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EXPLICIT ERROR BOUNDS 
IN A CONFORMING FINITE ELEMENT METHOD 

PHILIPPE DESTUYNDER AND BRIGITTE METIVET 

ABSTRACT. The goal of this paper is to define a procedure for bounding the 
error in a conforming finite element method. The new point is that this upper 
bound is fully explicit and can be computed locally. Numerical tests prove 
the efficiency of the method. It is presented here for the case of the Poisson 
equation and a first order finite element approximation. 

1. INTRODUCTION 

Let us consider the following problem: 

(find u E Ho(Q) such that, for all v e Ho(Q)) 
(1) ~~~~fQ2Vu .Vv =fQ2f v, 

where f is a function in the space L2(Q) and V denotes the gradient of a func- 
tion. It is well known that (1) has a unique solution. Furthermore, under classical 
assumptions, one can prove that u is an element of the space H2 (Q) n Ho (Q) (no 
re-entrant angle* on the boundary, which should be piecewise smooth enough). 

Let us now consider a family of triangulations of Q, assumed to be uniformly 
regular (see Girault and Raviart [16]). One triangulation is denoted by Th, where 
h denotes the size of the mesh. The approximation space of Ho(Q), based on the 
triangulation Th, is denoted by Vh and is, for instance, defined by 

(2) Vh {v E Ho(Q), VK E Th 
VIK E PI(K) 

where P1 (K) is the first degree polynomial space. Then the approximation of u, 
denoted by uh, is defined by 

(3) find uh E Vh such that for all v E Vh 

) VUh * VV =fQ fv. 

The classical error estimate between u and uh is derived from the a priori in- 
equality 

(4) iu-uhjI,Q< inf Iv-uj1,Q, 

where 1,Q is the classical H1 seminorm. FRom the interpolation results (see Ciarlet 
[8] or Raviart and Thomas [22]), one can deduce that there exists a constant c which 
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is independent of both h and u, and such that 

(5) iu- uhl,,Q < chIu12,Q 

But, unfortunately, this estimate is not explicit because |U12,Q is not. 
Let us explain another way to derive an error bound, which was introduced by 

P. Ladeveze in his thesis [17] and which is a particular implication of Prager and 
Synge's identity. Let us first introduce the following set of vector fields in Q: 

(6) Hf (div, Q) = {p E (L2(Q))2, divp + f = 0 in Q}. 

Then one has the inequality, used first by Ladeveze [17], 

(7) |u-uhl|1Q < inf Ilp-VUhjjO,Q, 
pCHf (div,Q) 

the proof of which is a straightforward consequence of the following identity (Prager 
and Synge [20]). Let p and v be arbitrary elements in the sets Hf (div, Q) and Vh, 
respectively. Then, if u is a solution of the Poisson model, one has 

U - Vl12Q + Ilp - VU112 Q = Ilp - VVI Q 

Because of its simplicity the proof is left to the reader. The inequality (7) is 
obtained with v uh. 

The goal of the method that we develop is then to define an element p in the 
set Hf (div, Q) such that p - Vuh is as small as possible. In this paper we suggest 
a choice for p, and we prove that the term Ip - VUhjo,Q is O(h), provided that 
u is in the space H2 (Q) and that the mesh family satisfies a uniform regularity 
assumption. 

Let us point out the differences between (4) and (7). The first is a so-called 
a priori estimate, and the second is a posteriori. In the first case the exact solution 
u is involved, but in the second case only uh is necessary. The error bound deduced 
from (4) requires us to define an element v in the case Vh such that IVv - VUI1,Q 
will be as small as possible. The space Vh is a conforming approximation of Ho (Q). 
When (7) is used, the infimum is taken over vector fields chosen in the admissible 
set Hf(div, Q) for the problem dual to (1). Let us recall that this dual problem 
consists in minimizing in Hf (div, Q) the function 

(8) p ->1 J IP12 

The numerical approximation of this problem is very difficult, and one prefers 
to use a mixed formulation. It enables one to avoid requiring exact satisfaction of 
the condition 

(9) divp + f = 0 in Q. 

