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A COMPARISON OF A POSTERIORI ERROR ESTIMATORS 
FOR MIXED FINITE ELEMENT DISCRETIZATIONS 

BY RAVIART-THOMAS ELEMENTS 

BARBARA I. WOHLMUTH AND RONALD H.W. HOPPE 

ABSTRACT. We consider mixed finite element discretizations of linear second 
order elliptic boundary value problems with respect to an adaptively generated 
hierarchy of possibly highly nonuniform simplicial triangulations. In particu- 
lar, we present and analyze four different kinds of error estimators: a residual 
based estimator, a hierarchical one, error estimators relying on the solution of 
local subproblems and on a superconvergence result, respectively. Finally, we 
examine the relationship between the presented error estimators and compare 
their local components. 

1. INTRODUCTION 

We consider the following boundary value problem for a linear second order 
elliptic differential operator 

(1.1) u:= -div(aVu) +bu = f in Q, 
u = 0 on F:= &Q, 

where Q stands for a bounded, polygonal domain in the Euclidean space R 2 and 
f E L2(Q). Furthermore, we assume a = (a .) =1 to be a symmetric, matrix- 
valued function with aij E L??(Q), 1 < i, j < 2, and b E L??(Q) satisfying 

2 

(1.2) ,t 1 
R E2, 0 < a Ro ? 1, 0 < bo < b(x) < bi, 

for almost all x E Q. The local bounds on a subset D C Q are denoted by Ca., 

3F, 0 < i < 1. For simplicity, we have chosen homogeneous Dirichlet4boundary 
data, but all subsequent results can be easily applied to more general boundary 
conditions. 

In many applications, the flux j :=-aVu is more important than the primal 
variable u. Therefore, the original problem (1.1) is transformed into a first order 
system by introducing the auxiliary variable j. The natural ansatz space for the 
flux is 

H(div;Q) {q (L2(Q))2 1 divq E L2(Q)}, 
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which is a Hilbert space with respect to the inner product 

(p, q)div := (p, q)o + (div p, div q)o 

and the associated norm 11 Ildiv (, )div. As usual we denote by (, )k, k > 0, 
the standard inner product on Hk(Q) and (Hk(Q))2, while I Ik, || Ilk stand for the 
associated seminorms and norms, respectively. 

Then, the weak formulation associated with (1.1) gives rise to the following 
saddle point problem: 

Find (j, u) E H(div; Q) x L2 (Q) such that 

(1.3) aa(j, q) + b(q, u) 0, q H(div; Q), 

b(j, v) - c(u, v) -I(v), v L L2Q) 

where the bilinear forms a (., .), b (, ), c (-,) and the functional 1(.) are given by 

a (p, q) : f f a-lp * q dx, p, q c H(div; Q), 
Q 

b (q, v) : f -fdiv qv dx, q c H(div; Q), v c L2(Q), 
Q 

c(u,v) : f fbuvdx, u,vL L2(Q), 
Q 

l(v) : f ffv dx, vEL2(Q). 
Q 

The existence and uniqueness of the solution of system (1.3) are well known (cf. 
e.g. [12, ?11, Thm. 1.2)]. Associated with the bilinear form a (., ) is the norm jI.IIIcliv, 
where llq 11div := jQ a-1qq dx + fQ div q div q dx. Compared with the norm II I div, 

the norm III IIIdiv is weighted by a-1 and plays the same role as the energy norm in 
the primal formulation. Both norms are equivalent due to the positive definiteness 
of a. 

The mixed finite element approach is based on (1.3). Here, we use Raviart- 
Thomas finite elements with respect to a simplicial triangulation 7h of Q. The sets 
of vertices and edges are denoted by Ph := 1P U P,rj, := Sh U SX where u 1Ph, 
refer to the interior vertices and edges and 'Pr, Er' to those located on F = OQ. 
Furthermore, Pk (D), D C Q) k > 0, stands for the set of polynomials of degree < k 
on D. 

For the discretization of the flux j c H(div; Q) we choose the Raviart-Thomas 
ansatz space 

RTk (Q; Th) = {qhE H(div; Q) I qh|T RTk(T), T 'Th }, 

where RTk (T), T E Th, stands for the Raviart-Thomas element 

RTk(T) := Pk (T) 2 + Pk (T)x, X = (X1, X2 )T. 

The degrees of freedom of RTk(T) are given by the following moments: 

Jn* qhP do, p c Pk(ei), P qh dx, p c Pk--(T), 
ei T 

where n is the outer normal on &T and ei, 1 < i < 3, are the edges of T. The 
discrete ansatz space for the primal variable u C L2(Q) associated with RTk(Q; Th) 

is given by piecewise polynomial functions: 

Wk(Q;Th) :{= Vh L 2(Q) I VhlTc Pk(T), T c h}. 
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Thus, the natural requirement div RTk (Q; 'Th) =Wk (Q; h) iS guaranteed. Now, 
the lowest order mixed discretization of system (1.3) can be written as follows: 

Find (jh, Uh) E RTo(Q; E,) x Wo(Q; El) such that the following discrete saddle 
point problem is satisfied 

(1.4) a(jh, qh) + b(qh, Uh) = , , qh E RTo(Q; Th), 

b(jh, Vh) - C(Uh, Vh) = -l(Vh), Vh E WO(Q; Th)- 

Note that the Babuska-Brezzi condition is fulfilled and that system (1.4) admits 
a unique solution (cf., e.g., [12, ?11, Prop. 2.11)]). 

Throughout the following we refer to (j, u) E H(div; Q) x L2 (Q) as the unique 
solution of the mixed variational problem (1.3) and to (jh,Uh) E RTo(Q;Th) x 

Wo(Q; Th) as the lowest order Raviart-Thomas approximation satisfying (1.4). Fur- 
ther, we denote by (Jh,U ih) E RTo(Q; Th) x Wo(Q; Th) an available computed ap- 
proximation obtained by means of an appropriate iterative solution process. 

In particular, we advocate multilevel iterative solvers that work on a hierarchy 
(Ek) =0 of simplicial triangulations of Q generated by the well known refinement 
process due to Bank et al. [5]. The refinement strategy is such that a triangle 
T E Sk, k > 0, either remains unrefined, or is subdivided into four congruent 
subtriangles, or is bisected into two subtriangles. Following the refinement rules in 
[5], each triangle T E 7k, k > 0, is geometrically similar either to an element of 'T 
or to a bisected triangle of 7-0. The diameter of T, T E Sk, is denoted by hT, and 
he stands for the length of the edge e E Sk. Then, the regularity of the sequence 

(Tk-)=0 guarantees the existence of constants 0 < 'o < 'i such that 

(1.5) Koh 2 < ITI < ?ihe2 1 < i < 3 T E Sk, 

where ITI is the area of T. Moreover, due to the local quasiuniformity of (7Tk)) 
there exist constants IKD, IKK > 0 such that for T E Tk 

(1.6) card{e E Sk, e n OT #4 0} <_ K, card{T'2 ESk, OT'O n AT #0} ?<I_D 

We assume that the iterative approximation (jh,U ih) E RTO(Q; 2k7) x Wo(Q; Tk) 
satisfies the second equation of the discrete saddle point problem exactly. This can 
be achieved, for instance, by using the algorithm proposed by Ewing and Wang [17] 
for a vanishing Helmholtz term b 0 O, which was later generalized in [19] and [31] 
to the case of nonvanishing b. 

Reliable and efficient a posteriori error estimators are an indispensable tool for 
efficient adaptive algorithms. We refer to the pioneering work done by Babuska 
and Rheinboldt [3, 41, Eriksson, Johnson and Hansbo [16, 22, 23], and to the recent 
survey articles by Bornemann et al. [8] and Verfiirth [27, 30] (cf., e.g., [22, 26, 33]). 
Following the classification of Verfiirth [27], we generalize the standard concepts for 
a posteriori error estimators and present four different types. In the mixed setting, 
it takes an extra effort to develop an adequate error estimator compared with the 
standard primal formulation. 

We shall derive a posteriori error estimators for the total error ej := i- Jh in 
the flux measured in a weighted norm of the flux space H(div; Q), the total error 
eu := u- uh in the primal variable measured in the L2-norm, and the total error in 
both the flux and the primal variable. Denoting the total error to be estimated by 
c, an estimator 71 is said to be efficient if there exists a constant y > 0, independent 
of the refinement level such that -y?7 < c, whereas 71 is called reliable if there exists 
another constant F > -y, independent of the refinement level, such that c < 177. In 
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this paper, we shall consider a posteriori error estimators that are both efficient 
and reliable, i.e., estimators satisfying 

7717 <_ c< Fi7. 

The paper is organized as follows: 
In Section 2, the different types of a posteriori error estimators are introduced and 

the main results of this paper are summarized. For details we refer to Sections 3-6, 
where the error estimators are discussed thoroughly and upper and lower bounds 
for the total error are established. 

In Section 3, we investigate a residual based error estimator. This kind of error 
estimator is based on the dual norm of the residual (cf., e.g., [3, 4, 7, 28, 27, 29]). 
Due to a Helmholtz decomposition of the ansatz space for the flux into subspaces of 
solenoidal and weakly irrotational vector fields, the corresponding continuous defect 
problem can be split into two independent subproblems. The first subproblem is 
associated with the divergence free part of the flux space and can be treated as in 
the conforming primal formulation, whereas the second subproblem gives rise to an 
indefinite saddle point problem. 

In Sections 4 and 5, we present two types of hierarchical error estimators that 
are strongly related and require an adequate saturation assumption (cf., e.g., [6, 
14, 15, 21, 25, 27]). In particular, for the derivation of the first hierarchical error 
estimator, which is dealt with in Section 4, we start from an approximation of the 
defect problem in a higher order ansatz space followed by a localization in terms 
of an appropriate hierarchical two-level splitting. For the construction of the other 
hierarchical error estimator, in Section 5 we proceed the other way around and 
begin with a suitable localization of the defect problem involving local subproblems 
that are solved by a hierarchical splitting of an elementwise higher order ansatz. 
In each case, we propose an estimator for the H(div; Q)-norm of the error in the 
flux variable, as well as an estimator for the combined error in the flux and in the 
primal variable. 

