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OPTIMAL CONVERGENCE 
FOR THE FINITE ELEMENT METHOD 

IN CAMPANATO SPACES 

GEORG DOLZMANN 

ABSTRACT. We prove a priori estimates and optimal error estimates for lin- 
ear finite element approximations of elliptic systems in divergence form with 
continuous coefficients in Campanato spaces. The proofs rely on discrete ana- 
logues of the Campanato inequalities for the solution of the system, which 
locally measure the decay of the energy. As an application of our results we 
derive W1'P-estimates and give a new proof of the well-known W1,'-results 
of Rannacher and Scott. 

1. INTRODUCTION 

In this paper, we present a new approach to a priori estimates and error estimates 
for finite element solutions of linear elliptic systems of second order with continuous 
coefficients. Our results rely on an extension of the by now classical Campanato 
space methods in elliptic theory, which provide a powerful tool to prove regularity 
based on L2 estimates rather than on an investigation of the fundamental solution. 
Estimates in the energy norm follow naturally from the variational structure of the 
problem. 

We consider the elliptic system 

(1.1) -~~~~div(ADu) = div F in Q, 

where u E Wo' (Q; Rm) and A satisfies the Legendre-Hadamard condition (see 
Sections 2 and 3 for the notation used in the introduction). Assume that Uh E 

So"(Qh) is a solution of the corresponding weak formulation 

a(uh, fh) j X FDbhdx V 
"h 

E SO(Qh), 

where S"O(Qh) is the space of piecewise affine and globally continuous functions on 
a quasiuniform triangulation Qh of Q and a((, ) is the bilinear form associated with 
A. Our first result concerns a priori estimates for DUh in Morrey and Campanato 
spaces. In particular we prove the following bound on Duh in the Campanato space 

2,rn which is isomorphic to the space of functions of bounded mean oscillation 
studied in [JN]: 
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Theorem 1.1. Assume that Q is smooth, A E CO,J for some u- > 0, and F E 

L2n (Q). Then DUh E LJ2,n(Q), and we have the a priori estimate 

|IDUh IIL2,n(Q,1,) 
? Cn I|Uh||2;Qh + ||F| I2,n(Qh)) 

The second main result is the following error estimate for the gradient of the 
finite elemeent solution 'Uh. 

Theorem 1.2. Assume that Q is smooth, A E CO,?, and the system (1.1) has a 
unique solution. Let F E &':(Q) and define eh = U-Uh. Then 

De-h II 2,nQ~ ?c inf IDu - DWh IL2',(Qh ||e|z,(Qh) < C77, i h ||UDh|2n(Qh). 
Wh cSO 

The importance of estimates in 12,n arises from the fact that this space is a 
natural substitute for L? in many results in real analysis. For example, if the 
system has a unique solution, Stampacchia's interpolation theorem [St] immediately 
implies the following W1"P estimate: 

Theorem 1.3. Assume that Q is smooth, A E C?0, for some u- > 0, and the system 
(1.1) has a unique solution. Let F E LP(Q) with p E (2, oo). Then DUh E LP(Q), 
and we have the a priori estimate 

|IDUhIlLP(Q,,) < cpIIFIILP(Qh) 

as well as the error estimate 

I|Deh ||LP(Q,,) < cp inf | IlDu - DWh lLP(Qh). 

As a further application of the L2,n-estimates we show in Section 7 how one 
can obtain optimal Wl'?-estimates for eh, thus generalizing the famous result by 
Rannacher and Scott and the recent results in [SW2] to systems. This approach 
allows one to obtain uniform estimates by exploiting the variational structure of 
the problem, and does not rely on the weighted norm techniques first developed in 
[Na]. 

There exists an extensive literature on error estimates for finite element methods 
in various spaces. The question of whether optimal convergence holds in W1,' has 
been open for a long time and was finally solved by Rannacher and Scott in [RS]. 
Blum, Lin and Rannacher [BLR] showed in addition that in general the error u - Uh 

is not of order 0(h2) in L? even if the data are smooth. The spaces 2,, were used 
in [R] to prove optimal estimates for Deh up to a logarithmic factor, and in [Du2] 
to show optimal convergence for eh of order 0(h2) in two dimensions. General 
results in Orlicz spaces can be found in [Dul]. Schauder estimates for higher order 
methods have been analyzed in [Ni], while a discussion of properties of solutions of 
elliptic equations based on DeGiorgi's ideas has been carried out in [AC]. 

The paper is organized as follows. In Sections 2 and 3 we introduce our notation 
and summarize the basic results needed in the subsequent sections. We derive 
an analogue of the Campanato inequalities for the finite element solution in the 
interior situation in Section 4, while the boundary situation is analyzed in Section 
5. These estimates allow us to obtain the a priori estimates and the error estimates 
in Section 6, and uniform estimates are given in Section 7. Finally, the Appendix 
gives the proofs of some well-known results in elliptic theory. 

While carrying out this programme, we shall state explicitly the necessary as- 
sumptions on the coefficients and the domain Q C Rn which ensure that the solution 
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has the required regularity; that regularity theory for elliptic systems is more sub- 
tle than for elliptic equations can already be seen from the fact that there is no 
analogue of DeGiorgi's famous C?0, regularity result for equations with L? coeffi- 
cients. In addition, Garding's inequality does not hold for L? coefficients, see [Zh]. 
The approach towards regularity pursued here is unfortunately based on H6lder 
continuity of the coefficients. We therefore do haot recover the general estimates in 

[BS] for equations in the scalar case. 

2. PRELIMINARIES 

Let Q C Rn be a convex, open and bounded domain and define Q(xo,R) 

B(xo, R) n Q. The convexity assumption is not related to regulartity properties 
of the solution (in the scalar case it implies the square integrability of the second 
derivatives); it only avoids extending the coefficients outside of Q. For methods 
to treat nonconvex domains, see e.g. [SW1]. We say that Q is a domain of class 
Ck,u if for all xo E &Q there exists a diffeomorphism -y E CkU(B+; R'") which 
maps B+ onto Q(xo, R) and FR onto &Q(xo, R) n &Q. Here B+= {x E R7: 

lxl < R, Xn > O} and FR = {X ER n: lxl < R, Xn = O}. We say that Th is 

a quasiuniform triangulation of Q with n-simplices T if there exist constants o0, 
uI > 0 independent of h such that for each T E Th there exist balls B(xo, ooh) and 
B(xi,uih) with B(xo,uoh) C T C B(xj,uih) (see [C] for details). Moreover we 
assume that all nodes in 8Qh are contained in &Q. If Q is a domain of class C1,u 

then dist(xo, &Q) < chl+? for all xo EE Qh, where c is independent of h. For a given 
triangulation Th we define Sh(Qh) as the space of all globally continuous functions 
which are affine on the simplices T E Th, and we denote by Soh the subspace of 
all functions in Sh whose trace on OQh is zero. We use the standard notation for 
the Lebesgue spaces LP, the Sobolev spaces Wk,P and the H6lder spaces Ck,, with 
norms 11 . 11p;Q, 11 * Ilk,p;Q and 11 Ilk,,;Q, respectively. See Section 3 for the definition 
of the Morrey and Campanato spaces and their fundamental properties. 

In our proofs, we will use two interpolation operators onto Sh: the standard 
interpolation operator HI, defined as the linear interpolation of the nodal values of 
a (continuous) function, and the operator Ilsz constructed in [SZ], which is based 
on local averages. If W2'P(Q) c- C0(Q), then 

(2.1) |W - IIHWll,p;T < ch2 ID W|1p;T 

for all w E W2p (Qh), while 

(2.2) Iw - Iszwllf 2;T < ch 2ID W12;S (T)) 

where S(T) U{T': T' n T = 0} for all w E '(h) 
In this paper we study general elliptic systems of second order of the form 

(2.3) -D, (Acj3D,uj) - -DeFi + fi, i = 1, ..., m, 

where the coefficients A J3 satisfy the Legendre-Hadamard condition 

(2.4) A`j3j,,q7riJ/7 > c 2 R2 E 7 R 
Here we use the summation conlvention. However, our analysis does not include 
general systems which are elliptic in the sense of Agmon, Douglis and Nirenberg or 
saddle point problems. The corresponding weak formulation is given by 

(2.5) a(u,b) = fb) Vb E W'2(Q) 
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with 

.F(b) = jcD(FgDa + fjb2)dx. 

We say that uh E Soh is a finite element solution of the system if 

(2.6) a(Uh ibh) = ?(q4h) 'Vo SO (Qh) 

Here the bilinear form a(., ) on W1,2 x W1'2 associated with A is given by 

a(u, v) XA'DoiuDc,v"dx, 

and we will use ah to denote the bilinear form a restricted to Qh: 

ah(U, v) j A3 Do3U3 D,vi dx. 

The following result is a standard result in elliptic theory and can be found for 
example in [Gi], Teorema 10.1. 

