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APPROXIMATION OF THE VIBRATION MODES 
OF A PLATE BY REISSNER-MINDLIN EQUATIONS 

R. G. DURAN, L. HERVELLA-NIETO, E. LIBERMAN, 
R. RODRIGUEZ, J. SOLOMIN 

ABSTRACT. This paper deals with the approximation of the vibration modes of 
a plate modelled by the Reissner-Mindlin equations. It is well known that, in 
order to avoid locking, some kind of reduced integration or mixed interpolation 
has to be used when solving these equations by finite element methods. In 
particular, one of the most widely used procedures is the mixed interpolation 
tensorial components, based on the family of elements called MITC. We use 
the lowest order method of this family. 

Applying a general approximation theory for spectral problems, we obtain 
optimal order error estimates for the eigenvectors and the eigenvalues. Under 
mild assumptions, these estimates are valid with constants independent of the 
plate thickness. The optimal double order for the eigenvalues is derived from 
a corresponding L2-estimate for a load problem which is proven here. This 
optimal order L2-estimate is of interest in itself. 

Finally, we present several numerical examples showing the very good be- 
havior of the numerical procedure even in some cases not covered by our theory. 

1. INTRODUCTION 

Finite element discretization of Reissner-Mindlin equations is, to date, the usual 
way to approximate the bending of an elastic plate of moderate or small thickness 
(see for instance [4, 13, 19]). 

For load problems, because of the ellipticity of these equations, the classical the- 
ory ensures the convergence of standard finite element approximations. However 
these elements lead to wrong results when the thickness is small with respect to 
the other dimensions of the plate. This is because of the so-called locking phenom- 
enon, which is now well understood (see for instance [7]). In order to avoid this 
drawback, reduced integration or mixed methods are usually applied. To perform 
their mathematical analysis, a family of problems, one for each thickness t > 0, 
is considered and approximation results valid uniformly on t are sought (see for 
instance [2, 7, 10]). 
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Among these methods, the so-called MITC ones, introduced by Bathe and 
Dvorkin in [6], are very likely the most used in practice. Their application to 
load problems has also drawn much attention from the mathematical point of view 
([5, 8, 10, 15, 16]). The aim of this paper is to analyze one of these methods, that 
of lowest order, when used to approximate the free vibration bending modes of 
a plate. Being non-conforming, the spectral theory based on minimum-maximum 
principles (see Section 8 of [3]) cannot be directly applied to this method. Instead, 
our analysis will be based on the abstract spectral theory for compact operators as 
stated in Section 7 of [3]. 

Optimal order of convergence in H1 norm is known for the application of the 
lowest order MITC method to load problems ([8, 10, 16]). This, combined with 
known regularity results ([2, 7]), allow us to prove analogous estimates for the 
approximation of the eigenfunctions in vibration problems. Let us remark that this 
would not be the case for higher order methods, since the eigenfunctions are in 
general not regular enough for us to attain similar results. 

For conforming methods (which is not our case) the convergence of the eigen- 
functions in H1 directly yields a double order of convergence for the eigenvalues 
(Lemma 9.1 in [31). Alternatively, when such double order holds for the L2 con- 
vergence in the corresponding load problem without further assumptions on the 
regularity of the solution, abstract spectral theory can be used to prove a similar 
result even for non-conforming methods (see for instance Section 7 of [3]). 

We prove such optimal (in order and regularity) L2 error estimates for the lowest 
order MITC method, valid uniformly on the thickness t. This kind of estimates have 
been proved before for higher order MITC methods in [8, 15], but the arguments 
therein do not apply to our case. Thus, our results complete the analysis of the 
MITC elements. 

In Section 2 we present the mathematical setting and state the spectral ap- 
proximation results. The analysis carried out yields t-independent optimal error 
estimates for the approximation of eigenfunctions and eigenvalues. The proofs are 
valid for eigenvalues remaining uniformly separated from the rest of the spectrum as 
the thickness becomes small. These results rely on properties of the associated load 
problems, which are proved in Section 3. Finally, in Section 4, we present numerical 
experiments confirming the theoretical results and showing the good performance of 
the method. We also exhibit the potential applicability of this method to problems 
not covered by the theoretical analysis. 