In Section 6, we consider an error estimator for the primal variable in the L2- 
norm. This error estimator is motivated by a superconvergence result for the finite 
element approximation of u. It is obtained by a comparison of the piecewise con- 
stant approximation of the primal variable with a higher order finite element solu- 
tion arising from a modified nonconforming approach. Finally, we shqw that the 
difference between the piecewise constant and the nonconforming approximation 
is equivalent to a formulation that can be obtained by using some local averaging 
techniques (cf., e.g., [11, 24, 32, 34]). 

In Section 7, we discuss the relationship between these error estimators and 
prove their equivalence up to higher order terms. We note that the error estimators 
under consideration are constructed by means of their elementwise contributions 
according to 

(1.7) 7T. 
TETk 

Two estimators 77(1) and 7(2) are said to be equivalent (locally equivalent), if there 
exist constants 0 < 6 < A (0 < T< ?A,,, T E Tk), independent of the refinement 
level, such that 

687(2) < (l) < A7(2) (6T?7 2) < l) < AT1), T E Tk). 
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In view of (1.7), local equivalence implies equivalence but the converse does not 
necessarily hold true. Neglecting higher order terms, we obtain local equivalence 
of the residual based error estimator and the hierarchical one. Using this result, 
we investigate the estimator based on the solution of local subproblems in more 
detail, and establish local equivalence with the hierarchical estimator in the case 
of an appropriate modification of the discrete,Dirichlet boundary data. As far as 
the estimator relying on superconvergence results is concerned, we cannot expect 
equivalence with the other ones. However, adding two additional terms allows us 
to prove equivalence, whereas no local equivalence can be established. 

2. DEFINITION OF THE ERROR ESTIMATORS AND MAIN RESULTS 

In the context of standard primal variational problems, a posteriori error estima- 
tors are well established. The recent survey articles of Verfutrth [27] and Bornemann 
et al. [8] give an excellent comparison of different kinds of error estimators in the 
conforming setting. These concepts have been generalized to nonconforming finite 
element discretizations by Crouzeix-Raviart elements of lowest order in [21, 31]. 
For mixed finite element methods, there only exists some work of Braess et al. [9], 
Braess and Verfuirth [10] and Verfiirth [28] concerning residual based error estima- 
tors and indicators. Here, we use the same techniques as in the conforming case, but 
the investigation of the estimator for the mixed setting is much more complicated 
and requires some additional tools. In case of the residual based error estimator, 
we assume that the coefficient matrix a is a piecewise constant diagonal matrix and 
b is piecewise constant. 

It can be easily seen that the total error (je, Ue) := 0 -Jh , U -h) satisfies the 
continuous variational problem 

(2.1) a (j-jh,q) +b(q,u- ih) = r(q), q H(div; Q), 
b (j-Jih, V) -C (U - ih, V) = -(f - 11f, V)O, v L L2(Q), 

where the residual r is given by r(q) :=-a(jh, q) -b (q, iih), q E H(div; Q), and 
I-lof denotes the L2-projection of f onto Wo(Q; Tk). 

The basic idea behind the construction of a residual based error estimator for 
the total error Iu - uhlo + 11- .Jhllldiv is to use a Helmholtz decomposition of 
H(div; Q). We obtain an error estimator which can be easily calculated by means of 
the available finite element approximation (Jh, Uh). In contrast to the hierarchical 
error estimator, no additional subproblem has to be solved. This is the main 
advantage of the residual based error estimator R which is determined by its local 
contributions: 

(2.2) 

R Z ER;Tv 
TETk 

3 
~2 Il _ Ilf 11 L2 a1jh 12 y i wcee.he,I [a1'jh .tei]J12 

R;T = llf-HOfiO;T + hTITa 1h(O;T + E;ei- 

Here, the weighting factors a, and wi are defined by a, : (olT +a T2 +1(+l +j T2) 

and w: 1/2, if e. =T1 0 &T2 is an interior edge, and by a,, :c = 2 (cT + T' 

and w: 1, if e. C &T, n0 Q. The jump [Q]j on e has to be defined as 

[a-lJh te]J := (a-lJlj * teTi - a-lJh * telTa) aTT n 0Ta 
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e te 

Ta 

FIGURE 2.1. Orientation of ne and te 

if e is an interior edge, and 

[a-1jh t1J:= (a jh . te Ti) aTi0 Q D e, 

if e C &Q. For the orientation of te, we refer to Figure 2.1. 
This error estimator provides an upper and a lower bound for the total error 

IU - uhlO + 11j -Jhllldiv, if the gridsize and the iteration error are small enough. 

Theorem 2.1. There exist constants hmax > 0 and CR, CR, Cit > 0, independent 
of the refinement level, such that for all h < hinax 

CR R < ?|U-Uh + 11i - ih d CR + Cit (I|Uh -Uho+ llihJhll div) - 

In the case of standard conforming finite element discretizations, the hierarchical 
basis error estimator has been investigated by Deuflhard, Leinen, Yserentant [14]. 
An excellent overview is given by Bornemann et al. [8]. Recently, this concept has 
been generalized by Achchab et al. [1] for the mixed setting, but no easily accessible 
local error estimator is proposed. Here, the introduction of the error estimator is 
based on the principle of defect correction in higher order ansatz spaces. By means 
of appropriate localization and decoupling techniques of the flux ansatz space, we 
obtain an easily computable, efficient and reliable a posteriori error estimator for 
the flux error and the total error. The hierarchical error estimator presented in this 
section has been investigated in [19, 20, 31]. WVe summarize the main ideas and the 
basic results; for details we refer to the papers cited above. 

The hierarchical basis error estimator is based on a discrete defect problem 
considered on appropriately chosen higher dimensional ansatz spaces. There are 
two different approaches. Either we consider the same mixed ansatz spaces asso- 
ciated with a finer triangulation, e.g., obtained by uniform refinemealt from the 
actual one, or we use higher order mixed ansatz spaces providing improved a pri- 
ori estimates. Here, we restrict ourselves to the second approach, and consider 
the Raviart-Thomas ansatz space RT1 (Q; 7k). In contrast to the residual based 
error estimator, the continuous defect problem (2.1) will not be considered. In- 
stead, to obtain an appropriate approximation of (2.1) we use the higher dimen- 
sional Raviart-Thomas ansatz space RT1 (Q; 7k) for the flux and the ansatz space 
Wi (Q; ?k) of piecewise linear functions for the primal variable. We restrict our- 
selves to the discrete saddle point problem which requires the computation of a 
pair (ej, e,,) E RTi (Q; 7k) x Wi (Q; 7k) such that 

(2.3) a (ej, q) + b (q, eu) = r(q), q E RTl(Q; Tk), 
b (ej,v) - c(eu, v) = - (f -Hof,) 0, V E Wl (Q; 'k) - 

Denoting by (jRTi, URT1) the solution of the discrete variational problem (1.4) on 
RTi(Q; Tk) x Wi(Q; Tk), the introduction and the analysis of the error estimator 
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are based on the following saturation assumptions: 

(SI a) j - IRTI div ? i3k hIIhI div, k > 0, 

(SI b) 2-RTI div+ | URT1 ?12 < /k (111i -ih 1div+ |I|U-Uh |) k> O, 

with /3k < /3 < I and /k ? O < 1. These saturation assumptions are motivated 
by the well known a priori error estimates for J- jh,h i - jRT andU - Uh, U - URT1 

(see, e.g., [12]). In particular, the saturation assumption (SI a) implies both an 
upper and a lower bound for the total error in terms of the i-llldiv-norms of ej and 
the iteration error ih-ih 

(2.4) ((I + /3oo) e ( Ie I cliv - i3o1i h Jh III div) < 11i-J ,h III cliv, 

(I - 3) (| ej III div + i3o1i h - Jh III div) > 11i - Jh III div 

Therefore, only the solution of (2.3) has to be examined. The approximation of 
(ej, eu) is based on the hierarchical two-level splitting of the mixed ansatz spaces 
RTi(Q;27,) and Wi(Q;27k). By means of the L2-projection II of Wi(Q;7k) onto 
Wo(Q; 2k,) and the interpolation operator p: RTi(Q;T) -> RTo(Q; 7k) given 
locally by 

ne. (pq) d- Jne. q do, e E Ek 

e e 

we obtain a hierarchical splitting of Wi (Q; Sk) and RT1 (Q; Sk) according to 

(2.5) Wl (Q; 7k) Wo(Q; 7k) Wl (Q; ek), 

(2.6) RTl (Q; Tk1) RTo(Q; Tk) RT, (Q; Tk), 

where Wi(Q;7k) := (Id-Il) Wi(Q;7k) and RT1(Q;7k) := (Id-p)RTi(Q;27k). 
The hierarchical surplus in the flux,RT, (Q; Tk), can be further decomposed into a 

