x2-e)2 + (y2-e)2. The integer e may be chosen equal 
to (or close to) max{e(x), e(y)}. Such scaling needs to be applied only when Ix and 
IyI have extreme values. Thus, for instance, with IEEE double precision arithmetic 
(see [1] or [2]), it suffices to apply scaling only in the rare cases where e(x) or e(y) 
falls outside of the range [-500, 500]. 

2. ULP ERROR ANALYSIS 

In this section we prove the main results of this paper: 

I-z- z < < aulp(z) and I z-z I < a ulp(z), 

(2.1) where a 12(17 x 2- P)6 P e ' 3)4) } 

This result implies that for p > 15 

I-Z - Zl < 1.222 ulp(z), IZ- - zl < 1.222 ulp(-z). 

Let a > 0 be a real number and assume that it is rounded to the nearest machine 
number -a. Usually ulp(da) = ulp(a). The only exceptional case is when a is slightly 
smaller than an integral power of 2, say 2', and is rounded upward into a = 2n. 
In this exceptional case ulp(da) = 2 ulp(a). In all cases, including the exceptional, 
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Ia-al < 'ulp(a) < 'ulp(a). In view of this, the linearized bounds, 1l on the relative 
errors lx-i-xi /xi (i = 1,2, ..., 6) may be chosen as 

11 12 0, 13 = 'U1p(X3)/X3, 14 = 'U1p(X4)/X4, 

(5 (X313 + X414)/X5 + 'Ulp(T3 + X4)/(X3 + X4), 

16 = 15 + lUlp( V )/ I - 

We get 

1 Ulp(X3) + Ulp(X4) 1 Ulp (i3 + 4) 1 ulp( V ) 

4- X5 4 X3 + X4 2 x5 

In order to convert the linearized bound 1 = 16 into a true bound we have to divide 
it by 1 - 8. The value 6 = 6 x 2-P, used earlier, may be used here too. 

Noting that 

X3 + 4 > S(1 - -P) + X4 (1 - -P) = x5(1 - -P), 

VT ? (X + X4)(1 - 2-P) X6(1 - 2-P), 

one gets 

zl 
IZ - zl '(1 

(2.2) t1 up()+lp(x (2 + UlP(X3 + X4) 1 8/_ < (422 
(1 Px? P 

y2?? +2ulp(VX;)) (1-7x 2P). 

The rest of the discussion is split into four cases: 

* Case I: ulp( 3 + 4) < Ulp(X3 + X4), Ulp( AX) ? Ulp( X5), Ulp(Z) > tlp(Z)- 

* Case II: ulp(X3 + X4) > ulp(X3 + X4). 

* Case III: ulp( vx) > ulp( x5). 
* Case IV: ulp(z) < ulp(z). 

These four cases cover all possibilities. Case I is the principal one; Cases II, III, 
and IV are very rare. They cannot be ignored, though. 

Case I. In this case we deduce from (2.2) that 

(2.3) 

< IA(x, y) + 2 Ulp(9) + ulp(y2) + Ulp(X2 + y2) 
l 

- 7 X 2Pulp (z), where A (x, y) = Up ZZj 
1-7x 2-P weeVj}X 2+~y 2 Ulp ( VX 2+~y2) 

In order to prove (2.1) we shall show that maxA(x,y) = 5/X3. Since ulp(z) < 
ulp(iz), both inequalities of (2.1) are thus proved simultaneously. 

Because of symmetry we may assume that 0 < y < x and x > 0. Note also that 
the problem may be scaled by multiplying both x and y by the same integral power 
of 2. In what follows we shall use scaling often. 

Starting from some point (x, y), we shall change x and y continuously in such a 
manner as to increase A(x, y), up to a local maximum. max A(x, y) is equal to the 
largest of the local maxima. 

We start by increasing y and decreasing x, keeping x + y2 constant. We may 
continue with this up to a point where either y2 X or y < X 2n (n 
0, ?1, ?2, . . .). 
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If y2 = X2 we have A = 4ulp(x2)/( xulp( x)), and we may decrease x up 

to a point where x2 is an even power of 2. Scaling the problem, we may assume 
that x92 1, so A = 2 < 5/3. 

If y2 < X2 = 2n we may scale the problem to get I < X2 < 2, so either 
2 2 y2 < 2 12 

y <x =1ory <x 
If y2 < X - 1 we get A - (21-+ulp(y 21-P) / (V1+y2 x 21-P), and we may 

decrease y until y2 = 2 (n 1, 2,...); so A = (2 + 2- )/1 + 2-n < 2 + 2-1 
2.5 < 5/ 3. 

If y2 < x9 = I we get A (2-P + 'ulp(y2) + 2-P)/(/ + y2 x 2-P). We decrease 

y until y2 = 2 - (n = 2, 3,... ); so A = (2 + 21-n)/ + 2-. This expression 

decreases with n, so its largest value is attained when n = 2, i.e., A = 5/3. This 
completes the proof of (2.1) for Case I. 

Case II. In this case X-3 + X4 > X3 + X4 = X5, and an integral power of 2 must lie 
in the interval (X5, 3 + ?4]. Scaling the problem so that 1< X5 < 2, we find that 2 
there are two possibilities: either X5 < 1 < X3 + X4 or X5 < 2 < X3 + X. 