2. APPROXIMATION OF THE EIGENVALUE PROBLEM 

Consider an elastic plate of thickness t with reference configuration Q x (- t, D) 
where Q C R2 is a convex polygonal domain. The deformation of the plate is 
described by means of the Reissner-Mindlin model in terms of the rotations ft = 

(ft, ft2) of its midplane Q and the transverse displacement wt (see for example [7]). 
Assuming that the plate is clamped, its free vibration modes are solutions of the 

following problem: 

Find a non-trivial (ft, Wt) C Ho(Q)2 x Ho(Q) and wt > 0 such that 

t a(ot,r,) + Kt j(Vwt - ft) * (Vv - r) =w [t j pwtv + j pot ', 

(2.1) V(7q, v) E H (Q)2 xH(Q), 
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where wt is the angular vibration frequency, a is the Ho (Q)2-elliptic bilinear form 
defined by 

12(7 -V2) JQ [z(1 -)Eij6(f)6Eij(71) + vdiv,Bdivrl 

&ij (f) being the linear strain tensor, E the Young modulus and v the Poisson ratio, 
N := Ek/2(1 + v) is the shear modulus, with k being a correction factor usually 
taken as 5/6, and p is the density. 

The lowest vibration frequencies wt correspond to bending modes of the plate, 
and for each of them At := pw 2/t2 attains a finite limit as t goes to zero, as is 
shown below. Therefore it is convenient for the mathematical analysis to consider 
the following rescaled eigenvalue problem: 

(2.2) a(fit, r) + 2 (Vwt - ft, Vv - q) At [(Wt V) + A2(ftw )1 v 

V(,q, v) C H (Q)2 xH 

where (-,-) denotes the standard L2 inner product. Note that all the eigenvalues in 
(2.2) are strictly positive, because of the symmetry of the bilinear forms and the 
ellipticity of its left hand side (see [7]). 

Introducing the shear strain at := 2(Vwt - ft), problem (2.2) can be written 
as 
(2.3) 

a(/t,<,) + (-at, Vv-) - At [(Wt, V) + _ (pt, V, V(, V) e Ho (Q)2 XHo (Q), 

{Yt (Vwt - ft) 

In order to analyze the approximation of this eigenvalue problem it is convenient 
to introduce the operator 

Tt : L 2(Q) 2 x L 2(Q) ---- L 2(Q) 2 x L 2(Q)) 
defined by Tt(0, f) (ft, wt), where (ft,wt) C Ho'(Q)2 x Ho'(Q) is the solution of 

(2.4) 
t2 

j) V(,q,V) Ho Q2X 
a(ft, q)?+ (t,Vv - ry) -f __v7+ 12Ho(Q Ho'(Q) 

t =t (Vwt - t). 

We denote by (, )t the weighted L2(Q)2 x L2(Q) inner product in the right hand 
side of the first equation of (2.4) and by I It its corresponding norm. Clearly Tt is 
compact and selfadjoint with respect to (, )t. Then, apart from ,u = 0, its spectrum 
consists of a sequence of finite multiplicity real eigenvalues converging to zero. Note 
that At is an eigenvalue of (2.3) if and only if pt := I/At is an eigenvalue of Tt with 
the same multiplicity and corresponding eigenfunctions. 

It is known (see [7]) that, when t -- 0, the solution of problem (2.4) converges 
to (fi, wo) C Hol(Q)2 x Hol(Q) such that there exists -yo C Ho(rot, Q)' satisfying 

2.5) a(Vo-, 71) + (fyo0, Vv- (f, v), V(70, v) C H,(Q)2 xHO (Q), 
(Vwo - do = O, 
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where (,.) stands for the duality pairing in Ho(rot, Q) { e L2(Q)2: rotb e 
L2(Q) and 4 T = 0 on &Q} (T being a unit vector tangent to &Q). This is a mixed 
formulation of the Kirchhoff model for the deflection of clamped thin plates: 

wo H02(Q) and EF A 2wo inQ. 

Moreover, defining To(O,f) :=, (/o,wo) for (O,f) C L2(Q)2 x L2(Q), we will show 
in the next section that for 0 < t < tmnax 

(2.6) (T - To) (0, f) H1 (Q) 2x H1 (Q) < Ct (O), f) It. 

In particular, since t < tmax I I H1 (Q)2 X H1 (Q) for t C (0, tmax), it follows that 
Tt Hl(Q)2xHl(Q) converges to TO Hl(Q)2xHl(Q) in norm. Then, standard properties 
of separation of isolated parts of the spectrum (see for instance [14]) yield the 
following result: 

Lemma 2.1. Let pto > 0 be an eigenvalue of To of multiplicity m. Let D be any 
disc irn the complex plane centered at puo and containirng no other element of the 
spectrum of To. Then, for t small enough, D contains exactly m eigenvalues of Tt 
(repeated according to their respective multiplicities). Consequently, each eigenvalue 
pto > 0 of To is a limit of eigenvalues pit of Tt, as t goes to zero. 