Theorem 2.1 (Garding's inequality). Assume that the coefficients AcJ3 are uni- 
formly continuous in Q and satisfy (2.4). 

i) If the coefficients are constant, then there exists a constant u > 0 such that 

(2.7) jA`Di3jD o2dx > Aj ID,o 2dx V(p E wo (Q) 

ii) There exists an Ro > 0 such that (2.7) holds for all 9o with diam(spt (p) < Ro. 
iii) There exist constants i, H > 0 such that 

jAijPD3O3D,ao`dx?vJ > DPI2d d Hj p2dx V8oE w I2(Q). 

Throughout the paper all constants in the estimates depend only an n, m, Q, A 
and the constant in Garding's inequality (here we adopt the point of view that the 
constants in the other usual inequalities like Poincare's inequality or the Sobolev 
embedding theorem depend only on these quantities). In particular, they are inde- 
pendent of h, u, F, f and the center xo of the balls Q(xo, R). 

3. ELLIPTIC REGULARITY IN CAMPANATO SPACES 

Assume that Q C R' is an open domain, 1 < p < oo and A > 0. We define the 
Morrey space LP'A(Q) as the space of all functions u: Q -? R?7 such that u E LP(Q) 
ancl 

|U||LPA(Q) = SUP SUp A J uP dx < oX. 
xocQ0<Q<diam(Q) J 

Q(xo ,e) 

The Campanato space LPA'(Q) is the space of all functions u E LP(Q) for which 

Lu]> A = SUp sup A l X - (u)x0,QIPdx < X 
xocQ O<g<diaml(Q) 9 0 og Q(XO,Q) 

Here (U)xo.R = (u)Q(xo,R) denotes the mean value of u on Q(xo, R): 
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We endow LP,A(Q) with the norm jijiujP?,\(Q2) = 1jujp;Q + [u]p,. Defined in 

such a way, the Morrey and Campanato spaces are Banach spaces, and LPI\(Q) is 
isomorphic to LPA (Q) if 0 < A < n and the domain Q is sufficiently smooth (in 
general one needs that Q is a domain of type A; see [Cal] for the precise definition). 
Moreover, LPA(Q) is isomorphic to Co?'(Q) with a = Apn for A E (n,n + p], p 
while LCP:7(Q) is isomorphic to BMO(Q), the space of functions with bounded mean 
oscillation which was defined in the fundamental paper by John and Nirenberg [JN]. 
For more information about these spaces, see e.g. [KJF]. 

Starting from Campanato's paper [Cal], a complete regularity theory for elliptic 
equations and systems has been developed (see, e.g. [Ca2], [Gi], [G]). We summiarize 
the relevant results in the following two theorems (see [Gi], Capitolo 10). Part iii) in 
Theorem 3.1 follows by contradiction from the estimates in parts i) and ii), since in 
this situation the homogeneous equation has only the trivial solution. Throughout 
the paper we write A - 2 instead of (A - 2)+ = max{A - 2, 0}. 

Theorem 3.1. Assume that the coefficients A'J satisfy the Legendre-Hadamard 

condition (2.4). Let U E Wo'2(Q) be a weak solution of (2.5). 

i) Suppose Q is a domain of class Cl and that AP EE C?(Q). If A E [O,n), 
F E L2, (Q) and f E L2 >-2(Q), then Du E L2, (Q) and we have the a priori 
estimate 

11DuiiL2,A(Q) < C IiUI12;Q + Ilf 1L2,>-2(Q) + ||F||L2,>(Q)). 

ii) Sutppose that Q is a domain of class C1', and A,J3 E CO.'f(Q). If F EE L 
and f (E L2,-2(Q) with A < n + 2c, then Du (E LI(Q) and we have 

11DuL z2,A(Q) < C( IUI12;Q + Ilf 1L2,A-2(Q) + jjFIL2,A(Q)- 

iii) If the system has a unique solution, then the a priori estimates in i) and ii) 
hold withoutt the norm of u on the right hand side. 

A similar result holds for the higher derivatives of u. 

Theorem 3.2. Assume Q is a domain of class 0k?1 (Ck+l0u) and that the coeffi- 
cients AzJ. Ek(Q) (Cku (Q)) satisfy the Legendre-Hadamard condition (2.4). Let 

U E V17:'2(Q) be a weak solution of (2.5) and k > 1. Suppose that DkF E L2 (Q) 
(resp. ?2>(Q)) and Dk-f E L2A(Q) with A E (0, n) (resp. ?2)>(Q) with A < 
n + 2cr). Then Dk+IU EE L2,/\(Q) (resp. &2,A(Q)), and we have the corresponding a 
priori estimates. 

The main ingredient in the proof of these regularity results is local decay es- 
timates for the solution of the homogeneous system, which we will refer to as 
Campanato inequalities. 

Proposition 3.3. Assume that the coefficients A'j(xo) satisfy (2.4) and that v is 

a solution of the homogeneous system Da(A"j(xo)Dovj) = 0 in Q(xo, R). 
i) If Q(xo) R) C Q, then for all 0 < g < R 

J Dv2dx < cQ ) J Dv dx 
Q(xo,Q) Q(xo,R) 
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and 

J IDv-(Dv)XO,Q 2dx < cJ I Dv - (Dv),R x. 

Q(xo,Q) Q(xo,R) 

ii) If xo c &Q and Q(xo, R) = B(xo, R)+ with v 0 on FR, then 

J Dv2dx < c ) J Dvdx 
Q(xo, ) Q(xo,R) 

and 

J Dv - (DnV)xo,Q 0 en 2dx < (-) J cDv - (DnV)xo,R 0 endx 

Q(xo ,L) Q(xo,R) 

Remark. For systems with continuous coefficients one obtains a similar estimate 
with an additional term w 2(R) fQ(xo0R) 

lDv 12dx on the right hand side, where w 
denotes the oscillation of the coefficients on Q(xo, R). 

We define the following discrete analogues of the Morrey spaces L2, (Q) and 
the Campanato spaces &,2A(Q), where the radii in the definition are bounded from 
below by h. A function u belongs to the discrete Morrey space Lp? (Q) if 

||U||PLP = sup sup A J tuIP dx < o, 
It xoCQ h<o<diam(Q) Q 

Q(xO,Q) 

and to the discrete Campanato space Lp A(Q) if 

[U]p A.h 
= sup sup A lu - (u)xo,QLP dx < oo. 

xoCQ h<Q<diam(Q) 2 J 
S2 (xo e 

The following lemma shows that a function Uh C Sh is bounded in L2,A (Qh) if and 
only if it is bounded in L A(Qh)- 

Lemma 3.4. Let ul, C Sh, h > 0 small enough, and 0 < A < n. 

i) If Uh E L2 A(Qh) with IIUIL 2,A < C, then Uh E L2'A(Qh) and VIUhlIL2,' ? C, 

where C depends only _0, A, n and C. 

ii) The same statement holds also for 247A(Qh). 

Proof. Assume that 0 < 2 < h and let Ti, i = 1, . . . , L, be the triangles T C Th such 
that ' n Qh((Xo,2) # 0. To prove i), choose points xi C Ti such that Qh(xI, uoh) c 
T2. Then 

A J IDUh 2 dx 
Q 1, (xo O 

L 
jTj n Qh(xo, 2)/ I/ri n Qh(X, 2) 1-A/n 1 

f 2 

i~~~1 2 ~~~(9oh)n-A (uo-h)A u.d 
Qh(X i,Ooh) 

< cLC, 

where c depends only on u0, A and n. To prove ii), choose for a given domain 
Qh (xo, 2) the smallest radius g such that Qh(xo, 2) contains all triangles Ti C Th 
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defined above. If xO C Qh and Qh(Xo, Q) n &Qh + 0, then replace Qh(Xo, Q) by a 
domain Qh(Xo, Q) such that p < ch and Qh(Xo, 2) C Qh(Xo, Q). Otherwise define 
xO xo and 

- 
Q. Then we conclude, as in case i), that 

f IDUh - (Duth)x,Feo2dx < A IDuh-(_ dx 
Qh (Xo, ) Q]h(xo ,) 

c I Du,, 2-dx, 
--A 

Qh (Xo,) 

and the assertion follows with ( (DUh)X,o,o. D 

4. A POINTWISE INTERIOR ESTIMATE 

The main result in this section is the pointwise estimate in Proposition 4.8. It 
is based on the following analogues of the Campanato inequalities in Section 3 for 
the finite element solution uh on balls Q(xo, R) c Q. Throughout the rest of the 
paper we will set 

(4.1) Rh(F, f; R) J F- (F)Qh(xo,R) 12dx + R2 J f 2dx, 
Qh(xo,R) Q h (xo,R) 

and i7 denotes a nonnegative, continuous function such that i7(t) < ctl/n for n > 3 
and i7(t) < c(u)t" for all ,u c (0, 2) for n = 2. We denote the modulus of continuity 
of the coefficients by w, i.e. 

w(R) sup sup sup IA<(x) - A`(xo) . 
Ix-xoI<R ot,=I,...1.i,~j=l,...,rn 

Lemma 4.1. There exists a constant A > 0 such that for all h < 2 < R < Ro and 
R > Ah the following inequalities hold: 

IDUh2dx < c ) + w2(R) + r/QI) } DUh dx + CRh(F, f; R)J 
Q(xo ,e) Q(xo,R) 

J DUh - (Duh)x,, e2dx < c{(-) + q-)} IDUh - (Duh)x.,R dx 
Q(xo,e) Q(xo,R) 

+ cw2(R) J IDuh12dx + C'h(F, f; R). 