As a matter of fact it is, for instance, replaced by 

divp + 1 J =f0 VK ETh 

(ph being the solution of a first order mixed finite element). 
Such an element ph cannot be used in (7) because ph ? Hf (div, Q). Further 

details concerning mixed finite elements can be found in Roberts and Thomas [23]. 
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Hence we add a complementary element, call it 8PK, defined by 

PK = V8UK, in K, 

(10) I 
{-A8uK f K- IKJ inK, 

I = Oon AK and J8UK = 

The term p = ph + 8PK is then in Hf (div, Q). It can be proved that, with this 
choice, p - Vuh is 0(h) in the L2(Q) norm. But unfortunately the computation of 
ph is not local and requires the solution of a global linear system (over the whole 
triangulation Th). Hence our goal is to construct a local approximation of ph 

that does not require many computations. One application of the method is the 
adaptive mesh refinement, but let us point out that the true new point is that the 
error bound is explicit. Then we also discuss the asymptotic exactness of our error 
estimator. 

There is a well-developed literature on a posteriori error estimates and adaptive 
mesh refinement for the elliptic equations. It seems quite impossible to list each 
contribution in a single paper. But let us try to mention some of the papers that 
are closest to our formulation. 

The closest idea is due to Ladeveze [17]. But it appears that this author did not 
use an exact construction of the dual variable, which we need in our formulation. 
FRom a mathematical point of view, Ainsworth and Oden [1] have underlined the 
interest in a coupling between a conformal finite element approximation and a 
hybrid one. They suggest using the Lagrange multiplier, which is defined in order 
to prescribe the inter-element continuity, in order to construct an error estimator 
by solving a local (i.e., element by element) problem. The way they do it is close 
to but different from the one we suggest in this paper. The idea of comparing 
the finite element solution with the dual problem is also the origin of the method 
developed by Zienkiewicz and Zhu in [26] and [271, but they did not require the dual 
variable (the stress field in their mechanical applications) to satisfy the equilibrium 
equation. Moreover, they used a whole continuity of this dual variable at the inter- 
element, instead of only the one of the normal component. Therefore, the strategy 
seems to be hazardous in case of singularities like a discontinuity of coefficients in 
the operator (bimaterial). 

FRom the mathematical point of view, let us mention three other strategies which 
are well founded and seem to be very promising. To our best knowledge the first is 
due to Babuska and Rheinboldt [4]. The basic trick consists in bounding the error 
between the exact and approximate solution by a constant times the so-called resid- 
ual terms. There are two. One of them is the jump between the normal derivatives 
of the finite element solution across the inter-elements, and the other one is the lack 
of equilibrium inside the elements. Then Verfiirth [25] and Bernardi, Metivet and 
Verfiirth [7] proved that this error bound is also up to a multiplicative constant a 
lower bound on the error. The method, which can be extended to elasticity and the 
Stokes model [25], [7], seems to be very efficient in numerical applications. This is 
why we used it to compare with our formulation in the numerical tests in the last 
section of this paper. 
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The second strategy is certainly the most promising for the near future. It is 
based on superconvergence results. For particular meshes this strategy was de- 
veloped by Babuska and Rodriguez [5], but the most important step for defining 
superconvergence points was achieved by Schatz, Sloan and Walhbin [24]. The 
mesh refinement should be defined using these points. The advantage is that the 
method would lead to a local contribution to the error. 

The third method is quite close to ours from a theoretical point of view. It was 
developed by Bank and Weiser [6]. The basic point seems to be to solve a local 
Neumann problem in order to construct an a posteriori error estimator. The main 
advantage of the method, compared to others, is that it gives (in an appropriate 
norm) an asymptotically exact estimate of the error as the mesh size tends to zero. 

2. ORGANISATION OF THE PAPER 

First we will recall a few properties of the approximation model. Then we find 
an element, call it ph, whose construction can be performed locally (i.e., in the 
vicinity of one vertex of the mesh). This element satisfies 

divph + 1 Jf = VK E Th, 

and ph E H(div, Q). The next step consists in finding a solution &UK of (10) and 
in proving that &UK can be small if f is smooth enough. Using the Green kernel, 
this term is explicit as the solution of a local boundary integral equation. The 
numerical solution can then be found with a predefined accuracy. 

