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A MONOTONE FINITE ELEMENT SCHEME 
FOR CONVECTION-DIFFUSION EQUATIONS 

JINCHAO XU AND LUDMIL ZIKATANOV 

ABSTRACT. A simple technique is given in this paper for the construction and 
analysis of a class of finite element discretizations for convection-diffusion prob- 
lems in any spatial dimension by properly averaging the PDE coefficients on 
element edges. The resulting finite element stiffness matrix is an M-matrix 
under some mild assumption for the underlying (generally unstructured) finite 
element grids. As a consequence the proposed edge-averaged finite element 
scheme is particularly interesting for the discretization of convection domi- 
nated problems. This scheme admits a simple variational formulation, it is 
easy to analyze, and it is also suitable for problems with a relatively smooth 
flux variable. Some simple numerical examples are given to demonstrate its 
effectiveness for convection dominated problems. 

1. INTRODUCTION 

Convection-diffusion equations, especially the convection dominated ones, are 
known to have many important applications. Standard finite element and/or finite 
difference methods are in general not suitable for these problems, in the sense that 
the numerical solution often contains spurious oscillations if the mesh size is not 
small enough. Many special techniques have been developed, including upwinding 
finite difference and/or finite volume methods (see [3], and [4]), finite volume meth- 
ods (see [13]), streamline diffusion finite element methods [17], the Petrov-Galerkin 
method (see [16]), and (the hybrid) streamline-upwinding-Petrov-Galerkin (SUPG) 
method (see [11] and [16]). For a detailed description of numerical techniques 
and analytical tools in investigating convection-diffusion equations we refer to the 
monographs [23] and [24]. 

Many convection-diffusion problems satisfy a maximum principle on the continu- 
ous level. In view of numerical stability (i.e., no spurious oscillations), it is desirable 
that the resulting discrete equation also satisfy a maximum principle that is similar 
to the continuous case. Such a scheme that satisfies a maximum principle is often 
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known as a monotone scheme. A well-known sufficient condition for a scheme to be 
monotone is that the corresponding stiffness matrix is an M-matrix. Among the 
several aforementioned schemes, upwinding schemes are often monotone. 

A linear monotone scheme usually has only first order accuracy. This is a rather 
undesirable drawback, and it certainly limits its usefulness in practical computa- 
tions. Nevertheless, linear monotone schemes hre still significant in many ways. Our 
primary interest in this type of schemes is hopefully to use this scheme as a tool to 
design efficient iterative and preconditioning techniques for solving other more so- 
phisticated schemes (such as streamline diffusion methods and nonlinear monotone 
schemes). A linear system with an M-matrix from convection dominated problems 
can be efficiently solved, for example, by Gauss-Seidel method, and the convergence 
of Gauss-Seidel iteration can be dramatically speeded up with a proper ordering 
of the unknowns (cf. Hackbusch and Probst [7], Bey and Wittum [8], Wang and 
Xu [29], Xu [30]). 

The existing monotone schemes are mostly derived by either a finite difference 
or a finite volume approach. One inconvenience of these approaches is that it is 
often not clear how to analyze theoretically the schemes derived in this way. Thus 
we were motivated to look for monotone schemes that fall into the standard finite 
element variational framework, and its theoretical analysis is more straightforward. 
This paper is to report our finding in this effort. The new scheme that we shall 
describe here has several interesting features. It is a finite element scheme with a 
standard variational formulation (but with a modified bilinear form) by means of the 
usual piecewise linear functions for both the trial and test spaces; its derivation is 
completely different from the other known approaches, and it does not (explicitly) 
use the standard upwinding techniques (such as checking the flow directions); it 
can be applied to very general unstructured grid in any spatial dimension; and its 
theoretical analysis is more transparent. 

Our scheme was partially motivated by the work of Markowich and Zlamal [19] 
and Brezzi, Marini and Pietra [9]. In particular, a Scharfetter-Gummel type 
(see [25]) finite element scheme is derived in [19] for symmetric positive defi- 
nite equations in two space dimensions (also with application to symmetrizable 
convection-diffusion equations). For the special cases considered in [19] our scheme 
pretty much coincides with that in [19], but our derivation is much simpler and 
can be applied in more general situations. For other relevant work, let us mention 
Mock [22], Brezzi, Marini and Pietra [10], Marini and Pietra [18], Miller, Wang and 
Wu [21], Miller and Wang [20], and also Babuska and Osborn [2]. 