divergence free part RT1 (Q; Tk) and its complement RT1 (Q; Tk): 

~~~0 -1 

(2.7) RT1 (Q; Tk) RT1 (Q;Tk) e RT1(Q;Tk), 

where 

RT,(Q; Tk) := curlS2(Q;Tk), 

RT1(Q; Tk) {q RTl(Q;Tk)I ne-qel = 0, eES Sk}. 

Here, S2(Q; Tk) stands for the space of quadratic bubble functions associated with 
the midpoints of the edges. This space is given in terms of the hierarchical two- 
level splitting S2(Q;Tk) =S(Q;Sk) S S2(Q;Tk), where Sl(Q;Sk) and S2(Q; k) 
refer to the conforming ansatz spaces associated with the standard PI and P2 
approximations. The structure of the decomposition (2.6) and (2.7) is symbolized in 
Figure 2.2. The splitting (2.7) is somewhat similar to the Helmholtz decomposition 
of the H(div; Q) ansatz space that will be used in case of the residual based error 
estimator (see Section 3 below). But in contrast to this Helmholtz decomposition, 

the ansatz spaces RT1 (Q; Tk) and RT1(Q; Tk) are not orthogonal with respect to the 

bilinear form a(., .). Furthermore, it is easy to see that RT1(Q; Tk) can be written 
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as the direct sum of local two-dimensional subspaces RT1 (T) which correspond to 
the "interior" degrees of freedom of RT1 (T): 

RT (k) = : RT1 (T), RT1 (T) := {q RT1 (Q; Tk) I qlQ\T = 0} 
TETk 

Due to the special structure of Wi(Q;Tk), the subspace W1(Q;Tk) can be de- 
composed into the direct sum of local two-dimensional subspaces: 

W, (Q; k) W- W(T), W, (T) IV {v E /"l(Q; 70 | VI Q\ T = ?} 
TETk 

For the definition of the error estimator we have to consider two different types of 
-0 

local low dimensional variational problems associated with the two parts RT1 (Q; Tk) 

and RT1 (Q; Sk) of the hierarchical surplus. For each edge of the triangulation we 
have to solve a single equation 

(2.8) a(curl (p, curl be) = r(curl b)v), 

where be is the quadratic bubble function associated with the edge e and (,e E 
span{ e}. The second variational problem is associated with the elements T. For 
each element we have to consider a 4 x 4 saddle point problem: Find (*h &,1) E 

RT1 (T) x W, (T) such that 

(2.9) alT (eh:,) +bIT (q, E1) rIT(q), q E RT,(T), 
b T (E1 V) -CIT (Eul v V) =(f, V)O;T, v EE WI(T). 

The solutions of (2.8) and (2.9) lead to the local definition of an a posteriori flux- 
oriented error estimator 'qH: 

77H = 7 E H;T) 

(2.10) TGTk 

2 1IE 2 IIcurl 112i0TeE k ,qH;T e1 1div;T + E w e T E d 
i= 1 

where the weighting factor wi is defined as in the case of the residual based error 
estimator. 

Theorem 2.2. Under the saturation assumption (SI a) with 0 < !k < /O3 < 
1 there exist constants cli,er, C,jier > 0 and iYhier- rh.ier > 0, independent of the 

0 0 

- 0 O-- ---- 

~~~~~---0 
RT1(I) RTo(T) RT 1(T) RT (T) 

FIGURE 2.2. Degrees of freedom of the subspaces of the higher 
order Raviart-Thomas space 
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refinement level, such that 

(2. 1) (1 -+ /3oo)I (ChiiejI7H - Yhier 11ih - Jh Idiv) ? Ili -Jh IIdiv, 
(- /-oo ) (Cui er?'7H + F h ier J11i h - Jh III div) ? Ji - Jh III div - 

Next, we consider an error estimator TL based on the solution of local subprob- 
lemns that is strongly related to the hierarchical error estimator. In the standard 
conforming setting, this kind of error estimator is due to Bank and Weiser [6]. For 
nonconforming techniques we refer to [21]. It relies on a defect correction with 
respect to a higher order ansatz space and an appropriate localization based on a 
hierarchical two-level splitting. It turns out that the estimator can be computed 
elementwise by the solution of local Dirichlet problems similar to the original global 
one (cf. [21]). In contrast to the standard conforming and nonconforming setting, 
the boundary data cannot be obtained by a simple averaging of the computed 
approximation. 

For simplicity, we only consider the discretization error (i - ih, U - Uh) and not 
the total error (i -Jh, U - ith). Note that the results can be generalized to the total 
error. This time, we state the defect problem as a local Dirichlet problem for each 
element T E Tk: 

(2.12) 

alT(j-jf,q) +blT(q,u-uj,) = Jun * qd + rIT(q), q E H(div; T), 
OT 

b|T(j-ih, V) -CIT(U-Uh, V) -(fHofV)o;T, V E L (T). 

As in the case of the hierarchical error estimator, we only look for an adequate 
approximation of the solution of (2.12). The original ansatz space H(div; T) x L2 (T) 
will be replaced by RT1 (T) x PI (T), and the Dirichlet data u by some appropriate 
approximation UD which can be easily calculated from (jh, Uh). A possible choice 
of UD will be discussed in Section 5. In contrast to the hierarchical error estimator, 
we need an additional saturation assumption concerning the approximation of the 
Dirichlet data. We refer to RT71 (Q; Tk) as the nonconforming ansatz space, where 

RTI-I(Q;Tk):= {q E (L2(Q))21 qlT E RT1(T), T E Tk}, 0 < 1 < 1 

and to ART1 as the Lagrange multiplier which is a piecewise linear function on the 
edges uniquely determined by means of q E RT71 (Q;Tk), 

E JARTn q qdar = 
Z J a jRT R qdx+ E Jdiv qURTl dx. 

TeTk&T TCTk T TCTk T 

Then, introducing the weighted norm 111 11l0;?-, according to 

/ \ ~~~~1/2 

IIIVI (Zh;c-'e V ;e) vL(k) |||||0g-l= E he v0eiioe ) E L (Sk)) 

eC-S 

we assume 

(S2) III ART1 - [UD]A I O;?'1 ?< 32;k |-jh ldiv,) j2;k > 0, 

to hold with /32;k < /32;oo < oc, where the average [V]A on e, V E T HCTk H1(T)) 
is given by [v]A = v IT2 + VITi), &Ti n TTa = e, if e is an interior edge, and 
by [VIA : (vlrT), &T2 n &Q D e, if e c OQ. In general, assumption (S2) is 
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motivated by an adequate a priori error estimate or by some equivalence results 
(see subsection 7.2). Because of the saturation assumptions (SI a) and (S2), the 
previous simplifications are justified. We consider the discretized defect problem 

(2.13) 

aJT(ejJT,q)+bIT(q,6uJT) J - [UD]A n qdu + rlT(q), q E RTi(T), 

OT 

b|T (6jJT)V)-C|T (6uJT,V) = -(f-1-I0,V)O;T, V E PI (T). 

Then ej := (6jJT)T does guarantee lower and upper bounds for the error in the 
flux. 

Theorem 2.3. Under the saturation assumptions (SI a) with 0 < !k < O3o < 1 
and (S2) with 0 < !2;k < !2;oo < X there exist constants c10c, C,0c > 0, independent 
of the refinement level, such that 

(2.14) ClocII j II div < - I ih iII|div < (1 - ) Cloc IIe jIIdiv 

Finally, we use the same hierarchical splittings and decoupling techniques as 
before. For each element we thus obtain three scalar equations and one saddle 
point problem that have to be solved. The error estimator TL is defined by 

DL = E DL;T v 

(2.15) TcTk 
2 

111,111112 
+ E aJT(cur1W,i;T,curl i;T) T E Tk, 

t= 1 

where '1 and curlSei;T are the solutions of the local problems on the element T. 
eii 

Theorem 2.4. Let the saturation assumptions (SI a) with oc, < 1 and (S2) with 
02; < X be satisfied. Then, there exist constants 0 < clo0 < C10, independent of 
the refinement level, such that 

(2.16) Cio0-WL < 11i -j hl||div < Cl0o,'7L- 

In Section 5, we will show that 4I =h, and thus the first part of the error 
estimator is exactly the same as in the case of the hierarchical basis error estimator. 

Finally, in Section 6 we propose an estimator rS for the error in the primal 
variable that can be motivated by a superconvergence result for the technique of 
mixed hybridization. In contrast to the hierarchical basis error estimator 'H and 
the error estimator TL based on the solution of local subproblems, we do not have to 
solve additional defect problems. In the standard conforming case, error estimators 
obtained by some postprocessing of the approximation have been introduced by 
Zienkiewicz and Zhu in [32, 34] and have been further analyzed by Rodriguez [24]. In 
the mixed setting there is some work of Brandts [11]. In contrast to the conforming 
situation, we will be able to prove the equivalence between rs and the L2-norm 
of the difference of uh and some higher order finite element approximation which 
turns out to be the solution of a modified nonconforming variational approach. 
Therefore, we have a strong relationship between the error estimator and a discrete 
defect problem which is solved in a higher order ansatz space. Details will be given 
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in Section 6. The error estimator 77s is given as follows: 

772' = 775';T1 
TC'Tk 

(2.17) 32 2 
77S;T = E w-he ([ii1]JIe)v 

it 1 

where the weighting factor Li is defined as before. 

Theorem 2.5. Let t,, E WIo(Q; Tk) be an approximation of the primal variable 
u obtained by an iterative solution process for system (1.4). Then, there exist 
constants 0 < oo < or and 0 < Co < C1, depending only on the shape regularity of 
Tk7 and the ellipticity constants in (1.2), such that 

(2.18) Oons - Co Itlu - l|Io <0 ? Iu - t o < a l'7s + C1i Ut, -iil 

We emphasize that the computation of the estimator only involves the jumps 
of the piecewise constant approximation for the primal variable across the inner 
element boundaries. 

In [11], Branclts introduced an a posteriori error estimator for the flux in the 
L2-norm based on a higher order recovering of the flux. If we add this estimator 
and lf - Ilof lo to '7s, it turns out that we again obtain an error estimator 7^s for 
the total error. 

The error estimator in [11] is defined as 

Ilih - ]VJh|0, 

where the linear operator K : RTo(Q; Tk) ) (CR(Q; Tk))2 is locally given by its 
value at the midpoint me of the edges of the triangulation 

(2.19a) Kp (me ) (pl T + Pl|,.,) (men), T1 n Tq e E k, 
2 1 

if e is an interior edge, and by 

(2.19b) t. (Kp)(m,) := 0, n i (Kp)(me) := n p p, e c &Te, 

if e is an edge on the boundary DQ. 
The error estimator 7 is then given by 

775 = Z S;Tr 

(2.20) T CTk, 

qS:T = lS;T + IlJh - Kihj + Of- 0fo ;T 

In subsection 7.3, it will be shown that i)s and the residual based error estimator 
7R are globally equivalent. 