The last step, but not the least, is to prove that the error bound p - Vuh, where 
p = ph+ V6UK in each element K of Th, is itself bounded by 0(h). 

3. PROPERTIES OF THE CONFORMING FINITE ELEMENT SOLUTION 

Let us denote by Sh the set of all the internal vertices of Th. For each vertex Si 
we introduce the basis function A- of Vh, which is equal to 1 at Si and 0 at all the 
other vertices. FRom the definition of uh we have 

(11) jXVuh * VAi -j fA- = 0 
Ch Ch 

where Ch is the so-called "cluster" around Si the collection of elements K of Th 

which have Si as a vertex (see Figure 1). We denote by -i the sides of Ch that have 
Si as one of their two extremities. The number of elements K in Ch is ,'. 

Using the Stokes formula, one can transform (11) into the following relationship: 

(12) j~~~~~meas (_Y) [au', k -f 
(12) k= { f Ai 0>)tJK 

k=112 [9w J Jk' J 
where [.]k is the jump of a quantity across the side -ik. This relation can be inter- 
preted from a mechanical (for instance) point of view. The first terms represent 
the moment of Vuh at the vertex Si and along the side -ik. The second term is the 
moment of the external forces acting in K and expressed at the vertex Si. Then 
(12) gives a global equilibrium of these moments at Si. 

The basic idea in the construction of ph mentioned in the introduction is to 
equilibrate separately on each element K of C2h the moments at the vertex Si and 
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to ensure the equilibrium between two neighbour elements. Hence we look for ph 

such that 

ph E H(div,C), Ch*V=O onAKnaCih 
(13) 

__iv_Pi = 

1 {J hu Ai - fAi { 1P> k {K I K} 

which implies that an assumed solution satisfies, for all K E C4 

I pih v fvu vai - ffA 
AK JK JK 

K~~~~~~I = Ai + J~A z-j fA- 
71 9V 72 19V K 

meas(-Yl) (f9U) h meas(^,2) (1Uh) J 

(-yil and -y2 are the two sides of K which have Si as an extremity). Hence the term 
ph appears as the complementary system of forces which could be applied in order 
to equilibrate separately each triangle of the cluster Ci for the test variable Ai. The 
existence of p h is proved in the next section. 

4. DEFINITION OF AN EQUILIBRIUM VECTOR FIELD ON Q 

Let us consider an arbitrary vertex Si of the triangulation Th. We associate to 
Si the cluster Ch , which is the set of elements K of Th such that Si is a vertex of 
K. But Si can be a point on the boundary of Q. In both cases the cluster C2h can 
be defined as shown in Figure 2. 

It is worth noting that the definition of the boundary &C2h in this second situation 
does not include the vertices which belong to the boundary aQ of Q. 

In order to approach the vector fields of the space H(div, Q), we make use of the 
finite elements introduced by Raviart and Thomas in [21]. Their restriction to the 

\ l~~~k+ 
k 

v 

FIGURE 1. Cluster Ch ) Si e Sh 
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cluster Cf4 is denoted by HRT1 (div, Ci), and we use the definition 

HRT1 (div,C) C {p E (L'(C ))2,p*v on aC, 

VKCh,PK aK + bKX K IK CK+ bKY 

The index RT1 means Raviart-Thomas, degree 1. One remarkable property of the 
vectors in the space HRT1 (div, Ch) is that p * v is constant and continuous across 
the sides of the elements, because p is in the space H(div, Ch). Then we introduce 
the following problem: 

{Find pi E HRT1(div,Ch) such that for all K EC 
(14) tt IIdiv {KVu VAi J fAi}, in K, 

and we prove the next result. 

Theorem 1. There exists a solution to (14) that is defined up to an element of the 
kernel of the linear system. More precisely, 

h h 
Pi = Pi + cei rot Ai, aji E R 

where ph is a particular solution of (14) 

Proof. a) Let us begin with the case where Si is an internal vertex of the triangu- 
lation Th. Then the linear system (14) has the same number of unknowns and of 
equations (there are as many sides from Si as elements in Cr). Let us therefore an- 
alyze the homogeneous system associated to (14). This problem consists in finding 
an element 8i in HRT1(div,Ci) such that for all K E 

(15) div8'h = 0 in K. 