In all the papers quoted here (with only one exception, [20]) the monotonicity 
property depends on the assumption that the triangulation is not obtuse (or weakly 
acute type, as it is called sometimes). A possible alternative might be quadrilateral 
meshes in two dimensions, where some obtuse angles can be allowed (cf. [33]) at 
the cost of adding other restrictive geometrical conditions. But in practice, the 
construction of a non-obtuse triangulation is not a simple task (see [6] for the 
relevant algorithmic difficulties). The monotonicity of the scheme in this paper 
depends on a much weaker and more practical assumption which, in two dimensions, 
means that the triangulation needs to be assumed to be Delaunay. 

The rest of the paper is organized as follows: In Section 2 we discuss the prop- 
erties of finite element discretization for the Poisson equation, which we consider 
as basis for the derivation of our edge-averaged finite element (EAFE) scheme. In 
Section 3 we derive the edge-averaged scheme for simplified convection-diffusion 
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equation namely the coefficients are assumed to be continuous, and we consider 
only the Dirichlet problem. In this section we also give the geometrical conditions 
when the resulting matrix is an M-matrix. Bounds on the stiffness matrix entries 
are also obtained in subsection 3.3, in order to give a way of implementating this 
scheme. The derivation of the EAFE scheme for more general case of piecewise 
smooth coefficients is presented in Section 5. In Section 4, we also discuss the prac- 
tically important case when the diffusion coefficient approaches zero. In Section 6 
we obtain a natural convergence result, which is stated in Theorem 6.3. 

2. PRELIMINARIES 

In this section, we shall introduce some notation and describe some basic prop- 
erties of finite element triangulations and finite element spaces. In particular, we 
shall discuss some special properties of the finite element discretization for the sim- 
ple Poisson equation which, as we shall see late, will be the basis of the derivation 
of the EAFE scheme for convection-diffusion problems. 

Let Q C R'T (n > 1) be a bounded Lipschitz domain. Given p c [1, oo] and an 
integer m > 0, we use the usual notation Wm'P(Q) to denote the Sobolev space of 
LP functions whose derivatives up to order m also belong to LP, with the standard 
semi-norm and norm denoted by I 1m,p,Q and 11 * llm,p,Q respectively. When p = 2, 
Hm(Q) _ Wm'P(Q) with | |M,Q = I |m,2,Q and || | m,Q = || | m,2,Q. 

Let Th be a family of simplicial finite element triangulations of Q that are shape 
regular and satisfy the usual conditions (see [12]). For simplicity of exposition, 
we assume that the triangulation covers Q exactly. Associated with each Th, let 
Vh C Ho (Q) be the piecewise linear finite element space. As usual the space Ho (Q) 
is defined as the space of u c H1 (Q) such that u = 0 on OQ. 

Given T E Th, we introduce the following notation (see Figure 2.1): 

* qj (1 < j < n + 1): the vertices of T; 
* Eij or simply E: the edge connecting two vertices qi and qj; 
* Fj: the (n - 1)-dimensional simplex opposite to the vertex qj; 
* 'Tj or SE: the angle between the faces Fi and Fj; 
* KT : Fi n Fj, the (n - 2)-dimensional simplex opposite to the edge E; 
* Eq = (qi) - q(qj), for any continuous function X on E - 

* TE =E X qi - qj, a directional vector of E. 

F E 

FIGURE 2. 1 
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We shall denote the nodes in Th by xj, j = 1, . . ., Nh. This is a "global" notation 
for all the vertices on the grid. Thus, we shall use qj (= qT), j = 1, .. ., n + 1, in 
a fixed element T c Th and x; (j = 1, ... Nh) for all the nodes. The edges Eij will 
denote either the edge (qi, qj) in an element T, or the edge (xi, xj) living somewhere 
on the grid. This slight abuse of notation should not be a source of confusion. 

We denote nodal basis functions in Vh by Sni, i = 1,... Nh, which are continuous 
in Q, linear in each T and 

nOi (xi) = 1, Oi (xj) = O, j =,4 i. 

As we have already pointed out, we first consider the simplest and important 
case of the Poisson equation: 

-Au f, xEQ, 

u - 0, x EQ. 