Q(xo,R) 

Here A is independent of xo, h, p, R, u and Uh. 

We split the proof into a series of lemmas. The idea is to decompose uh, as a 
sum (Uh - w) + w, where w E W1 2(Q(xo, R)) is the solution of the homogeneous 
system with constant coefficients 

(4.2) ao(w, ) = 0 V W o'2(Q(xo,R))) 

w = Uh on &Q(xo, R), 
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and to use the Campanato estimate in Proposition 3.3 for w. Here ao denotes 
the bilinear form with constant coefficients AZjo(xo). It follows from w = Uh on 
&Q(xo, R) and the divergence theorem that 

(4.3) J D,w'dx =f D,iudx, i 1,...,m,= ...,n. 
Q(xo ,R) Q(xo ,R) 

We summarize the important properties of w in the following lemma. 

Lemma 4.2. Assume that w is the solution of (4.2). 

i) We have the a priori estimate 

J IDw _12dx < c J IDuh _l2dx Ve E R 
Q(xo,R) Q(xo,R) 

ii) We have for k > 2 the Caccioppoli estimate 

ID kW1 dx < 
cRe2,l 

IDw _(I1 dx V (ER mn 
J D~w2dx- (R - Q)2(k-1) 

J Dw- dxV 

Q(xo ,) Q(xo,R) 

iii) We have the pointwise estimate 

sup I D kW12< 
c 1 IJDw _ ~1 2dx V~ (E Rmn . 

XCQ(Xo,Q) (R - 0)2(k-1) Rn R 
Q(xo ,R) 

Proof. In view of Garding's inequality we obtain i) from ao(Uh - W, Uh - w) 
ao(uh, ujl - w). The Caccioppoli estimate in ii) is standard (see, e.g. [Gi]), and the 
pointwise estimate follows from ii) by Sobolev's embedding theorem. C 

In order to obtain an estimate for Duh- Dw we define 

(4.4) (Uh- W), 4'h = Il0b 

where ( ? 0 is a smooth cut-off function such that ( =f1i 0 on R n \ Q(xo, 3R), 

1 on Q(xo, 2 ), and JID'(11, < cR-2 for i 1,2 (R will be of order one, and 
the existence of ( is thus clear for h small enough). The following estimate of the 
difference fb - /bh in the energy norm will be important. For n < 3 an estimate of this 
type follows easily from the interpolation estimate (2.1). In arbitrary dimensions, 
however, a direct computation is necessary. 

Lemma 4.3. Let fb and t)h be defined as in (4.4). 

i) We have the local estimate 

I Db-Dbh 12dx <?SUP(2X){CfUh_W2dx+ch2T sup ID2W(X)2}. IT ~~~~xCT RJT xCT 

ii) We have for all ( E RRmn the global estimate 

J IDb- D h1z2dx < J uh_w12dx+eR2 J cDw- 12dx. 

Q(xo,R) Q(xo,R) Q(xo,R) 
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Proof. Clearly ii) follows from i) by Lemma 4.2. To prove i), let ai, i = 1, .. ., n + 
1, be the nodes of the simplex T and (I the standard nodal basis of T, i.e., 
(D8(aj) = 23. Then fIlw(x) = E'I+11i(x)w(ai) for all w E C?(T). We have 
DV) 2(D((uh - w) + (2(Duh- Dw), and thus 

j lD4-D4 I 12 < w(2(X2dX+cjW (2Dw DHlw2dX 

+ cf (2(Duh - Dfllw) - D4'h12dx. 

The second term is estimated by the interpolation inequality (2.1) with (p = oo), 
while by definition of 4'h 

IT (2(Duh - DHlw) - Dh 12dx 

n+l 

IT ZEDIi(x)(uUh - w)(ai)((2(x) -2(a 2dx 

n+1 2 

< Zsup ID4Di(x) 121 (Uh-w) (ai) 12 ITI sup 1(2(X) _ (2 (ai) I 
ilxET xET 

By assumption supXCQh Dbi(x) | ch1 and suPXCT |((x)-((a-) < clx - a2I/R; 
therefore 

sup 1s2(X) _ u2 (a-)I < c IX ai SUp 1((x) + ((a.) I < 2c.diam(T) SUp 
xCT R xCT R xCT 

Since fT lvh2dx and ITI E. Ivh(ai) 2 are equivalent norms on T, we obtain 

J 1(2(DUh - D-llw) - D4'h 12dx < 2 SUP (2 JUh _I- W2dx, 

and the assertion of the lemma follows easily. DG 

By (2.6) and (4.2) we obtain, since 4'h E Soh, 

a(Uh - W, 4') a(Uh - W, 4' - ~)h) + .F(4'h) - (a - ao)(w, 4'h) 

We estimate the different terms in the following lemmas. 

Lemma 4.4. We have 

a(uh -w, 0 c f (2IDuh Dw12dxC f Ul2h-w12 dx, 

Q(xo,R) Q(xo,R) 

where the constant c > 0 depends on the constant in Garding's inequality. 

Proof. A direct computation shows that 

AjDD,< (U-3w )Dx _(42 W-w2)) = Acj D, (((U3 - w3))Dcx(((ui`-w2)) 

+ A`J3D. (uj 3-)D,(((.(u` Ah-Dw))- A OjJD(( - wj)D(jui - 

By Garding's inequality 

a(uh - W, ,) ? Cf D(((Uh - w)) 2 dx -(m) |nA | |AD|D(. | | uh- W1|2;Q(oR) 
Q 

{| ((DUh - Dw) || 2;Q(xo,R) + || D(((uh - W)) || 2;Q(xo,R)}, 

and the assertion of the lemma follows easily from Young's inequality. DG 
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Lemma 4.5. We have for E > 0 

la(Uh-W, b- h) ? J (2 IDuh-Dw2 dx 

Q(xo,R) 

+C { IDuh t2dx+ 2 f tUh Wdx} 
Q(xo,R) Q(xo,R) 

Proof. Choose for each triangle T E Th a point XT such that SUPxCT ((x) = ((XT). 
We have, by H6lder's inequality and Lemma 4.3, 

la(uh - W,' -'h) 

< (mn)IAI, 3 IDUh-Dw||2;T||Db-DVbh|2;T 
Tnspt (:A0 

< c I Du11 --Dw||2;T (X) I|Uh-W112;T + hITIl/2 sup ID2w(x)l 
Tnspt (:O0 xCT 

By definition 

((XT)IDUh - Dw||2;T < 11(((XT) - ()(DUh - 
Dw)2;T + 11((DUh - 

Dw)12;T 

SUp I( (XT) Ix - x7Duh - DwII2;T + 11((DUh - Dw)12;T 
xET IX -XTI 

? cdiam(T) |IDUh-Dw||2;T + 11((DUh-Dw)112;T, R 

and therefore we obtain 

((XT) 
, |Duh - DwII2;T ILUh - W112;T 

Tnspt (:O0 

? c k R2 IDuh-Dw||2;T||Uh-W112;T + -11((DUh-DW)112;T||Uh-W112;T 
Tnspt (:O0 

? J (2IDuh-Dw12dx + c2 DUh DDw2X+R2 I uhW W12dx. 
Q(xo,R) Q(xo,R) Q(xo,R) 

On the other hand, we obtain by Lemma 4.2 

E JIDUh-DwII2;ThIT1l/2 sup ID2w 
Tnspt (0 xcT 

< c IDuh - Dw 2dx + chRIQ(xo, R)I sup ID2WI2 R 
xCQ(xo, 

3 
R) 

< c J IDuh-Dw12dx + c J IDw-(_2dx, 

Q(xo,R) Q(xo,R) 

and the assertion of the lemma follows easily in view of Lemma 4.2. D: 
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Lemma 4.6. We have 

(bh) - (a - ao)(w, f h) 

< {w2(R) IDw2dx+Rh(F,f;R)} 

Q(xo,R) 

+ { J (2Duh-Dw12dx 

Q(xo ,R) 

1I 2 h 2 f 
+ I tUh_W12dx+L) + IDuh-l2 dx. 