C4 for internal point 

AA a C) 

Chfor a boundary point 

FIGURE 2. The two types of clusters 
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Because the cluster Ch is a simply connected open set, there exists a function ~/i 
such that 

6ih rot fi, fbi E H (i ) 

Furthermore, the condition ih * V = 0 on aCh implies that f/i is constant along aC2h 
As 4i is defined up to a constant, without any loss of generality we can choose 
bi = 0 on DCi4 But 8i is in the space HRT1(div, XCL). Hence on each element K 

of Ci one has 

aK 

rot +bi aK + bKX 
CK +bKY C 

(bK is zero because div 8h = 0). Finally, f/i is piecewise linear and therefore is 
proportional to the basis function Ai. In this situation (internal vertex), the kernel 
of (14), which is one dimensional, is generated by the vector rot Ai. 

b) If now we consider Si on the boundary of Q, everything we did in the previous 
situation is still valid concerning the kernel. 

It has been proved that the linear system (14) is singular and that the kernel is 
one dimensional. When the vertex Si is internal to the triangulation Th, the matrix 
of the linear system (14) is a square matrix and therefore the right-hand side must 
be orthogonal to the cokernel (i.e., the kernel of the transposed matrix). When Si 
is on the boundary aQ, there is no compatibility requirement because the matrix 
associated to (14) is rectangular and we have one more unknown than equations. 

Let us characterize the cokernel of the matrix associated to the linear system 
(14). We already know that it is one dimensional. 

An element X = (Xi), i = 1, ... ., , of the cokernel satisfies 

VqEHRTl(div, Ch), EXj(divq)lKj =0 (Kj ECxh), 
j=1 

but as Xj (div q) Kj is constant on each triangle Kj of Ch, one has 

E IKjl J Xi(divq)Kj = 0, 

or else 

E ij lKjl IlKj-l q lai v 
j= 

where -yj denotes the sides of Ch that have Si as an extremity, as shown in Figure 
2. Thus the quantity 

( = XjllKj I) j = 1, . . ., 

is constant for any j. The cokernel is finally spanned by the vector X (X7) 
(Kj ) (measure of Kj). 
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The compatibility condition for the system (14) can then be formulated as 

E [<Vh vu h VAi - J Ai< -o 

or else 

(16) J Vu h vi =A J fAi, 
ch ch 

which is precisely (for internal vertices) one of the equations characterizing uh. 
Therefore the right-hand side of (14) is orthogonal to the cokernel, and Theorem 1 
is proved. D 

From the elements pi defined in Theorem 1 we introduce the term 

(17) P Pi) 
iCSh 

where Sh is the set of all vertices of triangulation Th, including those on the 
boundary of Q (Sh is restricted to the internal points). FRom the definition of pi2, 
and because p$i 0 on Q - Ci, one has 

divp h E divph = E S Vu L VAi - } 
iCSh ~iCSh KGC~ 

and because on each triangle K we have 
EiC.h Ai = 1, we conclude that, for all 

K E Th, 

(18) divph + j f J = O. 

As the element ph defined in (18) is not in the set Hf(div, Q), we add a local 
term &UK (defined on each triangle of Th) such that 

(8PK = V6UK on K, with8UK E H1(K), 

(19) ~~-A8u f - JJ on K, (19) |-/UK = -IKIJ onK 

1 & =UK 0 on AK and I UK 0 

The existence and uniqueness of a solution to (19) is very classical, and finally 
we set, on each K of Th, 

(20) p = ph?+ 6p 

It is worth noting that 8PK E H(div, Q), because of the homogeneous Neumann 
boundary condition that we chose on AK. Then a simple compilation of the previous 
results shows that 

(21) divp+f=0 onQ. 

As a matter of fact, the term &UK is only dependent of the right-hand side f of 
the problem (1). It is obvious that &UK = 0 if f = 0 on K. More precisely, we can 
upper bound &UK depending on the regularity (local) of f. 