Given T c 'Th, let (aT) be the element stiffness matrix on T. Then, for Uh, Vh C Vh, 
we have 

( 2. 1 ) j Vuth Vv. dz = 3E aT uh(qi)Vh(qj). 
i,j 

Since aii =-,jZ i ai?j, we can easily obtain the simple but important identity 

(2.2) j Vuh VVhddx =- a? (Uh (qi) - Uh (qj)) (vh (qi) - Vh (qj)), Uh, Vh C Vh. 
i<j 

Using (2.2), we can rewrite the bilinear form in the following way: 

(2.3) f Vuh Vvhdx = E E 8EZLhEVh, 
TCTh ECT 

where wS -aiTj with E connecting the vertices qi and qj. For the weights wS the 
following simple identity holds: 

(2.4) T ( ) I cot S 
where OS is the the angle between the faces not containing edge E (see Figure 2.1), 
and their intersection forms If,Tj (the (n - 2)-dimensional simplex opposite to the 
edge E). The identity (2.4) can be found, for example, in [28] for n = 2 and in [5] 
for n = 3. Because of its importance in our presentation we shall include a proof 
for any space dimension n in the Appendix. 

Let A = (VSoi, V9oj) be the stiffness matrix for the Poisson equation. We are 
interested in conditions for A to be an M-matrix. We recall that A is an M-matrix 
if it is irreducible (i.e., the graph corresponding to A is connected) and 

Ajj > V Vj; Aij < Vi, : i0 j; 
Nh Ni, 

Ajj > E AijI Vj; Ajj > E AiAI for at least onej 
i=l:i7Aj ~~~i=1:i7Aj 

Lemma 2.1. The stifffness matrix for the Poisson equatiotn is arn M-matrix if arnd 
only if for arny fixed edge E the followirng irnequallity holds: 

(2.5) WLE - n(n I X, IKE|o SE > 
TDE 

where ZT:DE mearts summatiort over all si'mplexes T corttairtirtg F. 
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For n = 2, the condition (2.5) means that the sum of the angles opposite to 
any edge is less than or equal to 7r, i.e., if T1 n T2 = {E} then OT1 + SE2 <T 

This condition implies that the triangulation is a so-called Delaunay triangulation. 
It follows therefore that in ]R2 the stiffness matrix for the Poisson equation is an 
M-matrix if (and only if, with some possible rare exceptions near the boundary) 
the triangulation is a Delaunay triangulation. 

In the literature it seems to be better known that the stiffness matrix for the 
Poisson equation is an M-matrix if the triangulation is not obtuse, i.e., if all the 
interior angles in each triangle are less than or equal to 2 (below we refer to 
this type of triangulations as non-obtuse triangulations). Of course, a non-obtuse 
triangulation is a very special Delaunay triangulation. But Delaunay triangulations 
are certainly more general and more practical (see [5]). 

3. THE EAFE SCHEME AND ITS BASIC PROPERTIES 

In this section we give a derivation of the edge-averaged finite element (EAFE) 
scheme and then discuss some of its basic properties. 

3.1. Model problem. To present the main idea more clearly, we shall first derive 
the discrete scheme for a simplified model problem with simplified assumptions. 
We shall discuss the more general case later (Section 5). Specifically, we consider 

(3.1) Lu = -V ( (a(x)Vu + f3(x)u) f(x), x c Q, 
u = 0) ~~~~~~x c &Q. 

We assume that a c C?(Q) with 0 < ami, < a(x) < amax for every x E Q, 

3 c (Co(Q))2, andfL2(Q). 
The weak formulation of the problem (3.1) is: Find u c Ho (Q) such that 

(3.2) a(u,v) = f(v), for every v c Ho1( ) 

where 

(3.3) a(u, v) j(a(x)Vu + ,3(x)u) . Vvdx, f (v) f (x)vdx. 

It can be shown (see [14]) that (3.2) is uniquely solvable and there exists a 
constant c0 > 0 such that for every v C Ho' (Q) 

(3.4) sup a ?(X v) > c 1,V11Q; sup a(v, ) > co lV1'Q. 
OEH0 (Q) 6EI 1Q0H' (Q) II1, 

Another important property of L is that its inverse is nonnegative. More pre- 
cisely (see [14]), 

(3.5) If (Lu)(x) > 0 for all x c Q then u(x) > 0 for all x C Q. 

The above condition will be referred to as the monotonicity property, and it holds 
regardless of the size of j3(x)j/a(x). What is interesting for applications is the 
convection dominated case, namely j3(x)j/a(x) > 1, Vx c Q. Our goal is to 
construct a scheme that has a monotonicity property analogous to (3.5), namely, 
if Vh C Ho' (Q) is a finite element space and Lh is the corresponding discretization 
for L, then 

(3.6) (12[fh)(x) > 0 for all x E Q, if fh() = f(o) > 0 for all i = 1,... , Nh. 
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A finite element scheme satisfying the above condition will be called a monotone 
finite element scheme in this paper. It is known that if the stiffness matrix corre- 
sponding to Lh is an M-matrix, then (3.6) holds. 