Mixed finite elements for the load problem (2.4) have been introduced and ana- 
lyzed in several papers (see for example [6, 8, 10, 15, 16]). The method that we will 
use here can be seen as the lowest degree member of the so-called MITC elements, 
which are based on relaxing the second equation of (2.3). In order to recall this 
method let us introduce some notation. 

Assume that we have a family of triangulations {Th} satisfying the usual mini- 
mum angle condition. The finite element space for the rotations consists of piecewise 
linear functions augmented in such a way that they have quadratic tangential com- 
ponents on the boundary of each element. Namely, for each K C 7h, let n be a unit 
normal on OK and define 

Q(K) := {=y E P2(K)2: r2 n C 11(e), for each edge ? of K}; 

then, the finite element space for the rotations is defined by 

Hh := {r1 C Ho(Q)2 71IK C Q(K), VK C Th}. 

For the transverse displacements we take standard piecewise linear elements, 
namely, 

Wh := {v c Ho(Q): VlK C P1(K), VK C Th}. 

In order to define the method, we also need the reduction operator 

R:H1(Q)2nHo(rot,Q) -*Fh, 

where Fh is the lowest order rotated Raviart-Thomas space, namely, 

Fh {= {b C Ho(rot,Q): |K C P02 (-X2,xl)Po, VK C fh 

and R is the operator locally defined for each 4 c H1(Q)2 by (see [7, 17]) 

(2.7) fRV 'Tj= ' T, 
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for every edge ? of the triangulation (T being a unit tangent vector along ?). It is 
easy to see that the operator R satisfies 

(2.8) Irot(-R) = O, V E H' (Q)2 

for any element K c Th, and it is also known (J7, 17]) that 

(2.9) 11b-Rolo < Ch|l l,11; 

here and hereafter 11 Ilk denotes the standard norm of Hk(Q) or Hk(Q)2 (which 
one will be obvious). 

Now, the finite element approximate solution (fth, Wtil) C Hh X Wh of the load 
problem (2.4) is defined by 

(2.10) 

a(/th,r,) + (-th,vV - R) (f,v) + t(Q ) (,qVv) C Hh X Wh, 
ru ~~12' 

"Yth - (Vwth - R/th). 

The method is nonconforming, since consistency terms arise because of the reduc- 
tion operator. Existence and uniqueness of the solution of (2.10) follow easily (see 
[10]). As in the continuous case, we introduce the operator 

Tth: L2 (Q)2 x L2 (Q) ) L2 (Q)2 x L2 (Q) 

given by Tth(O, f) = (tLh, Wth)- Tth is also selfadjoint with respect to (, *)t- 

The corresponding eigenvalue problem reads 

| a(th,') + (th,VVV - Rq) = Ath [(Wth,V) + - (/tth, r)J , V(,v) C Hh X Wh, 

lYt h =t2(VWth - R/th)- 

Once more Ath is an eigenvalue of this problem if and only if Ith := l/Ath is a 
strictly positive eigenvalue of Tth with the same multiplicity and corresponding 
eigenfunctions. 

For t > 0 fixed, the spectral theory for compact operators in [3] can be directly 
applied to prove convergence of the eigenpairs of Tth to those of Tt. However, further 
considerations are needed to show that the error estimates do not deteriorate as t 
becomes small. 

To this goal we will make use of the following result, which means that optimal 
error estimates in the H1 norm for the rotations and the transverse displacement 
hold for the approximations given by (2.10): 

(2.11) ||(Tt - Tth)(0, f)lHlH(Q)2xH1(Q) < Ch |(0, f)lt, 

with a constant C independent of t and h. This has been proved for instance in 
[10] for pure transversal loads (i.e., 0 = 0), but the proofs therein extend trivially 
to our case. 

As a consequence of (2.11), if pt is an eigenvalue of Tt with multiplicity m, then 
exactly m eigenvalues p(1) v . ) of Tth (repeated according to their respective ~th , tth th(eetdacrigo 
multiplicities) converge to pt as h goes to zero (see [14]). The following theorem 
shows that, under mild assumptions, optimal t-independent error estimates in the 
H1 norm are valid for the eigenfunctions: 
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Theorem 2.1. Let Pit be an eigenvalue of Tt converging to a simple eigenvalue Pio 
of To, as t goes to zero. Let Pith be the eigenvalue of Tth that converges to Pit, 
as h goes to zero. Let (t, Wt) and (/th, Wth) be the corresponding eigenfunctions 
normalized in the same manner. Then, for t and h small enough, 

(2.12) 11(3t,)Wt) - (/3th,Wth)| H1(Q)2xH1(Q) < Ch, 

with a constant C independent of t and h. 