The result is made explicit in the following theorem. 
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Theorem 2. Assume that f is in L2(Q) and that the triangulation family is regu- 
lar. Then there exists a constant c, independent of both f and h, such that 

1&UK 1,K < chllf 110,K- 

Furthermore, if f is in H1 (K), then, under the same assumptions, 

1UK 1, K < ch2 lf 11,K- 

Proof. From the definition of &UK, and letting Hl0 denote the L2 (K) projection onto 
the constants, one obtains 

1UKI,KK JA(EUK)UK J (f- KI JK ) 

< Ilf --10f 110,K ||UK 1O,K 

and, by Lemmas 1 and 2 (see the Appendix), 

1&UK 11K < chlf - Hof II0,K IUK 1,K 

< fchlf II0,KI6UK 1,K if f EL2() 

lch2Ilf I1,KI&UK 1 K if f E H1(K). 

This completes the proof of Theorem 2. D 

Remark. In the definition of pi the coefficient ai (see Theorem 1) is not yet defined. 
Let us mention one possibility. Consider one side of a cluster with the center Si as 
an extremity. Then on this side, call it y one has 

a?, J rot Ai i V + h Pi J2 a 

= ?i +J Pi i -2 a )v 

and we can choose ai such that this quantity is zero. Hence 

=h h V- \ 
(22) =-J (Ph- 0 Ai) 

-meas(-y't) [Pi * v 2- % ] 
We shall prove below that such a choice leads to a consistent error bound. EZ 

5. ASYMPTOTIC BEHAVIOUR OF THE EXPLICIT ERROR BOUND 

BETWEEN U AND uh WHEN h TENDS TO ZERO 

Let us consider the element p defined in (20). From the a posteriori inequality, 
we have 

|U-U hII'Q < IlP-_VUh|IIOQ = E. 

The main result of this section is to prove that E is bounded by 0(h). This 

will justify that this explicit error bound is consistent with respect to the classical 

results known in finite element methods. 
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Theorem 3. Assume that f is in L2(Q) and that the triangulation family is uni- 
formly regular. Then there exists a constant c, independent of both h (the mesh 
size) and f, such that 

Ilp - VuhIlo,Q < ch[Ilf 1O,Q + IU12,Q]- 

Proof. First of all, on each element K of the twiangulation Th we set 

k =h + V6UK - VU. 

Note that on K we have curl k = 0 and div k+f = 0. Furthermore, on the boundary 
AK of K, k satisfies 

h 9U h ( 98UKN k*v = p v*-~ ybecause , 0 on 0K). 

Therefore, we can deduce that there exists a function WK such that 

fk = VK and 'WK = 

(PK =EE H1 (K); 
in addition PK is a solution of 

-AK = f in K, JOK =, 

(23) 
{09PK h &9Uh 

a ' = 
* 

p V- 0 on AK, (PKE H (K). 

The previous model defines WK uniquely. But one also has 

(24) e J + V6UK -Vuh2 IKi1,K 

and, from (23), 

S2 fK (PK + f (h 0 V - )PK 

Our goal is now to prove that SK is 0(h). First of all, 

EK Jf (PK + zJ VPWK J (hPK 
jE3h DK DK 

9 

But the summation over the index i here is restricted to the three vertices of K. 
Let us introduce the element q in the space HRT1 (div, K) defined (see Raviart and 
Thomas in [21]) by 

meas(y)a av 

where -y is a side of K and u is the solution of the initial problem, and we assume 
that u is in H2(Q). The error estimates proved by Raviart and Thomas [21] lead 
to (the triangulation family is assumed to be regular) 

1q - VU|O,K 
< 

chIU12,K, 

(25) and 

Ildiv -div(Vu) 10,K = Ildiv + f 1O,K < ch[Ilf 1O,K + jU12,K]- 
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Then one obtains the following equality: 

E2 f (PfK + (p J vP - VAi q * V)(,K 
JK ~~~~ i{il ,i2 ,i3} 

I( &~~0uh + J qav- 
)v 

WK 
K 

or else, using the Stokes formula (il, i2 and i3 are the three vertices of K), 

S =2 J fK + J(4 - VUh )VpK + f div 4WK 
K~~ 

iE {i ,i2,i3} 

Hence 
2 < Ilf + divQ 4O,KEC ?IK O,E ||q-Vu 11KIWKI1,K 

(26) ? ( 
o v - } J O 

i{iE ,'li2,i3}I 

From the triangular inequality and Lemma 1 in the Appendix, we deduce that 

E2 < ch[lf O1,EK + |U12,K + U - Uh1K] (PK1 ,K 

(27) ? (Pi fEC -A- * V)OK - 
iE {il ,i2,i3 } K 

But on each side -y of MK only two terms p4 (for i = ii and i2, for instance) are 
different from zero. Therefore 