3.2. Derivation of the scheme. Given any edge E, we introduce a function fPE 

defined locally on E (up to an arbitrary constant) by the relation 

(3-7) 
-~E cJ 

1(/3TE).- 
OTE TE 

Here and also in the proof of the next lemma, with an abuse of notation 010TE 
denotes the tangential derivative along E. As a basis for our derivation we shall 
use the following result. 

Lemma 3.1. Let u c Ho (Q) n Co(Q). Then 

(3.8) 8E(e Eu) = I a-le E (J(u) TE)dS, 
ITE J 

where J(u) = aVu +,3u. 

Proof. After multiplying both sides of J(u) = aVu + ,3u by a-, and taking the 
Euclidean inner product with the directional vector TE, we obtain 

(VU * TE) + (X1(3 * TE)VU = a 1(J(U) . TE). 

Now using the definition of fPE in (3.7) we get 

(39) ~~~-'bE &(e'PEU) 1 _ (3-9) e-+ (a )=|a '(J(U) - E)- e OTE ITE I 

The equality (3.8) follows from (3.9) after integration over edge E. D 

Let YE(f3) be the harmonic average of ae-OE over E, defined as follows: 

(3.10) aE(I3)= [l Ja-le]Eds 

First we approximate J(u) over each simplex T by a constant vector JT(u). Then 
from (3.8) we have that 

(3.11) JT (U) TE (XE (I3) 6E (e-E u). 

By (2.3) and (2.4), for any Vh c Vh we get 

(3.12) 

JT(U) VVhdX Z w(JT(U) . TE)&EVh S E (0)6E(ePEU)6EVh 
T E EcT 

Thus the approximating bilinear form can be defined as 

(3.13) ah(Uh,Vh) 5 {w E EaE()6E(ePEUh)6EVh}. 
TETh ECT 

Apparently, (3.13) can be rewritten as follows: 

(3.14) ah(Uh,Vh) = E wEaE(3)6E(e EUh)6EVh, 
ECTh 
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where WE iS given by (2.5). Our finite element discretization is: Find Uh C Vh such 
that 

(3.15) ah(Uh,vh) = f(vh) for any Vh C Vh. 

From the above derivation we can easily obtain the identity 

(3.16) ah(I,Vh) S {Sw [eE JE a J(u) }TEds 8EVh 

for all u c Ho (Q) n C?(Q), where ui c Vh is the nodal value interpolant of u. This 
identity will be useful in error analysis. 

Remark 3.1. We have pointed out that fPE is defined up to an arbitrary constant 
on E (by (3.7)), but this has no effect on the definition of the bilinear form, since 
(3.13) is invariant if we take fPE + 04 in place of fPE for any constant 4E on each 
edge. 

We shall prove that the EAFE discretization is monotone. 

Lemma 3.2. The stiffness matrix corresponding to the bilinear form (3.13) is arn 

M-matrix for arny continuous functions ae > 0 arnd 3 if arnd only if the stiffness 
matrix for the Poisson equatiotn is arn M-matrix, nramely if arnd only if the condition 

(2.5) holds. 

Proof. Given j c { 1, ... , Nh}, consider the corresponding node xj. Obviously, if 
xi is a neighbor of xj, 

(3.17) Aij = E WEjE(I3)6E(e E(pj)6E(pi = -gWEjE(I)(e ijE) < 0. 
E3x j 

Here E 3 xj means all the edges having xj as an endpoint, and f/j,E = bE(X;)- 
Now, if xj has no neighboring node on the boundary, then the j-th column sum 

of A is zero: 

E Aij 5 WEjE(I3)8E(e-E pj)8 E Z(i S WEaE(3)8E (eVE (j)8E1 = 0, 
i E3xj i E3xj 

which means that Ajj = Aij. And if xj has a neighboring node on the 
boundary, it is easy to see that Ei Aij > 0, or Ajj > Aijl . This completes 
the proof. D 

Remark 3.2. In some applications such as semiconductor device simulation, the 
following equation is of special interest: 

(3.18) -V-(Vu+V u>=f, x Q. 

This can be viewed as a special case of our model problem (3.1) with a = 1 and 
d3 V=+i. In this case, the function fbE defined by (3.7) can be chosen independent 
of E: 

fPE = VE. 