R2 j RI 
Q(xo,R) Q(xo,R) 

Proof. Since 4'h E Wo'2 (Qh(xo, R)), we have by definition 

I-F(Vh) - (a - ao)(w) 4'h)l < ?| Di, h12;Q(xo,R) 

*(IF- (F)Qh(xo,R) 112;Qh(xo,R) + cRl f I2;Q,(xo,R) + mrnw(R)I Dw I2;Q(xo,R)> 

By the triangle inequality 

D 12h < 21 < D0 - D4'h 112Q; + 211D0 112 

and the assertion of the lemma follows easily in view of Lemmas 4.3 and 4.2. D: 

If we combine the inequalities in the above lemmas with the estimates in Lemma 
4.2, we obtain the following inequality: 

I (2 Duh - Dw 12dx 

Q(xo,R) 

(4.5) < c{R IDuh-(Duh)xo,R 2dx+Rh(F,f;R) 
Q(xo ,R) 

+ R2 f tUh _W2dx+W2(R) f IDuh12dx}. 

Q(xo,R) Q(xo,R) 

It therefore remains to estimate LUh - wll. This is done in the following lemma 
with a duality argument. 

Lemma 4.7. There exists a constant A > 0 such that for all R with R > Ah the 
following inequality holds: 

j Uh _W12 dx < h R 2 IDUh -Dw12 dx 

Q(xo,R) Q(xo,R) 

+ R2 {W2 (R) J IDw12dx+RZh(F,f;R)}. 

Q(xo,R) 

Remark. Let v E Wo'2(Q(xo, R)) be the solution of 

-D, (Afj3Dov j) -=-DFlo + f, 
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with F E W1I 2(Q(xo, R)), f E L2(Q(xo, R)), and Lipschitz continuous coefficients. 
Then v E W2'2(Q(xo, R)) (see, e.g., [Gi], Teorema 10.6) and by homogeneity 

(4.6) IIVI12;Q(xO,R) + RJJDv J2;Q(xo,R) + R2 ID2v 12;Q(xo,R) 

< c(R2lf 112;Q(xo,R) + R|F - (F)x0,RJ2;Q(xo,R))- 

This scaling is expressed in the inequality above, since Uh -w E Wo' (Q(xo, R)) 
solves approximately the system 

-D,(AcD.u- w3)) =-DW + (Ac"' - AcO(xo))D'wj) + fi. 

Proof. We give the proof for n > 3 (for n = 2 use H6lder's inequality to deduce an 
analogue of (4.7) below). We will show that for 6, E > 0 

I LUh _ W12dx 
Q(xo,R) 

<ER2 IDuh-Dw2dx+(Q)+8) J UhWdX 

Q(xo,R) Q(xo,R) 

+ cR2{w2(R) IDw 2dx+RZh(F,f;R)}; 

Q(xo,R) 

the assertion of the lemma follows with E = (h)I/n and 6, h small enough. 
Let z E Wo'2(Q(xo, R)) be the solution of the adjoint system 

-D,(A:DOzj ) = u 4-w2. 

Then z E W2'2 (Q(xo, R)), and the estimate (4.6) holds with f = Uh -w and F = 0. 
Let r E (0, 2R), and choose a cut-off function T such that T 1 on Q(xo, R-r), T = 0 
on Rn \ Q(xo, R) and ID2Tl,, < ch-2 for i = 1, 2. Let Ar Q(xo, R) \ Q(xo, R - r). 
We fix r = ch such that T f=szT = 0 on Rn \ Q(xo, R). By H6lder's inequality, 
the Sobolev embedding theorem, and (4.6) 

(4.7) JJDz J2;Ar < lArlI/n JDzJJ2n/(n-2);Q(xo,R) 

< ClAr JDz J2;Q(xo,R) + |ID 112;Q(xo,R)) 

< cRQ-) LUh - WJJ2;Q(xo,R)- 

By definition of z 

j Uh wldx= Aoll O z3Dc, (u'Z W') (I -)dx 
Q(xo,R) Q(xo,R) 

+ J AO DOzJDc(uI - W')Tdx. 

Q(xo,R) 

The first term is easily estimated, since by (4.7) 

(mn) JAI. ||Dz||2;Ar Duh - 
DwII2;A1 

< (mm) AeR () 1 Uh-W - w 2;Q(xo,R) DUh - Dw I 2,Q(xo,R) 
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We rewrite the second term in view of (2.6) and (4.2) as 

(4.8) a(uh - W, TZ - Ylsz(Tz)) - (a - ao)(w, YJsz(Tz)) + .F(HSZ(TZ)) 

- A8 D,8TZ3 D, (u' - w )dx. 

Q(xo,R) 

We use the interpolation inequality to estimate the first term in (4.8): 

a(uj,-W,TZ-11Sz(TZ)) < c hlD2(Tz) 12;S(T) DUh - Dw| 2;T 

Tnspt T#VO 

< ER2 J IDuh-Dw 2dx + C2 J ID2(TZ) 12dx. 
Q(xo,R) Q(xo,R) 

By (4.6), (4.7) and Poincare's inequality on Ar, 

J D2(TZ)2dx < c ID2z2dx+ flDz2dx+ h z2dx 

Q(xo,R) Q(xo,R) A, A, 

< {C+C$2Qh) /n} J tUh 2W2 

Q(xo,R) 

The last term in (4.8) is bounded by 

(mran)I A 1 h|Z 12;Ar DDUh- DwII2;Q(xo,R) 

< ER2 J IDuh-Dw12dx+R Ih2IZ1dx, 
Q(xo,R) Ar 

and we proceed as before. T'he remaining terms in (4.8) are finally estimated with 
6 > 0 by 

R2 (w2(R) IDw 2dx+cikh(F,f;R)) + -2 J DHlsz(TZ) 2dx. 

Q(xo,R) Q(xo,R) 

By the stability of Hsz (see [SZ]) we get 

J lDsz(TZ) 12dx <C J D(TZ) 12 + h2 ID2(TZ) 12dX 
Q(xo,R) Q(xo,R) 

and the estimates follow as above. D: 

Proof of Lemma 4. 1. Inequality (4.5) implies with Lemma 4.7 and Lemma 4.2 that 

I IDUh-Dw 2dx 

Q(xo,R) 

< {17Qj) J -2IDuh-(Duh)xoR2dx+w2(R) J Duh2 dx+lh(F,f;R)}. 

Q(xo,R) Q(xo,R) 
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On the other hand, from the Campanato inequality in Proposition 3.3 for w and 
the triangle inequality we have 

IDuhl2dx < 2 IDw12dx + 2 J (2IDuh- Dw2dx 
Q(xo,e) Q(xo,e) Q(xo,R) 

< 2c ) J IDwl2dx + 2 J 2IDuh- Dw2dx. 
Q(xo,R) Q(xo,R) 

This yields the first inequality for Uh. The second follows analogously with the 
mean value form of the Campanato inequality: by the minimality of the mean 
value, 

JDUh -(DUh)xo, 12dx < Dw- (Dw)xo 12dx + fDUh- Dw 2dx. 

Q (xo,e") Q (xo,e") Q (x o,e) 

We now conclude as above. It follows from (4.3) that (Dw)xo,R = (DUh)xo,R, and 
we can therefore use Proposition 3.3 and Lemma 4.2 with ( = (DUh)xo,R to estimate 
the first term on the right hand side. This implies the assertion of the lemma. C 

Proposition 4.8. Assume that Qh is a regular triangulation, Uh the solution (2.6) 
and 60 > 0. 

i) Let A E [O,rn). A ssume that A`e E Co (Q) , f E L2 2(Qh) and F (E I?(Qh)- 

Then there exist constants R?, ho, co > 0, which depend only on Q, n, A, A, 
and 60, such that R? < 60, and for all xo E Q with dist(xo, &Q) > 6o and 
h < ho 

SUp A Duh dx < c uhI + f + JIF 
- Q (xo ,) 

ii) If Az`S E CJ0'(Q) for some a > 0, f E L2' 2(Qh) and F E L2' (Qh), then 
there exist constants Rn, h,) c > O, which depend only on Q, n, A, and 
60, such that R? < 60 and, for all xo E Q with dist(xo, &Q) > 60 and for 
h < ho, 

sup IDu7- (Duh )x0,e 12dx 
h<g<RO 

n 

Q(xo,e) 

< 'Lh0 ;Q + IfKh2L2,n-2(Q,) + F 

Remark. The proof shows that we only need the quantity 

sup sup h<R IF- (F)Q,,(xo,R)l2dx 
xoEQ h<R<RoR, 

Qh(XO,R) 

to be bounded, i.e., F E L 2,(Qh) 

Proof. We first prove i). Let 

4(t) -= IDuh 2dx 
Q(xo,t) 
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We obtain, by Lemma 4.1 for p = TR with T E (0, 1), 

I(TR) < c{ T7 + TA (W2(R) + k)) }(R) 

+ CT{ {fW1JA-2(Qh) + IlFfl12!\(Q,)}, 

whenever Ro > R > Ah and TR > h, since 

J IF - (F)Q,,(x0,R) 2dx < cIF 112 

Q, (xo ,R) 

and 

J f 12dx < Cllf f12 
Q,7(xo,R) 

Now choose first T small enough so that CT - 4, then Ro small enough so that 

CT w(Ro) < 4, and finally A1 > max{lA,T1} big enough so that (4+) ?1 Let 

R? = min{Ro,Ro,0o}, and choose ho small enough so that [Alh?,R?] 7 0. Let 

Qo E [TAiho, R ] be a radius such that 

T'(Qo) sup IF'(Q). 
TAlh2<?e<R5 

If QO E [TA, ho, TR], then by our choice of the parameters 

'J(gQo) < - T(T Qoo) + f L2 A-2 (Q,) + IF IA, (Sh)} 

and thus 

sup '(Q) < 4CTA{|f IL2 2(Qh) + 1F 112(Q,7) 

If TR <?g < R, then 

sup IV'(Q) <' IDUh dx < ( R) / Duh 2dx. 
TR~?Q<R~ - (TRO)AJ DUhRdx < 

Q(xo,R?) Q 

In view of Garding's inequality, this easily implies the assertion in case i). 
To prove ii), note that w2(R) < cR2' and therefore, in view of part i), 

w 2(R) f d 
R(2 ] NIh ? 2dx < IDuh 2dx < clIDUh 1L2'a(Q) 

Q(XO,R) Q(XO,R) 

< C{ hfl2;Q + fL 2,lt-2(S2) + ClFlL2 n(Q)} 

The assertion of the lemma now follows as in case i) with 

IF(t) = tn IDUh- (DUh)xo,t 1 2dx. 