3. THE RESIDUAL BASED ERROR ESTIMATOR 

First, we summarize some technical results which are an indispensable tool for 
the investigation of the residual based error estimator. We consider the projection 
operator Pc: L2 (Q) -- SI (Q; 27 ) with respect to a discrete L2-norm due to Clement 
[13]. In contrast to the Lagrangian interpolation operator, this operator can be 
applied to discontinuous functions. Denoting by Dp : UJ{T E TkI p E AT} the 
union of all triangles containing the vertex p and by AP the linear conforming nodal 
basis function, i.e., Ap(p') = 6p,p,, it is defined by 

PCV := E (qp(v))(p)Ap, v E L2(Q) 
PCePk 
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where qp(v) E P1(Dp), p E 'Pk, is the projection of v onto the space PI(Dp), 

(qP, q)OD =;f) (V, q) 0; fP, q EE PI D) 

PC has the following properties: 

Lemma 3.1. Let v E H1(Q), T E Tk- and e E Sk, k > 0. Then, there exist 

constants CO;C, C1;C, Co;C > 0, independent o'f the refinement level, such that 

(3. la) |V - Pcv ||O;T < hTCO;C V 1;DT ' 

(3. lb) JJN/2VPCv||0;T < Cl;Cf|| 1a VV O;b,T) 

a = (ai,j=1, all := (a-1)22, a22 := (a-6)11, a12 - a21 0, 

(3.1c) - PcvIO;e ? C h;cl&a/2VVflO;e 

whereDe U= {T E 'Tk e n OT 7& 0}, DT U U{T' E 'k I &T' n OT 0 0} 

cYe = (cciT, + T2 + jT + T2), &T1 n &T2 = e C Q and ae : a (T + a 'I) 
e c aTe& n Q. 

For the proof we refer to [13] and remark that the matrix a is strictly positive 

definite. 

We shall also take advantage of the following approximation property of the 

L-projection H10 onto the space of piecewise constant functions: 

(3.2) v- IoV|o;T < CprojhTjV 1;T, v E H1(T), T E Tk, 

where Cproj stands for a positive constant independent of the refinement level. 

We further need two different types of bubble functions 4T, T E Tk, and 4e, 

e E Sk, associated with the element T and the edge e, respectively. Denoting by APi) 
pi E -Pk n &T, 1 < i < 3, the barycentric coordinates of T E Tk and by pe E 'Pk n e, 

1 < i < 2, the vertices of the edge e c &T, they are defined as follows: 

(3-3) (I)T := 27ATA A ) T1 = 4AAAATe. Pl P2 P3' e P1 p2 

Lemma 3.2. (i) Let p E (P1(T))2, T E Tk, k > 0. Then, there exist constants 

CO;D, C1;D > 0 independent of T E Tk such that 

(3.4a) IIPIIOT <CODJ2 P TTPdX 

T 

(3.4b) | div(4Tp) 110;T < hT1C1;D I I P I T O;T 

(ii) Let p E PI(e), e E 8k, k > 0. Then, there exist constants CO;K, Ci;iK > 0, 
independent of e (E 8k, such that 

(3.5a) 11PI12;e 2 CO K P4e dar, 

(3.5b) (lae/2V(pDee) 0;D ? (ctehe> / Cl;K P 0;e, 

De :=U{T ETk I e C &T}) 

where pDe defines a prolongation of p on Q, eT C &T fixed: 

(3.6) PDe(X) = { 
x 

) De 
(3.6)~ ~ ~ 0 (x x E T C De and xe E e, (x - xe)e , e 
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The proof is an easy consequence of the affine equivalence of the elements and 
the inverse inequality for polynomials. Note that the constants depend only on the 
initial triangulation and on the ratio of the local upper and lower bounds of a. The 
same type of result is used in [27]. 

The investigation of the a posteriori error estimator will be provided in several 
steps. In a first step, we decompose the flux ansatz space H(div; Q) into a solenoidal 
and a weakly irrotational part: 

(3.7) H (div; Q) = Ho (div; Q) (D H 1 (div; Q), 

where H?(div; Q) := {q E H(div; Q) I div q = O} and the orthogonal complement 
is defined by H1(div; Q) {q E H(div; Q) I a (q, qo) 0 O, qo E H?(div; Q)}. Ac- 
cording to this splitting, the flux error can be written as ie = jo + ji, where 
jo E Ho(div; Q) and ji E H1(div; Q). Note that this representation is unique. 
Now, we study the subspaces Ho (div; Q) and H1 (div; Q) in more detail. 

Lemma 3.3. The following properties of Ho (div; Q) and H1 (div; Q) hold true: 

(i) For each element q E Ho (div; Q) there exists a scalar function q E H1 (Q) 
such that 

(3.8) q = curli:=( = 

(ii) On H1 (div; Q) the following norm equzivalence holds true: 

(3.9) Cdiv|| divqllo < llql div< Cdi? || divqllo 

with constants 0 < Cdiv < Cdiv independent of q E H1 (div; Q). 

Proof. The proof of the first assertion can be found in [18, Thm. 3.4], whereas the 
second assertion is an easy consequence of [12, Prop. 1.21. D 

The construction of the a posteriori error estimator is mainly based on the 
preceding splitting of the flux ansatz space. The variational problem (2.1) con- 
sists of two independent subproblems. The first subproblem is associated with the 
solenoidal subspace and gives rise to a positive definite problem: 

a( (i,? q) r r(q), q (E Ho?(div; Q). 

Introducing the weighted norm Io;,F according to 

O 3 E11 aehe 
I V 2e) v (E L2(k) 

e CSk 

we will show that III[a-1jhte]JIIIo;,k yields sharp upper and lower bounds for the 
solenoidal part of the flux error, provided the iteration error is small enough. The 
existence of a nonvanishing Helmholtz term and the indefiniteness of the saddle 
point problem (2.1) do not influence the construction of the bounds. 

Lemma 3.4. There exist constants cjo, Cjo, C?t > 0, independent of the refinement 
level, such that 

cjo III [a1jh * te]J1||0;? < Illi? Illdiv < Cjo III [a1jh *te]J II|0;Rk. + Ciot llih. -Jh Illdiv, 

where Cjo := (C;C1;KI-)1, Cjo := KKCO;c and Cit4:hC1;C. 
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Proof. Following the same lines as in the conforming setting [27], we evaluate the 
residual as a continuous linear functional restricted to Ho (div; Q). Let q = curl q e 
H?(div;Q); then 

r(q) -a (jh, q) - a-ih * qdx - aljh curl 0 dx 

Q Q 

S J / 
(a-' (jh)lY -a2- (Jh)2,x> dx 

T Ck T 

- Z J (a (i, )l nY-a2, (Jh)2 nx) f dc 
TTEk&T 

Z J t (a Jh * t) q dc r ([a Jh *te]J) q d. 
T CT eCSk e 

By means of Clement's projection PC and the fact that a (j'l, q) = 0 for q E 
RTo(Q; Tk) n H?(div; Q), we obtain an upper bound for the solenoidal part of the 
flux error. Let jo - curl+b. Then, observing (1.6), (3.1b) and (3.1c), an upper 
bound for Illijellldiv results from 

(3.10) 

||i?e|||d1iv =r(jOe) = [ h*te] J) b do- 
eCSk e 

1 /([a1jh te]J) (, - Pco)do+ aJ[a1 (jh - jh)*t6]Pcd 

eCSk e eCSk e 

? j aehe a1 t dio-) 1/2 (1 J pC - P ) 2 do) 1/2 _ E ( e e /a[ Jh eJ ) ((ehe /(1 l) 
eCSk e e 

+a (ih - Jh curl PCII) 

< lli lldiv ( KCCO;c II[aJih * te]J 110;8a + Cl;CV llJh -ih div) 

On the other hand, taking into account (3.5a) and (3.5b), a lower bound for illj Idiv 

can be established by means of the quadratic bubble functions 4>e associated with 

the midpoints of the edges (cf. (3.3)): 

C0 I [a- lih tel J 11 ;e la 
- 

[a h * _t]2J> c 

K~~~~~~~ aJ * teJ*([ Jh*e]4) 

6 

=- Jcurl ([alJh * .]h * (a (Jhh -i)) dx 

De 

K a /2O2O;De 11-1/2v ([aj t]e D O;De 

? (cehe) 1/2Cl;K IIa 1/i2je 10;De * || [a-Jh te]J 1O;e, 

whence 

(3.11) |||[aj lh * te]J IO;Sk < 3CO;KCl;K llie IIdiv 

We recall that the extension [a-lJht_]De is defined according to (3.6). The assertion 

is an immediate consequence of (3.10) and (3.11). D 
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In order to obtain a sharp estimate for the total flux error, in a second step 
we have to consider jl. It is easy to see that in the special case of a vanishing 
Helmholtz term 

Jdiv(j-jh)vdx J(f - Hof)vdx, v C L2(Q) 

X X 

whence 11 div(j-jh)110 =I If-Hof Io. Because div j, = divje, (3.9) readily provides 
a lower and an upper bound for 11ie div 

However, in the general case b # 0 the situation is more complicated, and the 
errors 11u611o in the primal variable u and in the divergence part of the flux error 
11iJel Idiv are coupled. 

Lemma 3.5. The following inequalities hold true: 

Ildivjl I0;T < f -IHfO;Tb I IO;T, 

-Il f O;T ? b 1 0u O;T + Ildivjl 11o;T- 

Proof. The second equation of the variational problem (2.1) states that 

Jdivjevdx+ Jbuevdx =(f-HIof)vdx, v C L2(Q), 

Q Q Q 

and we conclude by a straightforward application of the triangle inequality. D 

Finally, we will focus our attention on the error in the primal variable with 
respect to the L2-norm Iu - Uih Ilo. For that purpose, we consider the L2-projection 
of u onto the space of piecewise constant functions and use the following result: 

(3.12) HIIIU-Uh < p E h Ila1(j-ih) livT: 
TCTk 

where the constant C,up only depends on the geometry of the initial triangulation 
and on the ratio of the local bounds of the coefficients in (1.1). In case of the 
Poisson equation, this result is well established (cf., e.g., [2, 12]). In the general 
case, it can be proved assuming a discrete H2-regularity and using some duality 
techniques (cf., e.g., [12, Remark 2.16]). 