A very special feature of this equation is that it is symmetrizable, since it can 
obviously be written as 
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This equation has been studied by many authors, see for example [191, [91, [101, 
[181, [211. Technically speaking, the symmetrizability this equation plays an impor- 
tant role in the aforementioned works. The one that is most closely related to our 
work is the paper by Miarkowich and Zlamal [191. In fact, in this special case, our 
finite element scheme coincides with their scheme (which is only for symmetrizable 
equations in two dimensions). We note that our derivation and analysis are quite 
different and also much simpler. As another example of related work, let us briefly 
mention a hybrid finite element scheme in [9] (again only for (3.18) in two dimen- 
sions). This scheme amounts to the use of a harmonic average of coefficients over 
each element, and the corresponding stiffness matrix is an Al-matrix provided that 
each triangle is non-obtuse. 

3.3. Implementation issue. In this section we shall discuss the bounds for the 
stiffness matrix entries. In particular we shall show that the off-diagonal elements 
might have exponential decay, but they have slower growth (like h O ). This prop- 
erty is important for actual implementations. By (3.7) we have 

(3.20) bE -j E = E (TE) (t(Xi -x)) + xj)dt 

with TE = Xi- Xj. Hence 

(3.21) cjl- le(I3"TE)mn in fos adt < C-le-V'E -j,E < -le(13"TE) na fa dt 

where (, . TE)m-7 =CiEn{'(x) T TE}, ( E)ax nax{'(Q) * x x }- We integrate 
xCE xCE 

over E in (3.21) and use the fact that for a given constant b 

ba<-1 exp (b dt) exp (b dt) 

A simple application of the fundamental theorem of calculus then yields 

(3.22) aEB (('TE) ?E aE(6)e jE >? EB ((TEE<J 

where &E = &E(O) is the harmonic average of a(x) on the edge and B(s) is the 
Bernoulli function, defined as follows: 

S 
s e 0, 

1, s =0. 

By the mean-value theorem, there exists a tE such that 

(3.23) (3 TE)m.im < tE < ('3. TE)mnax, &E(6)eijE = &EB(tE/1E). 

Note that -hjj'jjo,,,,Q < tE < h'3,O11O',,,Qfor all edges E. 
Let us first assume that , is a constant. For i = 1,.. ., Nh in accordance with 

(3.23), the resulting system of linear equations for the nodal values of the discrete 
solution Zth has the form 

F3-TE TE 1 
(3.24) E w& [BE ( )u(cxi)-B( - )u(xQ)v G. 

E=(x1,xj 
CeE 

where Gi = ETDxi fT fpidx and TE = xi- x. The summation is over all x # 
Xi, such that (Xi, Xj) is an edge. 
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Through this example one can easily see the advantages of the proposed scheme. 
In the case when a is rapidly varying the entries of the matrix are smooth quantities. 
For example, if s -- +oo, then B(s) approaches zero exponentially, and B(-s) 
behaves like s. 

Related schemes based on finite differences are widely used in semiconductor 
device modeling. The one-dimensional deriva,tion is due to Scharfetter and Gum- 
mnel [25] (see also [27] and the references given therein). It is shown by special ex- 
amples in [15] that for current continuity equations in two dimensions, the schemes 
based on the constant flux approximations appear to be the only ones which work 
successfully and give non-oscillatory solutions. 

Regarding the case when 3 is a more general continuous function, we would like 
to point out that the moderate behavior of the stiffness matrix entries is preserved 
when 3(x) :& 0, x E Q, although, if 3 has a stagnation point, then a diagonal entry 
in the stiffness matrix might be very small compared to the off-diagonal entries in 
the same row. This phenomenon occurs if 3 = 0 near Xj, and all the scalar products 
(i 3 TE) are negative and 101 is "large" with respect to a. We will give a simple 
example. Let j be fixed, and let ca = E > 0 and ( T TE) =-1 VE 3 xj. Then 

A kj = QB (12 ). 

More comments concerning similar behavior of the matrix entries in the hybrid and 
mixed finite element methods can be found in [9], [10]. To the authors' knowledge, 
this is an issue in any monotone, linear discrete scheme for convection dominated 
problems. 

4. LIMITING CASE FOR VANISHING DIFFUSION COEFFICIENT 

In this section we shall briefly discuss the limiting case when the diffusion coef- 
ficient approaches zero. The resulting scheme is a special upwinding scheme. The 
following simple lemma is a useful tool in investigating the limiting case. 

Lemma-4.1. Let ij E C1([0, 1]) and qj(0) = 0. Then 

f1 1 if q(s) > O, O < s <1 
(4.1) lim- I e(ds if r(s) < 0, 0 < s < 1 and , '( ) 

~~\OC ~~'0 ~ ,q'(0) 
ifi()0 <<atr'0<. 