S f (Ph V- * A /)PK 

oyCDK 2CE{2i ,i2 } J Y) 

< 2 5 
{|pI- 

.v rneas('y 0I( KIO } 

aCK 

where 'yk is one side of the cluster Cih with the center Si as an extremity. First of 
all, if we define 

xik X (pih .~ ~ h v zi q )=ma(ik[iv qv 

then 

(28) -i -Xh:: = X P -ig*>- P -ig* 

J=Ck divpv - J jk div 
' 

q 1-e .jK y 

and, because of the definition pe (see Figure 3), 
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Xk+I _-Xik = (vuh -) *VA -)i (f + div 4)A - 
Xk Xk 

which is bounded by 

c[hIU12,Kk + |U-U h1,Kk + [Ilf 1O,Kk + IU12Kk]l AiJO,Kk] 

or else 

(29) Xk+I- Xk < ch(Ilf 1O,Kk + IU2,Kk) + |U h - l K 

But from the definition of the coefficient a-, in the expression of p h one has (see 
(22)): 

Xl =J1(pi*v-Ai q4v) 

o + J pih. v - j + ? v 

1 09Uh A qYv 

2 - O v 0 -q.i) 

Let us denote by ( the second degree polynomial function on the triangle Kil 
equal to 1 on the middle of eJ and zero on the two other sides. Then, setting 
(fS = meas(yil)2), we have 

X =4 J Ov 0v 
and, from the Stokes formula, 

XIl= (VUh- 4)v V ivq 

< c(juh -Ui,K1 + IIVU-q o10K1 + hlldiv 4o1Kl). 

Finally, the inequalities 

||Vu- -1O,K1 < ch1U12,K1, Ildiv 11O0,K1 < CIU12,K1 

enable one to obtain the estimate 

(30) IXill < ch[lf 110,K1 + 1U12,K1 + Iuuh 1 U 1, 

-yk 

Kk 

FIGURE 3. A triangle Kk of Ch 
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and from (29) we obtain 

(31) IXkl < ch[lHf 1o,c? + Iu12,c1? + cIu - uhL,ch 

for all k = 1, .. ., ; (all the sides oyk Of the cluster Ci with Si as an extremity). 
The proof of Theorem 3 is then a consequence of (5), (27), (31), and Lemmas 

1 and 3 in the Appendix. Obviously it requires that the number of triangles in a 
cluster must be bounded above. EZ 

Remark. As we proved in Theorem 2 that 

18UK 1,K < ch 21f 1 ,K, 

it can be suggested that if f is smooth enough, this term can be omitted. EZ 

Remark. When 8UK must be computed, it is interesting to use a subgrid on K. 
We point out that this computation is highly parallel, or can even be vectorized. 
Therefore, the computational time is very much reduced. EZ 

6. NUMERICAL TESTS 

Let us now suppose that uh is a solution of the classical conforming finite ele- 
ment method defined by (3). Let us recall that in order to apply the Prager-Synge 
relation, one has to construct a vector field p lying in the set Hf (div, Q). The 
Raviart-Thomas finite element is used. For clarity, we recall briefly the basic prin- 
ciples of our strategy. 

At each node Si of a mesh Th we define the cluster of elements Cih which is the 
union of elements having Si as a vertex. 