Q(xo,t) 

LII 
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5. A POINTWISE ESTIMATE AT THE BOUNDARY 

The estimate for xo E &Q is analogous to the interior estimate in Section 4. 
However, two arguments need to be modified at the boundary. First, the explicit 
forms of the Caccioppoli and Campanato inequalities do not seem to be directly 
available in the literature. We sketch the proofs in the appendix. Secondly, the in- 
terpolation operator fIsz does not map Wo 2(92) into Wo'2(Qh) and must therefore 
be suitably modified. To do this, assume that the nodes of the triangulation are 
given by at, i 1, . . . , N, where aL+ 1, ... , aN are the nodes contained in &Qh. Let 
B;1, {T ET h: TOnQh 0} and for T E Bh define .Ao(T) = {a: aa E TOnQh}. 
Let (D be the standard basis in Sh. 

Lemma 5.1. Assutme that Q is a domain of class C1' and Qh a regutlar triangutla- 
tion. Then there exists an interpolation operator flsz such that for all v E WO2 (Q) 

whAvftzv)( 1 2: 
A 

n we have lsz(v) e WO' 2(Qh), tSZ(V)IT = ISZ(V)IT for all T E Th \ Bh, and 

J DHsz(v) - DHsz(v) 2dx < ch' J Dv dx. 

Qh Q\Qh, 

Proof. This follows with a simple modification of the construction in [SZ]. Recall 
that fIsz is defined by (we use the notation from [SZ]) 

N 

I_sz (v(X)) = E Di (x) IF i (() v(), 

where oi is an (n - 1)-simplex associated with the node a2. We define 
L 

I-sz (v(x)) = i(x) IF ((v(). 

Clearly flsz(v) E Wo'2(Q1), and fIsz agrees with fIsz on all T with J.o(T) 0. 
Assume now that .Ao(T) 74 0. By construction, the (n - 1)-simplices ci associated 
with a. E A0o(T) are contained in &Qh. Let P(u2 ) = {x+sv(ui(): s > O, x E uj}nQ, 
where v(u2) is the outward normal to &Qh on u2. Since v E Wo'2(Q), we may 
estimate 

IDHsz(v) - Dlsz(v)12dx < j ( J Dj(x) Jij(~)v() dx 
ai &Afo(T) 

< c 
Z 

TI ID(ix 2 D12 i;0iIP(cYi) 
J lDv 2dx. 

ai A/o (T) P(crj) 

Since ID4iKo1;T < ch-1, <JiK;<i < ch1", and dist(x,&Q) < chl+? for all x E a- 
we obtain the assertion of the lemma. DG 

Assume now that xo E &Q, and choose a domain Qo(xo, R) of class C2 such that 
Q(xo, R) c Qo (xo, R) c Q (xo, 2R). Let ( be a smooth cut-off function such that 

H=I4 = 0 on R' \ Q(xo, 3R), ( 1 on Q(Xo, R ), and JID(11OO < cR-1. Finally 
let w E W1'2(Qo(xo, R)) be the solution of the system with constant coefficients 
A j3 (xo) 

(5.1) ao (w, b) 0 V\b E W1'2 (Qo (xo, R)), 

w uh on &Qo(xo,R). 
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We need w to be defined on a smooth domain, since the duality argument in 
Lemma 5.6 requires the solution of the adjoint problem (5.3) to be globally in 
W2'2. This modification is not necessary in the scalar case, since solutions of 
elliptic equations in convex domains satisfy this regularity assumption. It seems to 
be an open question whether an analogous result holds for elliptic systems. 

Lemma 5.2. Assume that w is the solution of (5.1). 

i) We have the a priori estimate 

IDw -12dx < c J IDuh -(2dx Vt E R'n 
Qo(xo,R) Qo(xo,R) 

ii) Assume that Q is a domain of class Ck. Then for k > 2 we have the Cac- 
cioppoli estimate 

J Dw12 dx <I- IDw - (DV(xo)w)xo,R ? V (X0) 2dx 

Q(xo,),R) 

(R -Q)2(k-2) Dwl2dx 
Q(xo,R) 

iii) Assume that Q is a domain of class Ce with f > k + n. Then we have the 
pointwise estimate 

sup Dw l (RI-k)2(k11) < J IDw - (D,(xo)w)xo,R 0 V(Xo)X12)dx 
XGQ(Xo,e) (R - 

0)2(k-1) Rn Q(xo,R) 

(R-0)2(k-2) Rn 
Q(xo,R) 

Proof. The proof of i) is analogous to the corresponding proof in Lemma 4.2, and 
we give the proof of ii) in the appendix (see Corollary A.4). Finally, iii) is a 
consequence of ii) and Sobolev's embedding theorem. C: 

We define as before b = (2(uh - w) and f/h = H1b. The global estimate in 
Lemma 4.3 ii) now holds in the following form: If Q is a domain of class Ck with 
k > 2 + n, then we have the global estimate 

J Dfb-Dbh12dx < R2 J Uh _W12dx + cRQ2 ) J IDw12dx 
Qh(xO,R) Q(xo,R) Q(xo,R) 

(5.2) + c(j J IDw - (D,(xo)w)xo,R 0 (0) 2dx. 

Q(xo,R) 

We conclude from f h E Soh that 

a(uh -W, ) = a(uh -W, - h) + ?C(Vh) - (a - ao)(w, h), 

where we used the equations for Uh and w with f h as test function. The left hand 
side is estimated as in Lemma 4.4: 
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Lemma 5.3. Assume that Q is a domain of class Ck with k > 2 + n2 Then 2 

a(uh-w,) ?> c f I2lDuh-Dw12dx-R2 J tUh-W2 dx. 

Q(xo,R) Q(xo,R) 

In the following lemmas we write h1+ (instead of h2 since a = 1) to indicate in 
which terms we use the fact that the distance to the boundary is of order h1+?. 

Lemma 5.4. Assume that Q is a domain of class Ck with k > 2 + n. Then, for 2 ,o 
? > 0, 

la(uh-W, b- h)l?6 J I|Duh-Dw12dx + c RUh _-W12dx 

Q(xo,R) Q(xo,R) 

+ -R IDU -(Dv(x0)Uh)x.,2R (0 V(Xo) 2dx + (h1+R)2/n IDtUhi 2dx}. 

Q(xo ,2R) Qo(xo,R) 

Proof. By definition 

a(uh-W, - ~bh) ah(Uh -W, - bh) - J AiJDpwD 2wz)dx. 

(Q\Qh)nspt ( 

The first term is estimated as in Lemma 4.5, where we now use the L?-estimate in 
Lemma 5.2 iii). To estimate the terms involving w, choose a rotation Q c SO(n) 
such that Qv(xo) = -en, and let Q(xo,R) = QQ(xo,R), wCv(x) = w(Qtx) and 
uh(X) = Uh(QtX). Then 

IDw - (D,,(xo)w)xo,R (0 V(X0) 12dx J Div - (DenCV)f(xo,R) 0 e-n 2dx 

Q(xo ,R) Q(xo ,R) 

< J Div - (Deniih)2(xo,R) 0 en 2dx, 

Q(xo ,R) 

since the mean value minimizes the integral and the resulting term can bo estimated 
by Lemma 5.2. The second term on the right hand side is easily estimated by 
H6lder's inequality and Poincare's inequality on (Q \ Qh) n spt (. Finally, by the 
critical Sobolev embedding 

J IDw12dx < c(h ) 2/n{ J IDw12dx + cR2 J D2W2dx} 

(Q\Qh)nspt Q(xo, 3 R) Q(xo, 3 R) 

< c( h1R )2/n IDw12 dx. 