Proof. Since the first identity is trivial, we shall only prove the second one. Let 

i(s) = 1- i'(s)/ij'(0). We observe that 7/(s) < -cos for s E [0,1] with some 
constant c0 > 0. It follows that 

e e() / 1 (s) ds < max 1i(s)j- e-c0s/Eds 

I O<s? / EJO + max 1~(s)?je O/ds. 
V,E< s < 1Ie 

A straightforward integration then gives 

:- ;' eq (s)/E,5(s)ds < max 1i(s) -(1 - e`0/V) 
J O< s<x | - CO 

+ max(s) ~(co / V-E c 
E. 

_<< CO 
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This proves that 

lim1 [ et1(8)1(s)ds 1 O 
e*o e 

which leads to the desired result. C] 

Let a(x) E > 0. By (3.17) and (3.20) the'(i,j) entry of the stiffness matrix is 
given by 

AEj = - 0t(8)lEds 

- 

where 7/(s) j(13TE)(txj+(1-t)xi)dt. For simplicity let us assume that (3-TE) 

does not change sign on E. FRom an application of Lemma 4.1 we get 

(4.2) AO= limAEj ={ - (f3 TE)(xi), (TE < O on E, 

Let us denote wij WE, N(i) = {j : (xi,xj) is an edge}, 

,3 _ xi, (xj - xi) < 0, 
ij lxj, (xj -xi) > ?. 

Then the i-th equation in the resulting scheme can be written as 

wij (xj - xi) * (x3 ) Uh (Xj) = Gi 

jCeN(i) 

where Gi ffpidx and the summation takes only the edges E = (xi, xj). 

5. THE EAFE SCHEME FOR MORE GENERAL EQUATIONS 

In the rest of the paper, we shall study the following more general model problem: 

Lu _-V (a(x)Vu + f3(x)u) + -y(x)u = f(x), x E Q, 
(5.1) tt 0, x E FD, 

a 07, + (d V)U = 0, X E FN. 

We assume that a, 3 and -y are piecewise smooth functions on Q and al(x) > 

ao > 0, -y(x) > 0. We introduce the space of functions vanishing on rD: Hi(Q) 

{v E H1(Q) : v(x) 0, x E FD}. Then the variational formulation of the above 
problem is: Find u HL (Q) such that 

(5.2) a(u,v) f(v) for every v E Hc (Q), 

where 

(5.3) a(u, v) j(aVu + /u). Vvdx + yuvdx, f(v) j fvdx. 

This problem is well posed and has a unique solution (see [14]). 

Given T c Th and an edge E c T, we define a function fbT by 

_ _ _T 1 _ 

(5.4) E a 1(f3TE) 
OTE ITE 

We note that the superscript "T" in EbT indicates that EbT may be different on 

different elements because of possible discontinuity in a and ,. We also note that 
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the trace of a and 3 on E from T is well defined. Let d (T) be the corresponding 
harmonic average of ae- 

(55) eE(3)= [IEI a P 1 ds 

Let us also assume that if the boundary condition changes its type at some node in 
&Q, this node is a vertex of a triangle T E 'Th. We set Vh to be the usual piecewise 
linear finite element space: Vh c HL (Q). With an argument completely analogous 
to that in Section 3 we can obtain the discrete bilinear form (approximation to the 
one in (5.3)) as follows: 

(5.6) ah(Uh, Vh) = E {Zw iE(I)6E(e EUh)6EVh + YT(UhVh) 
T crh EC T 

The last term in the above equation comes from a standard "mass-lumping" quad- 
rature on each triangle: 

-YT(UhVh)= + y i1(qi)Uh(qi)Vh(qi), 

where we recall that qi are vertices of T. The resulting finite element scheme is 
then: Find Uh E Vh such that 

(5.7) ah(Uh,Vh) = f(vh) for any Vh E Vh- 

It is worth noting that (3.14) is no longer valid. But the analogue of (3.16) 
remains true, namely 

ah(UI, Vh) 

(5.8) E E T T )J e'OE } (5.8) - 
TETrh {FCT [KIEI I ( '~ Fh+'TLIU) 

for u E HL(Q) n C0(Q). 
The M-matrix property also holds under some slightly stronger assumptions 

when the coefficients are only piecewise smooth. In fact, by an argument analogous 
to that in the proof of Lemma 3.2 we have the following result. 

Lemma 5.1. Let -y > 0. The stiffness matrix corresponding to the bilinear form 
(5.6) is an M-matrix for any piecewise smooth functions oz > 0 and 3, if for any 
edge E where the coefficients a and 3 have discontinuity, the angles OE satisfy 
0 < T< 2 for all T D E and (2.5) is satisfied for all other edges. 