Lemma 3.6. There exist constants cue, cj, Cu.e Cje' Cilt > 0, independent of the 
refinement level, such that 

CUe |lue6lo < ? a-h 01 O;Ik + CIl aja Ie div;Tk 

+ Cilt(I|Uh - ihIlO + Ila'(ih - h) Ildiv;fk)v 

||a .2h||OTsk < (Ce Iluelo +?Cje a1 

where the weighted norms are given by || 
ZTC;Tk 

? 
FTGk hT .O;T and . lIiv;: 

ZTeTk hT div;T- 
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Proof. Since j =-aVu, in view of (3.3) and (3.12) we obtain 

IIU-thIl0 < ||U-HIu lo + HIIou-ithII0 

/ \ 1/2 

(S 1147U Vu 2;T + Csup a1 (i -ih) ldiv;Tf + IU/ - Uh 10 

\Te1, J 

< Cproj (Ila1jh JlO;%, + la1(ji Jh) 110;Tr,) 

+Csup (Oa1(j -Jh)lldiv;Tk + Ila (jh -Jh)lldiv;Tk) + I|Uh - Uh0- 

The constants Cje CUe and Cilt > 0 are defined as 
Cje 

1 + CSup CJ 7- 
and Clt: Cp1{ jmax(1, C,up). 

It remains to establish an upper bound for Ila-ljhllO;Tk. This can be achieved 
using the cubic bubble function T (cf. (3.3)) and observing (3.4a), (3.4b): 

C;D I la d (a1jh + VU)* (bTa-Jh) dx -J VU (bTa-Jh) dx 

T T T 

- J div(QTa-jh)(U - Zth) dx + Ja1(jh -j) * (Ta-Jh) dx 

T T 

? Ilth - U|O;T * IIdiv(0Ta 1j,) 0;T + Ila(jh -j)110;T * 11OTa jhllO;T 

K (h-jC1;DIIUh - UIIO;T + la (jh -j) 0;T) IlaJll110;T- 

This local inequality holds true for all elements T c Jk. Therefore, we obtain the 
global estimate 

||a 
Jhll0;Tk- 

? CuUh -(uj0 +Cje a1(i -Jh) 01;Tk, 

where Cue := /2C2;DC1;D and Cje : 2CD . D 

If we take into account the definition of the residual based error estimator given 
by (2.2) and the results of Lemmas 3.4, 3.5, and 3.6, the proof of Theorem 2.1 can 
be readily given: 

Proof of Theorem 2.1. By means of Lemmas 3.4, 3.5, and 3.6, we get 

If 
- fHof 112 + [ +l a Jh ||0;Tk 

< 2 (b2 + CU2) 1 + (cj1 + 2hCU-lC2) |i|iv 

+2 max I1 hoo CJ ) lllj 11 di- 

Hence, the first inequality of Theorem 2.1 holds true with 

CR := max (2, (Cj + 2hooa1Cj) ), 2 (bi + Cue)) 

To establish the upper bound for the error, we need an additional assumption on 

h. Assuming 

ho < hm : (3- Cie max(3, ce1) (I + 4 bmax( ( , ci -1/2 
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by means of Lemmas 3.4, 3.5, and 3.6 we obtain 

il e12 + IjeI2 
I 

eI2+ II0I2 + Ij II 0+ J6 div 0+ ediv e+ div 

K 4CJ201 [a-j* t6]j ht + 4 max(1, ae1) f - Hf l 

+3CU 2 (14b2C2.v Max(1, a ) 11J;h 7 + 4(Cj0t)2 lll Jh cliv 

+3 ( t C ) (1 + 4b2C2.V max(1, a 1)) (IUh - 'Uhllo + IlJh -Jhlldiv;Tr,). 

Then, the upper bound holds true with 

CR :=max (3C 2 (1 + 4b 2C2.v max(1, a-1)) 4CJ2, 4C2V max(1, ce-)) 

and 

Cit 2 max (3 (cit) (1 +4b2Cd2r max(l a-')) 

Cle max(1,ace )J 

Remark. Note that we even get an upper bound if 
-1 

(3.13) ho < Coo := (4b Cd Cie max(1, a 1) 

In case b _ 0, we define CO: oc, and thus we have no limitation on ho. If ho 
tends to COO, the upper bounds in the theorem tend to oc as well. 

4. THE HIERARCHICAL BASIS ERROR ESTIMATOR 

As indicated in Section 2, the idea behind the hierarchical type a posteriori 
error estimator consists in an approximation of the error equation with respect to 
the higher order mixed ansatz spaces RT1 (Q; 7k) and Wi (Q; k), followed by an 
appropriate localization in terms of a hierarchical two-level splitting. In particular, 
introducing the local spaces 

RTi(T) := {p C RTi(T)I p = qlT, q c RT,(Q;Tk)}, TETk,1&>0, 

-0 1 1 
and RT1(T) RRT1(T) @ RT1(T), where RT1(T) is given as in Section 2, the 
following strengthened Cauchy-Schwarz inequalities (4.1) will play an important 
role for the derivation of the error estimator: 
(4.1) 

al T(qO, ql) < 70alT (q0, qo) alT(ql, qlc), q C RTo (T) , ql C RT1 (T), 

a T(q0 < )?ialT(q, q0) alT (q1, q1), qv c RT,(T), 0 < < 1, 

with 2 < 1, 0 < v < 1, being independent of the refinement level. The inequali- 
ties (4.1) are an easy consequence of the affine equivalence of the Raviart-Thomas 
elements and the shape regularity of the triangulations. 

The system (2.3) cannot be solved locally, and therefore the approximation 
(ej, eu) is not suited for an easily computable error estimator. Consequently, the 
main idea of our proposed error estimator consists in the replacement of the original 



1364 BARBARA I. WOHLMUTH AND RONALD H.W. HOPPE 

bilinear form a (.,-*) by a modified bilinear form a (., .). According to the splitting 
of RT1 (Q; 7k) the vector fields q, p c RT1 (Q; 7k) are decomposed as follows: 

q=q0+ej0+ejl, p=pO+pO+pl, 

where q , p C RTo(Q;Tk), q?, p0 C RT,(Q;Tk) and 1, p1 c RT,(Q;Tk). Then, 
the modified bilinear form a (q, p) is defined ags follows: 

a, (q, p) :=a (q?, po) + a (q?, p?) + a (ql, pl) 

It is easy to see that (.,.) is orthogonal with respect to the decomposition of 
the ansatz space of the flux. A simple consequence of the strengthened Cauchy- 
Schwarz inequalities (4.1) and Young's inequality is the equivalence of the bilinear 
forms a(.,-) and &(., .): 

(4.2) CRTa T (q, q) < alT (q, q) ? CRT& T (q, q), q C RT1(T), 

with constants 0 < CRT < CRT independent of T C Tk, k > 1. A detailed proof 
of (4.2) can be found in [32, Lemma 4.6]. Now, we consider a modified discrete 
variational problem which is obtained from (2.3) if we replace the bilinear form 
a(.,-) by (.,.): Find (ej, Et) C RTl(Q;'Tk) x Wl(Q;Tk) such that 

(4.3) (ej, q) +b(q, E) = r(q), q C RTl(Q;Tk), 

(ej,v) -c(E,-v) = -(f-Hofv)o v C Wl(Q;Tk). 

The following theorem states the equivalence of the solutions of the saddle point 
problems (2.3) and (4.3). By means of (2.4) and Theorem 2.2 , 1Jej llldiv provides 
sharp upper and lower bounds for the error in the flux. 

Theorem 4.1. The solutions (ej, eu) and (ej, Eu) c RTi(Q;7k) x Wi(Q; 7k) of the 
discrete variational problems (2.3) and (4.3) are equivalent in the sense that there 
exist constants 0 < CJ;RT < C1;RT and Cd;RT, Cu;RT, Cd; RT, C1u;RT > 0, independent of 
Tk, k > 1, such that 

(4.4a) Ci2 RT (ej, Ej) < a (ej, ej) < 
Cj2 RT (Ej, Ej), 

(4.4b) || div ej |lo < || div ej |lo+ cd;RTa (ej, ej) 

|| div ej ||o < |? div ej ||o+ Cd;RTa (ej, ej) 

(4.4c) IIEU llo < IleU ll0 + Cu RTa (ej, ej)1/2, 

lieullo < eIullo + C;, ;RTa(ej,ej)2. 

Proof. In view of (2.3) and (4.3) we compare the solutions ej and ej and obtain 

a (ej -ej, ej - Ej) + c (eu Ett eu -Eu) - j a ej -Ej) -a (ej, ej - Ej) 

as well as 

- (ej-ej ej- Ej) + c (eu-eu eu- Eu) (ej, ej - Ej) -a (ej, ej -Ej) . 

Observing (4.2) and the fact that c (,.) is positive semidefinite, by straightforward 
calculations we get 

a (e-ej, ej-Ej) /2 (CRT+ Cj T) a (ej, ej) 1/2 

a, (ej- ej ,e-jej)1/2 < (CRT + 1 )a (ej ,ej )1/2- 
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The triangle inequality applied to a (e;, ej ) 1/2 and & (ej, e;) 1/2 proves (4.4a) with 

Cj;RT 2CRT + CRT4 and Cj;RT (CRT + 2c2T)1. 
Recalling that div RTl (Q; Tk) = Wl (Q; k) and 

b (ej -ej, v) = c (Eu- eu, ,), v Ei W (Q; 'Tk), 

we see that (4.4b) follows from 

div (ej - ej) lo sup b( j - ej, v) v /31c (eu - Eu e -Eu) / 
v cWi (Q; 7Tk.) Hfvlo;~Q 

V7A0 

- (a (ej - ej, Ej) - a (ej - ej, ej)) 1/2 

< A 2 CRT + CRT 
, 
(ej, Ej) 1/4 a (je)/ 

By means of the triangle inequality and (4.4a) we conclude with that Cd2RT 

210Cj;RT(CRT +C) and Cd;RT 2cj;RT/1 (CRT + CRT) 
For the proof of (4.4c) we note that for all q c RTi(Q;Tk) we have 

(4.5) b (q, eu- EJ (ej, q)-a (ej, q) 

Taking into account the inequality 

lVlo < ?3div sup b(q, v) v c W(Q;Tk), 
qCRTi(Q;Tl) qlldiv 

q$O 

and (4.2), (4.4a) and (4.5), we obtain 

lieu - Eallo0 < 0eo /div (1 + CRTC jRT)a(j j 

lieu - eUIIO < /e ! 3div (Cj;CR+C1) a (ej ej) 

A simple consequence of Theorem 4.1 is the existence of constants 0 < ca-1 < 
Ca-1 such that 

(4.6) Ca2_1 (a (Ej, Ej) + 11 divEj lI2;Q) < Ille.1|||div < Ca2_1 (a (Ej, Ej) + 11 div ej 11 2;Q) 
where c7 1 := max (2, 2C2;RT + C-2T) and CO_1 := max (2, 2C2;RT + C>T). 