Qo(xo,R) 

The assertion of the lemma follows now easily by Lemma 5.2. 0 

Recall that lZh has been defined in (4.1). 
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Lemma 5.5. Assume that Q is a domain of class Ck with k > 2 + n. Then, for 
> 0, 

'F(h) -(a-ao)(w, h)I ? -{a)(R) IDuh. 1dX2 h(Ff;R)} 
Q(xo,R) 

+E{ J 
21Duh-Dwl2dx?+ 

J Uh W2dx 
Q(xo,R) Q(xo,R) 

+ 
h 

J IDUh- (Dv(Xo)Uh)xo,2R 0 V(Xo)I2dx}. 

Q(xo ,2R) 

Proof. This is analogous to the proof of Lemma 4.6, where we now use the global 
estimate (5.2). ? 

The estimate for Uh - W is based on a duality argument as in Section 4. 

Lemma 5.6. There exists a constant A > 0 such that for all R > Ah the following 
inequality holds: 

j Uh wldx < q (R9R IDUh -Dw 2dx 

Qo(xo,R) Qo(xo,R) 

+ cR2{(w2(R) + h2//n) J IDUh 2dx + Rh(F, f; 2R)} 

Qo (xo ,2R) 

Proof. Choose a smooth domain Q1 (xo, R) such that Q1 (xo, R) C Qo(xo, R) and 
such that there exists a cut-off function T with the following properties: T 
IHszw = 0 on Rn \ Qo(xo,R), T 1 on QI(xo,R), and 1D?Tj < ch' for i = 

0,1,2. Moreover we may assume that IQo(xo, R) \ Qi(xo, R)I < chRn-1. Let 
z E Wo'2(Qo(xo, R)) be the solution of the adjoint system 

(5.3) -D, (A:7Dozj) = U h w . 

Then z E W2'2(Qo(xo, R)) (see, e.g., [Gi]) and 

(5.4) I|ZI12 + RIjDzjj2 + R2IID2zI12 < cR2 IUhW- W2 

(the norms being taken on Qo(xo, R)). As in the proof of Lemma 4.7 with Ilsz 
replaced by Hsz we obtain 

j Uh wldx = A'8aD,8z3Dc(u' - w') (I -)dx 

Qo(xo,R) Qo(xo,R) 

Aq.iD0TzjD(u' -w')dx- J AaPD,wDc(wzz')dx 

Qo(xo,R) Q\Qh 

+ ah(Uh - W, TZ - HSZ(TZ)) -(a - ao)(w, Hsz(wz)) + "F(Hsz('rz)). 

Denote the terms on the right hand side by I - VI; we estimate them separately 
using the inequalities 

(5.5) ID(Tz)2dx < cR2() Uh I dx 
Qo(Xo,R)\Q1 (xo,R) Qo(xo,R) 
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and 

(5.6) ID(wz) 2dx < cR2(hR) / Uh -W12dx, 
Q\Qh Qo(xo,R) 

which follow from Poincare's inequality, the Sobolev embedding and the a priori 
estimate (5.4). Now 

I I J< (TDn)zAI, l 1 2dx)( J IDUh Dw 2dx) 

Qo(xo,R)\Ql(xo,R) Qo(xo,R) 

and 

II (mm)IAI IDw< J dxz2c)l/2( IDUh Dw 2dx) 
spt DT Qo(xo,R) 

are easily estimated. For III we obtain 

I c(mTn) IA( J IDw12dx) /2R( hl+ )I/n( J 'Uh_Wdx)/ 

Qo(xo,R) Qo(xo,R) 

and this can be estimated by Young's inequality. To bound the remaining terms 
IV - VI we use the fact that by Lemma 5.1 and (5.6) 

J HSZ(TZ) - HSZ(TZ)1 2dx 
a 

ch1 J D(z) 

Qh Q\Qh 

< chU (1+2/n) R2() J U-W 12dx. 

Qo(xo,R) 

The assertion follows easily. E 

The above lemmas prove the following Campanato inequality for Uh at the 
boundary. The proof is identical to the proof of Lemma 4.1. 

Lemma 5.7. Assume that Q is a domain of class Ck with k > 2 + n. Then there 2 
exists a constant A > 0 such that for all h < p < R < Ro and R > Ah the following 
inequalities hold: 

IDuh 2dx 

Q(xo,Q) 

< c{ (R) + w2(R) + T - + h2/} J Duh dx + CJZh(F, f; 2R), 
Q(xo ,2R) 
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IDuh -(D,(xo)Uh)xo,Q 0 v(xo)I'dx 

Q(xo,Q) 

<C{ ( e) +2 ,(h) } IDuh - (D>(x0)Uh)xo,R 0 v(xo) 2dx 

Q(xo ,2R) 

+ c(W2(R) + h2//n) J IDUh 2dx + CJRh(F, f; 2R). 

Q(xo ,2R) 

Here A is independent of xo, hy Qy Ry U, Uh, while r' is a nonnegative, continuous 
function such that rq(t) < ctl/n for n > 3 and rq(t) < c(lz)tl' for all pi c (0, 2) for 

m 2.~~~~~~~~~~~~~~~~~~~~~~~~~~ n = 2. 

We obtain from this Campanato inequality the following estimate at the bound- 
ary: 

Proposition 5.8. Assume that Q is a domain of class Ck with k > 2 + n, Qh a 
regular triangulation and Uh the solution of (2.6). Let xo C &Q. 

i) Let A 0 [O,rn). Assume that A,:P c C?(Q), f c L2A/'-2(Qh) and F C C2,/\(Qh) 
Then there exist constants R,,, h,,, c, > 0, which depend only on Q, n, A, and 
A, such that for h < h, 

h<URP A 

l Duh dx U I2;Qh + f L2,A-2(Qh) + F2,A(Qh) 

Q(xo,e) 

ii) If AJ'P c Cf0'(Q) for some ca > O, f E L2'n-2(Qh) and F C I29n(Qh), then 
there exist constants Rn, hn, ci > 0, which depend only on Q, n, c, and A, 
such that for h < hn 

sup nj IDuh - (Duh)xo,Q 12dx 
h<RlQ Jn 5n 

Q(xo,Q) 

? nlUh 2;Q/, + f L2'n-2(Qh) + F C2n(Qh)) 

Proof. The proof is analogous to the proof of Proposition 4.8. In the proof of i) we 
choose h, small enough so that c(hl)2/n < I while in the proof of ii) we use the 
inequality h < R. Thus we obtain 

sup e I DUh - (Dv(Xo)uhl)xo,Q e0 V(Xo) 12dx 

Q(XO,Q) 

nUh 2;Qh + f L2'n2(Qh) + F K2n(Qh)). 

The proposition follows since the mean value minimizes the integral on the left 
hand side. D 

6. ERROR ESTIMATES IN CAMPANATO SPACES 

The estimates in Sections 4-5 imply the following stability result. 

Theorem 6.1. Assume that Q is a domain of class Ck with k > 2 + n2 Qh a 
regular triangulation and Uh a solution of (2.6). 
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i) Let A E [ O, n) . Assume that AX3 E C?(Q) f E L2,-2A(Qh) and F E LC2,A (Qh) 
Then there exists a constant cA, > 0, which depends only on Q, n, A, and A, 
such that 

JIDUhl L2,A(Qh) < cA(|IUh||2;Qh + Ilf 1L2,'-2(Qh) + 
|F||z2,)\(Qh)). 

ii) If A7J'8 EC C0'a(Q) for some a > 0, f E L2,n-2(Qh) and F E LC2'n(Qh), then 
there exists a constant cn > 0, which depends only on Q, n, a, and A, such 
that 

|IDUhlIL2,n(Qh) ?< Cn( lUhI2;Qh + Ilf IL2,n-2(Qh)+ IIFIKL2,n(Qh)). 

iii) If the system (2.3) has a unique solution, then the estimates in i) and ii) hold 
without the norm of Uh on the right hand side. 

iv) If the system has a unique solution, then the Ritz projection is stable in Morrey 
and Campanato spaces: under the assumptions in i) and ii) we have 

|IDuh||L2,A(Qh) < c), 
DuIIL2,X(Qh) 

and 

|IDuhlIL2,n(Qh) < cnjjDu I12,n(Qh) 

Proof. To prove i), let R = min{R0, 1R,} and assume that h < min{ho, h,k}. We 
first show that 

sup sup RA X IDUh 2dx < c I|Uh 112;Q + fL2f 2(h) + IF12 
xoEQ h<R<R k 

Q(xo ,R) 

This inequality follows from the interior estimate in Proposition 4.8 and the estimate 
at the boundary if Q(xo, R) c Q or xo E &Q, respectively. Assume now that 
Q(xo, R) n aQ 7& 0 and xo ? &Q. Choose a point xio E &Q such that lxo -xo I 
dist(xo, &Q). Since 

I 
] IDuh12dx < J IDUh12dx, 

RA ~ ~ -(2 R)A UhdX 
Q(xo,R) Q(xo,2R) 

we conclude this proof using again the boundary estimate in Proposition 4.8. The 
assertion of case i) now follows easily from Lemma 3.4. The proof of ii) is analo- 
gous, and iii) follows from Theorem 3.1. To prove iv), define Fi = A=jXDjui and 
note that F E L2,A (Q) (F E C2,n(Q)) if Du E L2,A (Q) (Du E C2,n(Q)). This follows 
from the fact that L??(Q) and C0'7(Q) are multipliers in L2A (Q) and '2,n(Q), re- 
spectively. The assertion is now an immediate consequence of the a priori estimates 
in i) and ii). D 

The following optimal error estimates are an immediate consequence of Theorem 
6.1. 