E-2 

6. ERROR ANALYSIS 

In this section we present some error estimates for the EAFE scheme using 
the more general problem in Section 5. As we shall see, in comparison with other 
upwinding type schemes, one distinctive feature of our EAFE scheme is that its error 
analysis appears to be completely straightforward. Of course the error analysis we 
are talking about here is a standard formal analysis if we assume that the solution 
has a certain regularity. 

In the convection dominated case, like any other schemes, an analysis taking into 
account some singular behavior of the solution is much more elaborate. We will 
report such an analysis in our future work (cf. Xu and Ying [32]). 
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6.1. An estimate for the discrete bilinear form. Our estimate will be based on 
the assumptions made in Section 5. In addition, we also assume that, for all T E Th, 
the solution of the problem (5.1) satisfies J(u) a(x)Vu + 3(x)u E [W1'P(T)]n 
and -y(x) E C(T), -yu E Wl r(T) with r > n, 

(6.1) p = 2 for n = 1, 2 and p > n-1 for n > 2. 

As a first step we give an estimate for the difference between continuous and 
approximating bilinear forms. 

Lemma 6.1. Let w E C(Q). If for any T E Th we have J(w) E [W1'P(T)]n and 
-yw E Wl,r(T), then the following inequality holds for every Vh E Vh: 

( 
2 

(6.2) a(w,vh)-ah(wI,vh) ?Ch Z J(w)I PT + 2 
YW 1r2T} Vh 1,Q 

for p satisfying (6.1) 

Proof. By (5.8) we have 

(6.3) a(w,vh) ah(WI,Vh) = E T(J,Vh) + QT(Yw,Vh), 
TECrh 

where 

(JT( J(W), Vh) JJ(w) VVhdx 

- Z wSjE [I IE e J(w). TEds] EVh, 

and 

(6.5) QTQ(YW, Vh) j (-yWVh - (yWVh)I) dx. 

We first consider ST(J(w), Vh) and apply the standard scaling from T to the 
reference element T. The scaled bilinear functional is properly bounded: 

...t.J(w).Vh)? C< J I (.) .o 0,1 at + 11J(W) j0,T) jjVh j1jlT 

C1jjJ(W)jjO,o,,i, jjVhjjj, 

where Co might depend on oz and , but Ci is independent of a, ,. Let us first 
assume that p > n. By the Sobolev embedding theorem (see [1]), W1'P(T) c> 

W??? (T), we get 

||WI, ?0oT Cl J(w) 1l,p,T- 

By the trace theorem, if p = 2 for n = 2 or p > n - 1 for n > 2, then 

|| J(w)|l 1 at3 <_ C11J(w)h1 lp,T 

From the derivation of the EAFE scheme, it is clear that 8T(J(W),Vh) = 0 if 
J(w) _ const. on T. With this simple fact in hand the rest of the analysis is 
completely routine. By applying the Bramble-Hilbert lemma on T and scaling 
back to T, we get 
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The estimate for QT can be done using the similar and simpler argument (note 
that QT(-YW, Vh)= 0 if -yw _ const). We have 

QT (QYW, Vh) < Chl-Ywl 1,r,T |Vh ll,T- 

The proof is then completed by summing over all elements and using the Schwarz 
inequality. C] 

6.2. Well-posedness of the discrete problem. In this section we shall consider 
the conditions for existence and uniqueness of the discrete solution. In what follows 
we take -y = 0. The reason is that a positive lower order term does not add any 
difficulties to the analysis. 

Lemma 6.2. Let a? E W1'?(T) and f E [W1' (T)]n for all T E 2Th. Then for 
sufficiently small h 

(6.7) sup ah (Wh,Vh) ? Co jWhjj1,Q VWh E Vh 
VhCeVh lVhlll,Q 

Proof. It is well-known (see Schatz [26] or Xu [31]) that if the discrete problem is de- 
fined by the original bilinear form, then the following estimates hold for sufficiently 
small h: 

(6.8) sup a(Wh, h) > 2c0 jWhjj1,Q, VWh E Vh- 
VhEVh |lVhl 1,Q 

Let Vh, Wh E Vh. Then obviously 

ah(Wh, Vh) a(Wh, Vh) + [ah(Wh, Vh)- a(Wh, Vh)] - 

The first term is estimated using the condition (6.8). By Lemma 6.1, 

la(Wh,Vh) a{3 J(Wh) pT} lVh l,Q 

Observing that lWhl2,T= 0 for any Wh C Vh and T c Th, we get 

IJ(Wh)l1,P,T < C( aCj 1,0c,T + j3loIoT) |jWh 11T- 

Summing over all the elements of the partition, we have 

(6.9) la(Wh,Vh)-ah(Wh,Vh) <Cmax(a |lalllo10,T+ 113||1,00,T)h lWh ll,Q|Vh lll,Q- 

The desired result is easily obtained if 

h < ho -co [C max(j aIj1,oo,,T + f3 l|1,oo,T)] 

As a consequence of the previous lemmata we get the following convergence 
result. 