Then for each S5 (even on the boundary of Q), we set 

PIZ E HRT1 (div,CP), 

(32) jdivP k { IV * VAi } 

VK E C4h 

(Ai is the continuous piecewise linear function equal to one at Si and 0 at all the 
other nodes). Here we have put 

HRT1(div,C) p E H(div,Ch)p.ii=0 on&Ci 

and VKeCKi | CK + bKY 

The existence of a solution to (32) has been proved in ?4. But the solution is 
not unique. More precisely, we proved that the general solution is 

h h 
P= + ai rot Ai, 

where p h is a particular solution of (32) and ali is an arbitrary constant. We set 

(33) ph =ZE p Z ph + E aZ i rot Ai, 
iESh iESh iESh 

where Sh denotes the set of all the nodes of Th (including those on the boundary). 
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A nice choice for the coefficients ai is obtained by minimizing the error bound 
(assuming that divph + f = 0, or else that f is piecewise constant, for simplicity): 

(34) ce E RL ph + E ai rot Ai-Vu h 

iESh o,Q 

where L = card(Sh). 
Two strategies can be then discussed. One consists in replacing (34) by a local 

minimization (one iteration of the Jacobi algorithm, for instance, even if the matrix 
is not diagonal dominant). The second one is more well founded, and it consists 
in adding to the former one iteration of the SSOR algorithm. These two strategies 
have been checked on the test model presented in this paper. One can see that 
the second one is more reliable for irregular meshes (see Figures 5 and 6). As the 
additional cost is negligible, it has to be recommended for general applications. 

The open set used is a square and two different kinds of meshes are used. They 
are represented in Figures 4.1 and 4.2. 

In order to compare the method described here and the error indicator strategy 
of Bernardi, Metivet and Verfiirth [7], we have plotted this quantity (denoted by 
Bh) in Figures 5 and 6. Let us recall that it is defined by 

~21 1/2 

(35) Bh h IlZth f O\ h 11EK -Z [du] J ]1 

The indicator Bh is larger (a ratio of 6 with the exact error instead of 1.3 for 
the method developed here). Another advantage of our error bound is that one can 
improve the approximation of u by a local minimization problem, for instance, by 
adding degrees of freedom on the sides between elements. For example, we have 
added degrees of freedom at the midpoint of the inner edges of the meshes. The 

AXKDO< XDvEX> 1 
mx XKXXR RRwX x 

XX >KRDB RX X S 

FIGURE 4.1. Examples FIGURE 4.2. Examples 
of a regular mesh of a mesh obtained by a 

mesh-generator 
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error estimator obtained with this upgraded solution has been plotted in Figure 7. 
We have also represented the exact error between the solution u and this new term. 
The former results have been recalled in order to evaluate the improvement due to 
this trick. 

7. CONCLUSION 

The method that we have developed in this paper is a new strategy for explicitly 
bounding the error in a finite element method using conforming approximation. 
The extension to elliptical problems does not require any new tricks. For instance, 
the case of 2D-elasticity can be handled. The difficulty is then to construct a 
symmetrical equilibrium finite element. The way we know consists in replacing a 
Raviart-Thomas element by one of the family suggested by Arnold, Douglas and 
Gupta in [3]. In another respect the contribution to the error EK defined at (24) 
can be used as an error indicator in an automatic mesh refinement algorithm. 
The restricted numerical discussion given in ?6 enables one to observe a few of the 
advantages of the method developed in this paper. A more extensive presentation of 
the numerical tests is given by Destuynder, Collot and Salaiin in [13], and also in M. 
Collot's thesis [9], where the extension of the method to adaptive mesh refinements 
is discussed. 

Nonregular mesh 
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APPENDIX 

In this paper we used several classical results which are quite well known. They 
are recalled here. 

Lemma 1. Let K be a triangle of a mesh family assumed to be regular (see Ciarlet 
[8], and Girault and Raviart [16]). Then let hA be the maximum length of the sides 
of K. For any function p E H1(K), satisfying 

/O (=0, IK 
there exists a constant (say c) which is independent of both h and p and such that 

i) 11f1O1,K< Chjoj1,K- E 

Lemma 2 (Same hypothesis as in Lemma 1). For all op E L2(K) and K C Th, let 
1H0l be defined by 

?'y meas(K) IK 
then there exists a constant c which is independent of both h and p and such that 

11- H09011,K< chjjl,K D 

Lemma 3. (Same hypothesis as in Lemma 1 but we also assume that the family 
of triangulations is uniformly regular, as described by Girault and Raviart in [16]). 
There exists a constant c which is independent of both h and p and such that 

IL(PjO0,K < CVhlhKo,K- E 
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