To prove the upper and lower bounds for the error estimator defined by (2.10), 
we have to show the equivalence between & (ej, Ej) + 11 div ej 1;Q and q2 . A first 
step in this direction is to consider the saddle point problem (4.3) in more detail. 
According to the hierarchical splitting of the spaces RT1(Q; Tk) and Wi (Q; Tk), 
(4.3) can be rewritten in terms of three independent subproblems. We decompose 
ej and eu as follows: 

ej ejO + Ei + i' ejo C RTo(Q;Tk), Ei C RTl(Q;'Tk), 1 C RTl(Q;'Tk), 

eu =Euo + Eul Euo El Wo (Q;Tk ), Eul C Wl (Q; Tk ), 

and obtain three variational problems: 

47 a (Ejo,q) +b (q,Euo) = r(q), q C RTo(Q; Tk), 

b(Ej0,v)-c(Eu0,v) = 0, v C Wo(Q;Tk), 

48 aejq r (q q RT 1(O; 'k 
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(1,)+ b(q, ) = (q), qRT (Q;Tk)- 

b (4Vv)-C(eu'Vv) = -(f'V)o: v C Wl (Q; 'k) 

Again r(q) denotes the residual. The solution (ajo, eU,) of (4.7) is zero only in case 
of a vanishing iteration error (Jh -Jh Uh - Uh). An upper bound for a (ajo, jjo) and 

div ejo 12 ;Q can be easily established by meahis of the iteration error. 
The variational problems (4.7) and (4.9) are indefinite saddle point problems. On 

the other hand, (4.8) represents a symmetric and positive definite system which can 
be decoupled by well known standard techniques (cf. [14]). The bilinear form a 

applied to the discrete space RT1(Q; 7k) x RT1(Q;Tk) can be seen as a bilinear 

form a(,.) on S2(Q; Tk) x S2(Q; Tk). Let q, p C RTI(Q; Tk) and :b+ C S2(Q; Tk) 
with q curlq and p = curlh/; then 

(4.10) a(q,p) = Ja Icurl0bcurl/dx Z J&V+$Vbdx=:x(O,). 
TCTk T T*Tk' T 

The matrix a is defined by &11: (a-1)22, &22 := (a-1),, and &12 = a21 

-(a-1)12, and has the same eigenvalues as a-1. Each element q C S2(Q; Tk) can be 
written as the direct sum of quadratic bubble functions associated with the edges 
of the triangulations according to 0b = EIe?k ( where (b6, e C Sk, is a multiple of 
the nodal basis function be. The inequality 

3 3 

(4.11) CcurliZTQb62,vb62) ? &}TQb,?b) < CcuriZ&T(?4ei,?62), T C STk 

with constants 0 < Ccurl < Ccurl states that the global problem (4.8) can be replaced 
by local ones. The coupling between different bubble functions is neglected and a 
single equation has to be solved for each edge (cf. (2.8) of Section 2): 

&((Pe v (e) = r(curl e.). 

Then, equivalence of ? (Pe, pe) and a (0 l e,j) is guaranteed by (4.11). 

It remains to examine (4.9). Due to the special structure of RT1(Q; 7k) and 
W1 (Q; Tk), the global problem consists of independent local subproblems associated 
with the elements of the triangulation. For each element we have to solve the 4 x 4 
saddle point problem (2.9), which can be further reduced to two 2 x 2 problems 
using an L2-orthogonal basis of W1 (T). 

For the proof of Theorem 2.2 it remains to be shown that the flux of the so- 
lution of subproblem (4.7) is bounded by the iteration error independently of the 
refinement level. For this purpose we reconsider the residual: 

r(Ejo) = a(ejo,ejo) +c(Euo,Euo) 
- 

-b(Ejo,fh) 

a (jh - jh,ejO) + b (Ejo v Uh -Uh) = a(jh -Jh, ejo) + c (Eu, Uh -Uh) 

In view of the equalities 

C(Uh - Uh, Uh - Uh) = b (jh -J1, Uh - Uh) and || div (ejO) 112;Q = b (ejO div (Ejj) 

we obtain 

112 a(EjO, j) +c(EuO,EU) < Ilih-Jh div' 

div O) IIO;Q ? 31 Illih Jh div 



ERROR ESTIMATORS FOR RAVIART-THOMAS ELEMENTS 1367 

Proof of Theorem 2.2. Because of (2.4), (4.6) and (4.11), the assertion (2.11) is a 
direct consequence of the definition of the error estimator with constants Chier = 

Cai- max (i, ccul2) and Fhier 3= 13 max(1, Vol) + Cai- 1 + i31 for the upper 
bounds of the error. The constants for the lower bounds are given by Chier = 

ca -1 min I1, Cc-url/ andN^/i,, := /3co max(1, V0,j). 

Remark. If we are interested in an error estimator for the error in the flux and in the 
primal variable, we have to take into account an additional term in the definition 
of the error estimator iH: 

H = ErH;T, 
(4.12) TE T, 

HT := H;T + e O;T' T c Tk- 

It is easy to see that the saturation assumption (SI b) and (4.4c) as well as (2.11) 
guarantee that the error estimator rH provides sharp lower and upper bounds for 
the total error (lu - h||1 + lll-j 2)1/2, if the iteration error is small enough. 

5. AN ERROR ESTIMATOR BASED ON LOCAL SUBPROBLEMS 

This section is devoted to the proof of Theorems 2.3 and 2.4. 

Proof of Theorem 2.3. As a first step we consider ej - ej. We recall that (ej, eu) 

denotes the discrete solution of (2.3). In general, the solution ej c RT71 (Q; Tk) is 
not contained in H(div; Q). In the following, the bilinear forms a(., ) and b(., ) are 
extended to the nonconforming ansatz spaces in a natural way, i.e., the integrals over 
Q are replaced by the sum of the integrals over the elements T of the triangulation 
Tk: 

a(j- ej,ej) = -b(6j, -eq-)- S J([UD1A -ART) [ne. j]J da 
eCSk e 

=-c eu, e- eu) + (f f-IJo f, u-eu)o 

- /J ( [UDIA - ART1 ) [n6 * (6j -ej)]j do- 
eCSk e 

=-c (6u- Ueu~u- eu) - b(ej,eu - eu) 

- E J ([UDIA - ART1 ) [n6 * (6j -ej)]j do 
e6Ck e 

< || divejIIoII6u - eUIIO + Ill[UDlA ART1 11o;s-1 III[ne (j- ei)] J0;Sk 

Note that the weighted norm 
0; 

8k has the inverse weighting factor compared to 

.1(S` 2)/OL 

/ \ ~~~~1/2 
|||W||O? = E a-' he JWIV;e 2 v C L 2(Sk) 
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For 11l, - e., ,lo we have to establish an adequate upper bound. We obtain 

(5.1) 

l?ett- &u||( < liv sup b (q e tt- tt) _ cliv sup a (q, ^j - ej) 
qCR Ti(Q;Tk.) q cliv qcRTi(Q;DTk.) q cliv 

q#O 0 q$U 

< a-O 1/2diva (ej -e ee)1/2. 

Due to an inverse estimate for the Raviart-Thomnas elemenits [12, 31], an upper 
bound for the weighted jump III[ne * (6j-ej)]|1108;k, is given by 

Ill[ne (ejej)] ||O; ,\< C.,,O., a 1ej _ej) ej _ej )1/2, [H6n. (6j - eA)]I OY - r(j 

where the constant 0 < C1,0,. is independent of the refinement level. Altogether, we 
arrive at an upper bound for a (j,' 6j) 1/2: 

a( j 
1 < 2a (ej,e)1/2 + Ce 0 iv. divej Io + Cou.32;o ,IIIj d1iv 

It remains to establish an upper bound for div j Io. According to the equality 
b(ej - - -- cv(e.,-e.tl,V), vc Tc (Q;Tk), we get 

1Jdiv6j Jo < JJdivej |lo + /1J |e-6. ,o 

< div ej 11o + ce 12 /310dciiva (6j-ej, ej-ej)1/2 

< K7o 2/3l/cliva (e_,e.)1/2 + (1 + Ce c2l) 11 div ej llo 

+ 0e) 1/2l/dj1ivC,roQ8S2;0c0 IlJ -ili Illcliv 

To summarize the results, IIIej IIIliv yields a lower bound for lllj - j 11liv: 

ca Q + + Ce 
? 

Illi -il? lldiv > Ill||iv 

where 

C> := 2 I + max I + !31icv ! v + cJ) 

and C-,: Cuor/32'oo (1+ a- 1/2 73ljiv). 

To prove an upper bound for j h- Idiv, we again examine a (ej - ej, ej-ej): 

a (ej - ej, ej) b (ej, ,t - ect) c (eZL, ,u - eCu) - (f -loHf, ,I -tl)o 

= -c (6u -e, e-It l6 -e.l) + b (6j ,60 et-ett), 
a (ej - ej, ej - 6j) < -a (ej - ej, ej) + I cliv ej o |- etll o- 

Using the upper bound (5.1) for le,, - o.llo, we obtain 

a(e-j 
e / < a _e fj )1/2 + (Z 02:li 11 div ej Ilo. 

By means of the triangle inequality we get the upper bound in (2.14) with the 
constant 

C1Oc := 1 + 2d (1 + Ol liB32i320iv) max(l, o-y1i30 ). 

The computation of (6j, 6,,) in (2.13) requires the solution of an 11 x 11 saddle 
point problem for each element. Therefore, the determination of ej is too expensive 
for a cheap error estimator. The rest of this section is devoted to the reduction of 
the computational amount. 
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As in the previous section, we replace the original bilinear form aIT (., ) by the 
modified form &IT (-,-) and consider three local subproblems. First, it is easy to 
see that the solution of the subproblem associated with RTo(Q; Tk) x Wo(Q; Tk) is 

equal to zero. Second, let '? IT E RT1 (T) be the unique solution of the symmetric, 
positive definite 3 x 3 system 

(5.2) aT (,q) =J/[DA n qdu+ rIT(q), q E RT1(T). 
a3T 

We can further reduce the amount of computation, if we replace the stiffness matrix 
in (5.2) by its spectrally equivalent diagonal matrix. Then, we have to solve one 
scalar equation for each edge eT E IT 1 < i < 3: 

(5.3) J&V(7ei;TV4ei dx I-J D IDAAn (curl4e%)du+r IT(curl?e). 