If X3 + X4 = X5 < 1 < X3 + X4, then either X3 < 2 or X4 < 2, and we have 

1< X3 + X4 < X3 +?X42UlP(2) + UP() = X5 + Up() K 1+3lp(1). It follows 

that X3 + X4 rounds into X5 = 1, SO XC6 1 too. As for x6 = ?, we get 

1 - 
3 

ullp(l) < X5 < 1 = 1 - 8U1p(1) < XC = Z < 1 

~ %- 
3 >lp(1) = Ulp(-). =>?<X6 - X6 < -UIP1 = pZ) 

Hence I-z - zKulp() I 3ulp(z), which is compatible with (2.1). 
If X3 + X4 = X5 < 2 < X3 + X4, then either X3 < 1 or X4 < 1, and we have 

2 K-3+X4 ? X3+ X4+2p(i)+ lp(2) X+ 3 ulp(2) < 2 +8 ulp(2), from which 

it follows that X3+X4 rounds into X'5 = 2; so 2- 1ulp(1) < z = x6 < 2+ ulp(1). 
Also 

2 - 3 ulp(2) < X5 < 2 t 2(1 - 3 'ulp(1)) < X5 < 2 

Xf2 (1 _- 8Ujp(j)) < Z = X6 < df. 

Hence Iz- zl < [(4 + 3 2)/8]u1p(1). Since ulp(iz) = ulp(z) = ulp(l), this is also 
compatible with (2.1). This completes the proof of (2.1) in Case II. 

Case III. In this ca,se V4 > +/E = z, and an integral power of 2 must lie in 
the interval (+?5, Vx4]. Scaling to get 1/ 2< x?5 < 2, we have +/i; < 1 < 

X5 X5 < 1 < X5. Now there are two possibilities: either X3 + X4 > 1 or 

X3 + X4 < 1. In the first case ulp(X3 + X4) > zdp(X5). This falls in Case II, which 

was already discussed. We are left, then, with the case X5 < 1 < X5, X3 + X4 < 1. 

In this case X-3 + X4 must round upward to X5 1, SX6 Z = 1 too. Hence 
0 < 1- (~X + X4) < ulp(!). Also, since X5 = X3 + X4 < 1, we have either X3 < 

or ?4 < so X3 + u-l < lulp(l) + 2dp(4) =zdp(1). Combining the two 
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results, we get 

o K - < 3 ,ulp(1) + I Ulp(l) = 5Up(1) 0 < 1-X5 < 8 UI()+2 UI(2 )=8UP1 

X X5 > 1 - 8lp(1) X X6 >? 1 - -UlP(1) 

< X6-X 1 -X6 < 1 - 1 - U 
P(1) < f56Ulp(1)/(1 - 8Ulp(1)) 

= - ulp(1)/(1 - 1.25 x 2-P) 

Since ulp(z) = ulp( ) and ulp(z) d ulp(l), we have 

O - z < 5ulp(z) _ lOulp(z) 

- 16(1 - 1.25 x 2-P) 16(1 - 1.25 x 2-P) 

which is consistent with (2.1). This completes the proof of (2.1) in Case III. 

Case IV. In this case z < z, and an integral power of 2 must lie in the interval 
(, z]. Scaling so that 1/ 2 < z < 2, we have 

Z < 1 < z VY5< 1 < VFX5==>X5 < 1 < X5 

3X3+X4 ?1- UyP(!) < 1 <X3+X4. 

Hence either X3 < 1 or X4 < 2, and we have 

1 < X3 + X4 < X3 + X4 + 2ulp(4) + 2ulp(2) < 1 + upf(f) 

1<- X5 <- 1 + 4UlP(2) X1 <- Z = X A/ < 1I+ SUIP(2). 

Also, 

1- UlP(!) < X3 + X4 > 1 -lP(') < X5 <1 

X5 =1-UIP() X1 -UlP(2) < A/EX < 1 - UlP(2) 

Z 1- -Ip(V) 9 0 < z - -Z < uIp(') + julp(') 

u=p(iZ) 9 ulp(z), 

which is consistent with (2.1). This completes the proof of (2.1) in Case IV. 3 

3. NUMERICAL TESTS 

The purpose of the numerical tests was to find out how close to the theoretical 
bound the actual accumulated roundoff error can be. 

Given a pair (x, y) of IEEE single precision numbers (see [1] or [2]), the algorithm 
was performed first in IEEE single precision arithmetic (p = 24) and then in IEEE 

double precision arithmetic (p = 53). The signed difference between the two results 
was taken to be a very good estimate of the actual accumulated error in the single 
precision computation. This kind of computation was repeated for many single 
precision pairs (x,y), and the maximal and minimial errors, expressed in single 
precision ULP's, were printed out. 

Reading carefully the error analysis in ?2, Case I, we concluded that the maximal 

accumulated error is likely to occur for some pair (x, y) where x is slightly larger 
than 1/ 2 and y is slightly larger than 2. In view of this, the error was computed 
for the 9 x 106 (x, y) combinations formed from the single precisioil values of x 
(1 + 2-12)/ +2m x 2-24 Y = (1 + 2-12)/2 + n x 2-24, m, nE {O, 1,*.. ,2999}. 
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The smallest error found was -1.21357lu and the largest +1.213855u, where 
u = 2-24 = ulp(z) = ulp(z). Comparing this with the theoretical bound, 1.222u, 
the largest actual error found is less than 0.7% away from this bound. This means 
that the bound is quite sharp and practically cannot be improved. 
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