Theorem 6.2. Assume that Q is a domain of class 0k with k > 2 + n, Qh a 
regular triangulation, and u and Uh the unique solutions of the system (2.5) and 
the finite element equation (2.6), respectively. Define eh = U - Uh. 
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i) Let A e [O, n). Assume that A e'P C?(Q), f e L2A2(Qh) and F IJI%A(Qh) 

Then there exists a constant cA, > 0, which depends only on Q, n, A, and A, 
such that 

IlDeh I L2, A(Qh) < cA inf h lDu - DWh | L2, A(Qh)- 

WhESO 

ii) Let A e (n-2, n). Assume that A`e C 1(Q), f C L2,' (Qh) and F E W1,2(Q) 
with DF E C2,A (Qh). Then there exists a constant cA, > 0, which depends only 
on Q, n, A, and A, such that we have the optimal estimate 

I|Deh |L2,A (Qh) < c\hII D 2UI L2A, (Qh) - 

iii) If A:7J E C0'5(0) for some a > 0, f E L2,n-2(Qh) and F e IC2n(Qh), then 
there exists a constant cn > 0, which depends only on Q, n, a, and A, such 
that 

IIDehIIL2'n(h) < Cn inf ||Du - DWhL2n (Qh) 
Wh cSo 

iv) If A:J3 E C1,'(0) for some a > 0, f C L2,A (Qh) for some A e (n, n + 2] and 
F E W1'2(Q) with DF E 2,A(Qh), then there exists a constant cn > 0, which 
depends only on Q, n, a, and A, such that 

IIDehLj 2,n'(Qh) < cnhIlD IUD2 ;Qh 

Remarks. 1) The system (2.3) has for exampe a unique solution if the coefficients 

are constant or if the coefficients AXY satisfy the Legendre condition, i.e., there 

exists a constant c > such that A c2 for all E Rm and allx Q. 

2) The slightly stronger assumptions in part iv) of Theorem 6.2 compared with 

Theorem 6.1 ii) are needed in order to ensure that D2u E L?. In fact, D2u E Co,' 

with a - A2n; see Section 3. 

Proof. We first prove i). For Wh E Soh define Fi - A=jXD8(ui - wjh), and let Vh be 

the finite element solution of (2.3) with F = (Frc) and f = 0. By Theoretn 6.1 

||DVh |L2,A (Qh) < Cl Du - Dwh IL2,A (Qh)- 

Since the solutions of the system (2.3) are unique, Vh = Z(u- Wh) is the Ritz 

projection of u - Wh, and this estimate implies 

IDUh - DWh I|L2 A (Qh) < c| Du - DwhhI LL2 A(Qh) 

The proof follows now from the triangle inequality: 

||Du - DuhIL2A(Qh) < Du-Dwh L2A(Qh) + Duh-Dwh L2A(Qh). 

To prove ii), we have to show that for A E (n - 2, n) the estimate 

I|Du - DflszulL2A(Qh) < chilD2uI L2,A(Qh) 
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holds. In view of Poincare's inequality, we deduce that Du c r2, A+2, and thus 
Du c Cf0'(Q) with a = A+2-nr Hence for 0 < g < h we obtain 2 

A X IDu - DHszu 2dx 

Qh (X0,eQ) 

< A J Du - Du(xo) 2dx + J I DIHszu - Du(xo)12dx. 

Qh(xo eQ) Q;,(xo Q) 

With x-o and g defined as in Lemma 3.4, we conclude that 

J IDIIszu - Du(xo)12dx 
Q (xo eQ) 

I I2 < -A IDHszu-Dul2dx + A IDu - Du(xo) 2dx. 

Q 1 (to, e) Qh(xo,e) 

Since Du c C?f0'(Q)) we get 

c J Du - Du(xo) 12dx < 
CPn-A+ D2u ID2U A(Q1 ) < ch ID2u 

Qh (XO,eQ) 

and a similar inequality for the integral over Q(xo, Q). This proves ii), since we may 
use the interpolation property of Hsz on balls with radii of order h. The proof of 
iii) is similar. Finally, iv) follows since u E W2', (Q) implies 

sup sup Rn IDu - DHIu 2dx < ch2 ID2u 12 
xEQ 0<R<diam(Q) Rn J 

Qh(xO,R) 

7. UNIFORM ESTIMATES 

As a further application of the L2,n estimates in Theorem 6.2 we show in this 
section how one can deduce from these estimates an optimal L? estimate. This 

generalizes the famous results in [RS] to systems in arbitrary dimensions. The case 

of an elliptic equation in arbitrary dimensions has recently been solved in [SW2]. 

The methods employed in this section were first used in [DF]. 

Theorem 7.1. Assume that Q is a domain of class Ck with k > 2+ n Qh a regular 
triangulation, and that u and Uh are the unique solutions of the system (2.5) and the 
finite element equation (2.6), respectively. Define eh = U - Uh. If A`3 E C2, 
for some a > 0, f c L2A(Qh), and F c W1'2(Q) is such that DF C L2,A(Qh) with 
A (n,n+2], then 

JjDehjjoo;Qo < chIlD2u IoO;Q 

for all Qo CC Q. 

Proof. We restrict ourselves to the case of interior estimates for systems with con- 

stant coefficients; the proof with C2,a coefficients is similar, since the corresponding 

Green's function has the same growth properties, see [F], [DM]. We give the ar- 

guments for n > 3; for n = 2 one uses the logarithmic Green's function. The key 
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point in the argument is to use a differentiated Green's function as introduced in 
[RS]. 

Assume that JJDehJJ,,; o = D,e'(xo), where xo c To c Th. Choose xo C To such 
that Q(xo, uoh) C To, and let eh = Iu - Uh. In view of the interpolation estimate, 

IDs ek (xo) ? Ds ek (xo) I +IDs (Uk -_1 uk) (x0) ? DS 
k 

(xo ) I+ 0(h), 

and thus it suffices to estimate D8ek(xo). Choose a smooth function 6 > 0 with 
support in Q(xo,) o/2) and f,n 8dx = 1. Denote by G = G(x, y) E Wo'2(Q) the 
solution of the elliptic system 

-D,(AiaD,,Gi) = -6ikhv 

where 8h = h-n6(hY). Taking the derivative with respect to x8 we obtain a 
solution G, = D,G of the system 

-D,(A0`aD,Gi) =-6ikDs6h 

With y = xo we deduce by standard L2 estimates that 

I DGC 12dx < c,hTn, 
Q(xo,ah) 

ID2GS 12dx < ch-n-2, 
Q(xJo,ah) 

for av < uo, and a slight generalization of the estimates for elliptic systems in [F] 
(see also [DM]) shows that the following pointwise estimates hold on Q \ Q(xo, uoh): 

cI < ClX-X 01-n, 

DCs < cX-X0l, 
D2CS < cIx-01-n-i 

Fix 0 < Ro < dist(Qo, &Q)/2, and choose a cut-off function To such that T0 = 1 on 
Q(xo, Ro/2), To =lszo =0 on Rn \ Q(xo, Ro) andI D2oI< cR- for i =1, 2. 
Then 

(7.1) D8,(XO) ah(TOeh, GC) ah(eh, ToG,) + ah(TO(HJU -u), GC) 

+ j AaD,8GiC(D,aTo)e' dx - j A" (Dj8To)CGi D&eedx. 

Using integration by parts and the estimates for GC, we see that the second term 
on the right hand side in (7.1) is of order 0(h). It is here that we use the full 
strength of the differentiated Green's function. Since To 1 on Q(xo, Ro/2), the 
two integrals involving DTo in (7.1) are estimated in view of the W1'2 estimates for 
eh. Let -b =TOG and l/h =JSzlb. By the orthogonality of the Ritz projection we 
conclude from (7.1) that 

D,ek (.~O)=j At D8ej D,(4, - f4)dx + 0(h). 

To estimate the remaining integral, we define a family of balls Q(x,o Re) with RX 

2-tRoj i =-1,, 1, .. ., L, such that RL < h < RL-1, and corresponding cut-off 
functions Te such that E Te = 1 on Q(xo, Ro) and 

spt(Te) C Q(xo) Re-I) \ Q(xo, Re+I). 
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Then 

!JQ AD:ehD( -h h 

L 

= Z J Ao(Doe3 - (Doe3 )xo,Re)Dc(R(b - h))dx. 