T aT 

We observe that, due to (4.11), 

3 

ccuriaIT (e- )? aT(curlpe,curl pei ) < Ccur,T a I ) 
i=l1 

Finally, we have to take into account the solution (- IT, 61IT) E RT1(T) xW(T), 
T E Tk, of the following saddle point problem: 

alT (ej,q) +bIT(q,6u1) = rIT(q), qE RT,(T), 

bIT (4h,v) - CT (&uj, V) = -(f, V)o;T, V E W1(T). 

Proof of Theorem 2.4. We only have to show the equivalence of the norms IIIej III 2 
Pof div 

and Ill'9 1112iv + 1111 
2 Again, we replace the bilinear form a T,I 

) by T(, )I 
. e div ji lidiv' 

Using the modified residual rF(q) := r(q) - Ze. fee [UD]A Lne * q] j du, we are in 
the situation of Theorem 4.1 with r instead of r. Then, the same techniques give 
the assertion. D 

Remark. An error estimator for the error IU-Uh 112 +11li- ih 1112iv is given by 

tSL E 7L;Tv 
(5.5) T C -Fk 

t1L;T = trL;T + uO;T TE Tk- 

Since (6IT e1) =( , ), the assertion is evident. 
For the evaluation of the error estimators TL and tL we have to specify the local 

Dirichlet data UD. A possible choice is to take a piecewise quadratic function vj, 
Vj T E P2(T), T E Tk. Let vj be locally defined as the unique quadratic function 
such that 

VVj|T=-a JI,T,I- HOVjIT= ihIT, T cTEk, 

and take UD = Vj. In subsection 7.2, we will see that this definition guarantees the 
local equivalence between the hierarchical error estimator and the estimator based 
on the solution on local subproblems. 
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6. ERROR ESTIMATOR BASED ON A SUPERCONVERGENCE RESULT 

The starting point for the construction of the error estimator is the following 
discrete nonconforming variational problem: 

(6.1) aN(JNC,r) = (Hof,r)o, r C N(Q; Tk), 

where the bilinear form aN N(Q; Tk) x N(); Tk) -* R is given by 

aN(/,r) := E |PJQa (aVb)-Vqi+bHoH Ior) dx, ?/,rCN(Q;Tk), 
T1Tk T 

and the nonconforming ansatz space N(Q; Tk) is the lowest order Crouzeix-Raviart 
space augmented by cubic bubble functions: 

NAQ TO : = CR(Q; Tk ) ED B (Q; Tk ) 

Here, CR(Q; Tk) := {v C L2(Q) I VIT c P1 (T), T C Tk, V Ti (me) = VIT2 (me), &T1n 
aT2 = e c Q, VT(me) = O, e aT n aQ} and B(Q; Tk) := {v e L2(Q) I VIT C 
P3(T), V|aT = O, T e Tk}. The local operator H0 is the L2-projection onto 
Wo(Q; Tk), whereas P, 1 denotes the orthogonal projection onto RT-1 (Q; Tk) with 
respect to the bilinear form a (., .). Then, the following equalities are true [2, 12]: 

(6.2) Uh= HOT'NC, Ah= He'JNC ih =-Pa-1 (aVTNC), 

where (jh,Uh,Ah) e RT1 (Q; Tk) x Wo(Q; Tk) x Mo(Q;Sk) denotes the unique so- 
lution of the mixed hybrid formulation of the variational problem (1.4): 

a (jh, q) + b (q, Uh) + d (Ah,q) = 0, q c RT 1(Q; Tk), 

(6.3) b(jh,v)-C(Uh,V) = -(f,V)o, V C WO (Q; Tk), 

d (b,ih) = 0, A C Mo(Q; Sk) 

Here, MO (Q; Sk) is the ansatz space for the Lagrange multipliers 

MO(S;=k) = { C uL2(Sk) I AIe C Po(e), e CS?k,/ Ale = 0, e C &Q} 

and He stands for the L2-projection onto MO(Q;Sk). Finally, the bilinear form 
dRT Mo(Q; k) x RT6-1 (Q; Tk) -? IRt is given by 

d (,u,q) := 1: a,n q du, A CZMO( SO q -RT6-1(Q; 7k) 

Now, we assume the existence of a constant 0 < 3 < 1 such that 

(6.4) IIU - URTO l 0?_< I1lU Uh 0, 

with U'RTO C CR(Q; Tk) being the nonconforming extension of Ah. This saturation 
assumption is motivated by a superconvergence result that holds true in the case 
of mixed hybridization, stating that the nonconforming extension UiRTO of the mul- 
tiplier Ah does provide a better approximation of the primal variable u than the 
piecewise constant approximation Uh (see [2, 12]). It is easy to see that (6.4) gives 
rise to an upper and a lower bound for the discretization error of the primal variable 
u in the L2-norm: 

(1? +1)3114RTo -UhIlO < I|U-UhIlO < (1-)3111RTo -UhIlO. 

Up to now, the error estimator depends on Uh and UiRTO If the original system 
(1.4) is solved, the nonconforming approximation URTO is not available without 
additional computation. We have to solve additional local problems to obtain UlRTO 
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In the rest of this section, the equivalence between uh-URT- 110 and a weighted 
sum of the squared jumps of uh across the edges e C Sk will be established. 

Theorem 6.1. Let (jh,uh,Ah) C RTJ-1(Q; Tk) x Wo(Q; Tk) x Mo(Q;Sk) be the 
unique solution of (6.3), and assume that URTO E CR(Q; Tk) is the nonconform- 
ing extension of Ah. Then, there exist constarts 0 < uo < u1, depending only on 
the shape regularity of Tk and the ellipticity constants in (1.2), such that 

(6.5) 
/ ~~~~1/2 (2'\1/2 

(O h2 (LUh]Jle)2) ? Uh -URTO 0?o < a, h2 (Luh]Jle)2 
e ? e' e}} 

Proof. A detailed proof of the theorem can be found in [19, Thm. 4.1], [32, Thm. 
5.8]. Here, we will only sketch the main ideas. By straightforward computation, 
we obtain 
(6.6) 

CUhURTO 1 ? h (2 ([uh]AleAhe)2 + l(L] )2 ?0112 

where the constants 0 < c < C are independent of the refinement level. As a direct 
consequence of (6.6), we obtain the lower bound in (6.5). 

However, the proof of the upper bound is more involved. It is sufficient to show 
that 

(6.7) E he ((LUhIA - Ah) Ie)2 < C he (LUhlJle)2 
eek ee eC1F eCEk 

with an appropriate positive constant c. As a first step, one can establish the 
following relationship between Ah and the averages and jumps of Uh: 

(6.8) Ahle = [uh]Ale - E 
h [UhJ e'l[ne' Pa -1 (e)]A e, 

where Pa-1 denotes the global orthogonal projection onto RTo(Q; Tk) with respect 
to the weighted L2-inner product a(., .), and Te stands for a local function of 
RT7-1(Q; Tk) associated with the edge e, 

(6.9) Te = 2 (eTin + rTout) 

Here, 1eTTin rTout are the nodal basis vector fields in RT-1 (Q; Tk) with support in 
Tin and Tout, respectively, given by 

n*TeIe8e,e, e' c AT, T E {Tin v Tout} 
Note that Te is not contained in H(div; Q) for an interior edge. For the next step, 
one has to consider the projection Pai- in more detail and to prove that the spectral 
radius of Pa_1pT 1 is bounded independently of the refinement level. This can be 
achieved by considering the local matrix representations of the positive definite 
operator A associated with the bilinear form a(., ) and the natural embedding of 
RTo(Q;'Tk) into RTo 1(Q;'Tk). D 

Proof of Theorem 2.5. It is easy to see that 

2 < -2 2 
Ihe111w]jl;e ? jIW;IU2 T T, T nT2 e c, w E wo (Q;T'k). 
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Due to the triangle inequality and Theorem 2.5 we obtain 

- Uh|O ? 1 _ ( E~ he~L'[h]JKl;) 1/ ( < 61?1 + 1)h |U-h|O 
/ \ ~~~~1/2 

IIU - UhH 1 1? < 
(E he 11 [ih]JIO;e) 6?/ + 1 )Uh | h-Uh| O, 

and hence the assertion is proved. 1 

7. COMPARISON OF THE DIFFERENT ERROR ESTIMATORS 

The error estimators i1R, rnH, n/H, niL, niL, "is and rZs have been investigated 
independently in Sections 3-6, respectively. In this section, we examine the rela- 
tionships between their local contributions. For simplicity we restrict ourselves to 
the Poisson equation with homogeneous Dirichlet boundary data 

(7.1) -\U=f in1Q and u=O on&Q, 

and we assume that the exact discrete solution is available. 