Theorem 6.3. Let u be the solution of the problem (5.1). Assume that for all T E 

Th we have a E Wl ??(T), f C [Wl'??(T)]n, J(u) = a(x)Vu+f3(x)u E(W1 Pc(T)n 
-y(x) E C(T) and -yu E Wl r(T). Then the following estimate holds: 

( 
2 

(6.10) - uhlll,Q ? Ch 
2 E |J(u)I,P,T + E U 

IYU1rT 

TErh T C ', 

for sufficiently small h. 



1442 JINCHAO XU AND LUDMIL ZIKATANOV 

Remark 6.1. It is clear that under the assumptions of Lemma 5.1 the discrete 
problem has a unique solution without assuming h to be sufficiently small, since 
the resulting stiffness matrix is an M-matrix. Therefore, we may conclude that, 
under the assumptions in Lemma 5.1, (6.7) in fact holds for any feasible mesh size 
h with a constant co independent of h. Indeed this conclusion can be rigorously 
justified, but we will not get into the details here. 

7. NUMERICAL EXAMPLES 

Our EAFE scheme is a type of upwinding scheme, and hence its numerical be- 
havior is similar to other upwinding schemes. Here we report two simple, but not 
trivial examples of convection dominated problems. The computational domain is 
the square Q = (0,1) x (0,1). As our first example we consider the equation 

(7.1) -V. (eVu + (y, -x)u) = 1, 

subject to the homogeneous Dirichlet boundary conditions. 
As our second example we consider a symmetrizable convection diffusion prob- 

lem, similar to the one presented in [9]. The differential equation is 

-V * (EVu + Vf u) =0, x E Q, 

(7.2) U= 9On xErD, 
au 

uv = O x ErN- 

21 

11 

FIGURE 7.1. Surface plot of the discrete solution to (7.1) 
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2.5 

2 

1.5 

0.f 0 p 5 

10 \ 0.140.2, 0.65 <p + x, 

where p = (X2 + y2)1/2. Dirichlet boundary conditions are prescribed on the part 
of the boundary as follows 

{ 0 {x=0, yE [0,0.25]}U{xE [0,0.25], y=O}, 
9 0 -2.1 {=1,yE[0.75,1]}U{xE[0.75,1],y=l}. 

In Figures 7.1 and 7.2 we have plotted the solutions. In both examples we have 
taken E =-l6 andh-=2-6. Compared to the characteristic mesh size h, the ratio 
h/e = 15625 is rather large. In Figures 7.1 and 7.2, it is clearly seen that there are 
no spurious oscillations or smearing near boundary or internal layers. Our second 
numerical example also shows that in the subdomain where the gradient of + is 
well behaved, namely, for p(x, y) + x > 0.65, the discrete solution is smooth, as 
expected. 

APPENDIX. A PROOF OF (2.4) 

We shall give a proof of (2.4). Let us introduce some notation (see Figure A.1). 
Given an r-dimensional simplex simplex S, let S denote the hyperplane containing 
it. Let E k denote the outward unit normal vector to the face Fk, k = i, j. Define 
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the projections qi and qE* as follows: 
- 

E 

qi E Fi (qi -qi) *(s-qj) = 0, Vs E Fi, i = 1,.... , n + 1,ji, 
qE E KyE (qE* -qj) *(S-q,) = 0, VS E. 

q_ 
;- qi q** -qi 

By definition vi - qj - . The vectors vi, vj and VE = qj are all orthog- 

onal to R,E, which has dimension n - 2. Hence they must be linearly dependent. 
It follows then that they are congruent with the sides of a planar right triangle. 
Consequently 

(A.1) = sin0E. 

For Ok we have 

(X - q) * (qk- q*) k ij 

To prove (2.4) we apply the formula for the volume of the simplex ITI = Fk I q- 

qkI twice (first for IT|, then for IFj ) and we get 

COS OECOS OF _ COt OF 

XT I~~~~~qi -q* llqj - 
qj l nlqi -q1 n(n - ) 

In the last equality we have used (A.1). This completes the proof. 
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