In view of the LC2n-estimate for Deh this is estimated by 
L 

c ~ hRn/2 IID (wT b - )i))II 2;Q(d ̂  R&) 
=-1 

Invoking again the estimates for Gs, we obtain 
L 

IIDehIIoo;Qo < ch2ID2u 2oo;Q R-1 + 0(h) =0(h), 
=-1 

and this proves the assertion of the theorem. O 

APPENDIX 

The following lemmas contain estimates for solutions of elliptic systems which 
do not seem to be directly available in the literature. The proofs use standard 
techniques and are included for the convenience of the reader. 

Lemma A.1. Assume that AYj: E C1(B+(O, 2R)) and that v E C2(B+(O, 2R)) is 
a solution of 

Dc(A3jiDovj) = 0 

with v 0 on &B+(0, 2R) n {Xn = 0}. Then 

ID2vI2dx < ?2 J Dv - en12dx +cRnje12 
B+(O,R) B+(0,2R) 

for all E Rtm 

Proof. Let ( C Co(IRTn) be a cut-off function such that 1 on B(0, R), 0 
on IRn \ B(0, 2R) and ID(I < cR-1 with a constant independent of R. Define 
w = ((v - Xn). Then Dow ((Dov - 60n) + D8((v - xn() and 

Dc (A0j:3Dowj) 
= (-()DoA,i,P6onVi + DoA1'P(Dovj - QonV) + D,(AjPDo((vj -Xn)) 

= fi + Do,Fi 

with 

fi = (-()DogAje6onV + (D i j)Ajeo(Dvjv - QonV) 
and 

Fi = A1ePD8( (vj -Xn0) 

It follows from standard results in elliptic regularity (see, e.g., [Gi], p. 363) that 

ID2w2dx < IDw2dx+c c (IDF2+ f2)dx. 
B+(O,R) B+ (0,2R) B+ (0,2R) 
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Together with Poincare's inequality 

IV - Xne12 dx < l2 X Dv - e 12 dx, J v-x~~~~(dx? R2 J 

B+ (0,2R) B+(0,2R) 

this easily implies the assertion of the lemma. O 

Lemma A.2. Assume that k > 3 Aa F8 E Ck-1(B+(O,Ro)) and that v E 

W1'2(B+(0Ro)) n Ck(B(O,Ro)) is the solution of 

Dc (Ac0D,,vj ) = DoFI(Y 

with v = 0 on B+ (0, Ro)n{xn = 0}. Then there exists a constant c, which depends 

only on k and AIlAP I Ck-1(B+(0,Ro))i such that for all 0 < p < R < Ro (here we 
choose Ro small enough so that we may apply Garding's inequality) 

k-1 

(A.1) f DDkv2dx <c{ Z(R- _ )-2(k-e) J ID'v 2dx 
B+ (O, e) B+ (O, R) 

k-i 

+ IDvl2dx + E J D'F 2dx 

B+ (O,R) 

Proof. We argue by induction. Assume first that k = 3. We have to show that 

J ID3vI2dx<c{(R-) -2 J ID2v12dx+ J Dv 2dx+ J D2F 2dx}. 

B+ (0,Q) B+(O,R) B+(O,R) B+(O,R) 

For a C {1,... , n- 1} let v= Dcv. Then v, is a solution of 

(A.2) Dc (A1,PDOvj) D Dc (Da F- D,Ac`8D,8vj) = DcGc' 

with Gc = D Fic-D, A`3 D8vJ and v, = 0 on B + (0, Ro) n {Xn = 0} It follows 
from standard regularity results in elliptic theory (see, e.g., [Gi], p. 363) that 

J D2v, 12dx<c{(R ')-2 J Dv, 2dx+ IDG12dx} 
B+ (0,Q) B+(O,R) B+(O,R) 

By the definition of Gia and va, 

ID2D,v2dx < c{(R-e)-2 ID2v 2dx + Dv2dx + D2F2dx}. 

B+ (0,Q) B+(O,R) B+ (0,R) B+(O,R) 

Rearranging the terms in the pointwise form of the differential equation, we obtain 

(A.3) A nnDnnV = D -Fic- DoAijD8vj - A2ePDovj, 

and thus 

A1nn Dnnn v -Dn A njn Dn3 v + Dn [DF FD-v - A3 A1aPDOOvj]. 

It follows from the Legendre-Hadamard condition (2.4) that the matrix (AgJ1) has 
a uniformly bounded inverse. Therefore we can solve the equation for Dnnnv and 
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obtain the assertion of the lemma for k = 3, since all terms on the right hand side 
are estimated. 

Assume now that the assertion holds for k-1. We want to show that the estimate 
(A.1) holds if A9'3, F c 0k-l (B+(O, Ro)). In this case v, solves the equation (A.2) 

with A`, Fi c Ck2(B+ (O, Ro)), and we can use (A. 1) for k-1. Thus 

J Dk-V 12dx < c{ E(R -)-2(k-e) J Dv,12dx 

B?+ (,Q) B+?(0,R) 

k-2 

+ J Dv, 2dx + E IDFl2dX} 
B+(0,R) 

= 
B+(0,R) 

Thus all derivates of v of order k except Dkv are estimated. Finally, we obtain the 
estimate for Dkv on differentiating (A.3) (k - 2) times. E 

Lemma A.3. Assume that Q is a domain of class Ck, k > 2, xo C &Q and 2R < 
Ro. Let v c Ck(Q(xo, 2R)) be a solution of 

D, (A? jP(xo)D8vj ) = O, i = 1, .. .., m. 

Then for all R c Rm we have 

f kDkv12dx < f2(?1) f lDv + 4 0 v(xo)12dx + cR n2 

Q(xo,R) Q(xo,2R) 

+ f2(2) J lDv 2dx. 
Q(xo ,2R) 

Proof. Assume first that xo = 0 and v(xo) = e1,. By assumption there exists a 
diffeomorphism -y c C2(B+(O, 2R)) -- Q(O, 2R) such that -y(B+(O, R)) = Q(O, R) 
and D-y(O) = Id. Let v = v o-y, Fij a-yz/lxj (x) and (Fij) (Fij)- . Then v is a 
solution of 

D,,(AlllDr,V3) = O, i=1...,ml 

with 

ASl1 A"AF',8F/ det D-y. ii Ui 

Changing coordinates, we deduce that 

JDkvldx< cE 

Q(xo,R) - lB+(0,R) 

< R21 ID5 - 0 efl12dx + cRnTh 2 + c I J D5 12dx. 
B+ (0,2R) B+ (0,2R) 

The last inequality follows for k = 2 directly from Lemma A.1; for k > 3 we 
apply Lemma A.2 iteratively to Dv, i = k, k -i,... ., 3, on a sequence of half balls 
B+(0,Re) such that (Rei - Re)-1 < cR-1, and then use Lemma A.i to estimate 
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the second derivatives. We now obtain the desired inequality in the case xo = 0, 
v(xo) -en, since 

X IDb 4senl2dx 
B+ (0,2R) 

< J Dv (y(x))12 D-y(x) - D-y(0)12dx + J DvC (y(x)) - e. e12dx 
B+ (0,2R) B+ (0,2R) 

< cR2 J Dv2dx+ J Dv 4enj2dx. 
Q(0,2R) Q(0,2R) 

In the general case we choose a rigid motion ((x) = R(x - xo) with R c SO(n) 
such that Q = (Q) satisfies V (O) -en. Let v = v( -1(x)). Then 

f IDf 4- en12dx J DvQ 7(x))R't - e RtenRtl2dx 
Q(0,2R) ((Q(xo,2R)) 

- J lDv + ?v(xo)12dx. 
Q(xo ,2R) 

The assertion of the lemma now follows as before. a 

Corollary A.4. Assume that Q is a domain of class Ck, k > 2, xo E &Q, and 
2R < Ro. Let v E W1'2(Q(xo, 2R)) be a soluttion of 

D, (X'P:(x0)D,8vj) = O, i = I,.. .., m. 

Then 

I Dkv12dx < R2(1) J Dv - (D(xo)v)xo,R 0 v(x0) 2dx 

Q(xo,R) Q(xo,2R) 

+ R2(k) J lDv 2dx. 

Q(xo ,2R) 

Proof. Standard regularity results in elliptic theory imply that v is smooth in 
Q(xo, 2R). The estimate follows now from Lemma A.3 with ( =-(DnV)xo,R. D 

Proposition A.5. Assume that Q is a domain of class C1l,, xo c &Q, and v C 
W1'2(Q(xo, R)) is a solution of the elliptic system 

-D,(A,f?(xo)D0vj) = 0 

with v = O on aQ n OQ(xo, R). Then 

JlDv - (D,(xO)v)xo,Q 0 v (Xo)12dx < c(?2) J Dv - (D,(xo)v)xO,R 0 (X0) 12dx 

Q(xo,e) Q(xo,R) 

+ cR2, f Dv 2dx. 

Q(xo ,R) 

Proof. This is an immediate consequence of the Campanato inequality in Proposi- 
tion 3.3 for the solution v of the transformed system on B+ (0, R). See the proof of 
Lemma A.3 for details. D 
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