7.1. Equivalence between the residual based and the hierarchical error 
estimator. 

Theorem 7.1. Let n i R;T and 6rH;Ts T E Tk, be given by (2.2) and (4.12), 'respec- 
tively. Then, there exist constants CR;H, CR;H and s R;H > 0, independent of the 
refinement level and T E fk, such that 

Ca;n weasm < thR;T < CR;H nH;T + dcf-s Hf lO;T 

+FR;Hhm (h7 Let Hf OT;T + E heje n [22 an]d (4.12), - 

Proof. We recall that the local components of C iR and IRH are given by 

3 

CRT Hf - Hf | + 1h ajh;OT T + S WiCe.he. [a1Jh teJ;TO;ei: 

3 i=1 
: =i + wT || curlPe _i + 1u 11;T T E Tk. 

i=l1 

In order to establish their equivalence we proceed in several steps. First, we deter- 
mine an upper bound for i1H;T. To this end we consider the three parts of i/H;T 
separately. It is easy to see that there exists a constant c1 > 0, independent of the 
refinement level, such that 

-1 2f - lo -12 21 eiJ1 

Z1 

(7~~~ ) l1ITIdiV = i 1|1|O;T + |div 4h |O;T (7.3) r A _ _ 
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On the other hand, an upper bound for the second term Illcurl Pei Illdiv is obtained 
by 

curl W,, q dx r(q) 
IIcurl W0eIIcliv sup f sup rq 

qcRTr ,o lTl(Q;T) = SUqll1 qcRT (QTrk) 
q q.nl,=0, e#ei 1 qnl|,=0, eAei1 

(7.4) ( 1/2 1/21 ( 2 du 
e i hei2iI4e_ 1 

? C2h 1|2| [h tei]J 110;ej, 

where the constant c2 depends only on the geometry of To. For an estimation of 
the third term, we note that e,,, IT is an element of W1 (T). Hence 

(7.5) 

Jdiv qe,,i 
dx 

s (4I 
+ ;h) 

. qdx 
lQI 
etT 1 I I O;T su ) | divqq | | O;T qWRT1 (T) 

qOo qoO 

< C1hT (1 h 1O;T + IIJhIIO;T 

The right-hand sides in (7.3), (7.4) and (7.5) give rise to t2 Thus, we have 
derived an upper bound for i1H;T, which in turn implies a lower bound for i1R;T. 

It remains to establish the upper bound for i2R;T. Again, we consider the different 
parts of 'R;T separately. As a first step, we examine hTlljh O;T' Let id E RTo(T) 
be given by 

H0f 
Ja - 2-o (X -Xc): 2 

where x, denotes the center of gravity of T. Then, it is easy to see that 

div(jhT -jd) = 0 

Note that there exists a unique v C Pi (T) such that Hov = 0 and Vv ih T - jd- 

Further, let p C RT1 (T) be uniquely given by means of - div p v. There 
exists a constant C3, independent of the refinement level and T e Tk, such that 
IW II0;T > C3hT W I;T for all w C P1(T). Then, we obtain 

C3hTIihIT -idIdO;TI divPI O;T ? 
= 

2 
- Jdivpv dx J(ih|T-id) pdx, 

T T 

whence 

Ilih-jdllO;T < (c3hT)>i sup J -ihTid) * qdx || divqll 
qCRT1 (T) T 

< C1C31 (IIdIIO;T + je11 10;T) + (C3hT)1 PlU1 110;T. 

On the other hand, we get 

Jd O;T <2hT Hof 1O;T 
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Altogether, this results in an upper bound for h IlJh IO;T 

/T4jh O;T < () P 11O;T +3T() lT I?11O;T+4(1+-) THofITO;T 

Finally, we consider 11 [jh * te]j Ilo;e and remark that [jh * te]j C Pi(e) can be written 
as 

[jh * te]j (XS)= ae + b6(s - he/2), s c [0; he], Xs := Pe + s te, 

where ae := [jh te]j (me) and be := (d[i h te]j /ds)(me). Here, me denotes the 
midpoint of the edge e and Pe is that vertex of e such that the other vertex is given 
by pe + hete. Since be = V [ih te]j te, we get 

be 1- [Hof]' 
2 

whence 

he| [Jhte] a2h + -h 311 [H10f]J 112 J ,e e e 1 2e J O;e- 

On the other hand, 

?a,e ?3(2he-1 J [ih * te]j Jbe du = ?3(2he)-1r(curl be) 

e 
< 3(2he)Y 1bej IIIcurl 0e|I|div < 3(2he) 1c4IIIcurl fe|||div 

Note that in view of 

(7.6) O<C4<- el? <C4, eCk, k>O, 

the positive constant C4 > 0 depends only on the geometry of T0. We thus get 

hell [ih teD H;e < 9c 2IIcurl 5eIi1iv + A h 311 [H10f]J 1;e 

Summarizing the preceding results, we establish an upper bound for r2 

3 

R;T < max (1, 3c1c3 hT) 11j1i ITIIiV + 4 C4 WdiCUrl Pei div + 3c2 HeU1 3 O;T 
i=l 

3 

+ 3 (1 + cic) )hHofh T||I O;T + j2 Z h H [Hof]J H l;ej + lf - lfO;T 
i=1 

The fourth, fifth and sixth terms in the upper bound of '7R;T are, in general, 
higher order perturbations of rR;T. Provided the grid size is small enough, they 
can be neglected. 

7.2. Remarks on the error estimator based on the solution of local sub- 
problems. We will show that the estimators TL and iL based on the solution of 
local subproblems and the hierarchical basis error estimators H and iH are locally 
equivalent. 

Theorem 7.2. Let rH;T, '7L;T and ~H;T, 7H;T, T E Tk, be given by (2.10), (2.15), 
(4.12) and (5.5), respectively. Then 

(7 7) tIH;T < ThL;T + 2 Z 17L;Te ) 7H;T - L;T + 2 E L;T, 
e=,TnfTe e=,TnflTe 
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where e = &Tn0Te denotes an interior edge and Te stands for the adjacent element 
sharing the edge e with T. 

Moreover, if we choose UD = Vj with Vvj =ih and [vj]A = 0, [te * jh]J = 0 for 
e c &9Q in (5.3), then there exist constants CL;H, CL;H > 0, independent of the 
refinement level and T E Tk, such that 

(7.8) 1T <CL.H1H;T r1L;T ?CL;Hr1H;T 

Proof. The local contributions of rqH, r'H and niL, r'L are given by 

3 

,qH;T liv +divT iv H;T =iH;T + IIU11HO;T' 

3 

niL;T div;T + SaT (curl Pei-T, curl SOei;T), niL;T =iL;T + uli 1O;T, 
i=l1 

where wi 1 if ei C &Q and wi = if ei is an interior edge. 
We note that (0h 6u,) = (0 etl) and Peo = WC if e c 9Q. On the other hand, 

for an interior edge e = oT n oTe we get 

a (curl e, curl ,e) = r (curl ,e) 

= aT (curl S0e;T, curl (We) + a T, (curl (We;T, curl (e) . 

Thanks to Young's inequality, this proves (7.7). 
For the proof of (7.8), we choose UD = Vj in (5.3) and obtain 

J V(pe;T Ve dx = J [Vi]AVet d-aT (ih, 
T aT 

=,ih *te du-J VV * t]A be du = ?X [Jih * te]j (e du 

a3T a3T e 

for an interior edge. Consequently 

aT (curl be, curl be) aT (curlWe;T, curl Wse;T) - [t ih]j 4edu 
4 

a (curl W-e, curl _)2 a (curl W,e, curl We) a (curl be, curl be) 
4 4 

< -(1 + C)a (curl We, curl ,e) aT (curl be, curl be), - 4 

where the constant C > 0 only depends on the local geometry of T0. 
The preceding inequality implies (7.8) with CL;H = CL;H := max(1, 2 (1 + C)). 2 

7.3. Remarks on the error estimator based on superconvergence. The 
estimator rR guarantees sharp upper and lower bounds for the combination of the 
flux error and the error in the primal variable. Since nis is an error estimator 
designed only for the L2-error in the primal variable, we cannot expect nis to be 
equivalent to riR. 
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Theorem 7.3. Let 7R and ris be given by (2.2) and (2.17), respectively. Then, 
there exist constants 0 < CS;R < CS;R, independent of the refinement level, such that 

(7.9) CS;R?12< ? h2 ||ih 1O;T < CS;R 12 

Proof. We first establish an upper bound for he|l [UhIJ 1 O;e if e= 0T n&9T2 is an 
interior edge. For that purpose we denote by q, C RTo(Q; Tk) the nodal basis field 
associated with e, i.e., ne qee_ = 8ee'It follows that 

hell [Uh]J 112e = heJ [uh]J [uh]J qe e n du = heJ [Uh]Jih qe dx 

e Q 

< C (hT1 |lih||0;Tj + T2 Ili hlo;T2) 

where C > 0 is independent of e E 5k* Consequently 

7s;T?C : hT1 I4IhH;TOX T ETk, 

T'CDT 

where DT: {= T' E k I o9T' n oT E Sk } is the union of all triangles sharing an edge 
with T. Summing over all T E Tk and observing (1.6) gives the first inequality in 
(7.9). 

On the other hand, to prove the second part of (7.9) we assume q E RTo(T) 
with q = jhIT, T ETk. Then, we get 

Ilh; 112 divqiUh dx - Ahq ndu (h|T- h)q ndu 
T; 

T aT aT 

? Ch-11 Uh-UhllO;TlJhllO;T, 

where C > 0 is independent of T E Tk. Summing over T E Tk and following the 
reasoning in the proof of Theorem 2.5 gives the assertion. O 

We will now show that ljih - KjhllO;T, T e Tk, is equivalent to some other part 
of t'R;T. This, combined with the previous result, gives global equivalence of the 
error estimators is and rR. 

Theorem 7.4. Let the operator K be given by (2.19a) and (2.19b). Then, there 
exist constants 0 < CK;R < CK;R, depending only on the local geometry of ro, such 
that 

3 

(7.10) CK;Rlljh 
- Kjh O;T d ZWj cur1(ei liv < CK;R IlJh - Kjh O;T, T E Tk. 

i=l1 

Proof. We consider a triangle T E Tk with interior edges. Then (1.5), (7.6), and 
straightforward computations yield 

Ilih Kjh O;T 
3 

I T|IE ((t (ih-Kh)|T(Tnej))2 + (n (ih - Kh)IT(Tnei))2) 

i=l 
3 3 3 

=12 IT ([jh]j (mei). t)2 <? Kic2 wiII curl ,e 112iv 

i=l i=l 
3 

Ilih Kjh O T 8 4 d W curlpe. div 
i=l1 

D 
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Corollary 7.5. Let 1R and is be given by (2.2) and (2.20), respectively. Then, 
there exist constants 0 < CS;R < CS;R, independent of the refinement level, such that 

(7.11) cS;R27< ? 2 < CSRr,2s 

Proof. The proof is an immediate consequence of Theorem 7.3 and Theorem 7.4. D 

We note that (7.11) only provides global equivalence of rs and iR. However, lo- 
cal equivalence can be obtained, if we use I|Uh-ah 

1 o instead of e,,,, he L| [Uh] J112 
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