Proof. For any fixed t C (O,tniax), I * It < tmaxll ||H1(Q)2xH1(Q). Hence, because 
of (2.11), TthIH1(Q)2xH1(Q) converges to Tt Hl(Q)2xHl(Q) in norm. Then (2.12) is a 
direct consequence of the estimate (2.11) and Theorem 7.1 in [3], with a constant C 
depending on the constant in (2.11) (which is independent of t) and on the inverse 
of the distance from Pit to the rest of the spectrum of Tt. Now, according to Lemma 
2.1, (2.6) implies that for t small enough this distance can be bounded below in 
terms of the distance from pio to the rest of the spectrum of To, which obviously 
does not depend on t. O 

In the next section we will prove the following higher order L2 error estimate for 
the aproximate solution of the load problem (2.4): 

(2.13) fl(Tt - Tth)(O, f)B|L2(Q)2xL2(Q) < Ch 2(O, f)It, 

with a constant C independent of t and h. By using it we are able to prove a double 
order of convergence for the eigenvalues: 

Theorem 2.2. Let Pit and Pith be as in Theorem 2.1. Then, for t and h small 
enough, 

Pit-Pit/' I < Ch2 

with a constant C independent of t and h. 

Proof. Let (fit, wt) be an eigenfunction corresponding to Pit normalized in It. Since 
Tt and Tth are selfadjoint with respect to (, )t, we may apply Remark 7.5 in [3], 
which in our case reads 

(2.14) Pit -Pith ?C[((Tt -Tth) (/t, Wt), (t, Wt))t + (Tt -Tth) (/t, Wt) It 

with a constant C depending only on the inverse of the distance from Pit to the 
rest of the spectrum of Tt. By repeating the arguments in the proof of Theorem 
2.1 we observe that, for t small enough, this constant can be chosen independent 
of t. Thus, since I It < tmax II *I|L2(Q)2xL2(Q)) by using estimate (2.13) in (2.14) we 
conclude the proof. O 

Another consequence of estimate (2.13) is a double order of convergence in the 
L2norm for the eigenfunctions: 

Theorem 2.3. Let Pit, Pith, (t, wt) and (fth, Wth) be as in Theorem 2.1. Then, 
for t and h small enough, 

I I (3t, wt) - (13th, wth) I L2 (Q) 2 x L2 (Q) < Ch2 

with a constant C independent of t and h. 

Proof. Since I It < tmaxII I|L2(Q)2xL2(Q)) the arguments in the proof of Theorem 
2.1 can be repeated using I I L2(Q)2xL2(Q) instead of I H 1 

(Q) 
2)2xH1(Q) and estimate 

(2.13) instead of estimate (2. 1 1). O 
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The three theorems of this section are stated for those eigenvalues of Reissner- 
Mindlin equations converging to simple eigenvalues of the Kirchhoff model. A 
multiple eigenvalue of the latter arises usually because of symmetries of the geom- 
etry of the plate; in such a case, the eigenvalue of the former converging to it has 
the same multiplicity. The proofs of these theorems extend trivially to cover this 
case. 

Instead, if the Kirchhoff equations had a multiple eigenvalue not due to symmetry 
reasons, it could split into different eigenvalues in the Reissner-Mindlin model. In 
this case, the proofs of the theorems above do not provide estimates independent 
of the thickness. In fact, the constants therein blow up as the distance between the 
Reissner-Mindlin eigenvalues becomes smaller. 

For conforming methods, the minimum-maximum principles yield estimates not 
involving this distance (see, for instance, Section 8 of [3]). However, to the best 
of our knowledge, estimates of this kind have not been proved for non-conforming 
methods like ours. Nevertheless, the numerical experiments in Section 4 show that 
such estimates also hold in this case for our method. 

3. PROOFS 

The optimal spectral convergence results in the previous section rely on proper- 
ties (2.6), (2.11) and (2.13). The proof of the first one is standard, but we include 
it for the sake of completeness. The second one is an H1 norm estimate for the load 
problem including shear loads, and its proof is an immediate extension of those in 
[8, 10, 16]. On the other hand, property (2.13), regarding the approximation with 
optimal order in the L2 norm, was not previously known. Similar L2 estimates 
have been proved for higher order methods (see [8, 15]), but with proofs relying on 
arguments which do not apply to the lowest order case we are considering. 

In what follows we will make use of the known a priori estimates for the solutions 
of problems (2.4) and (2.5) (see for instance [2]): 

(3.1) fi0tJl2 + jjWtjJ2 + 11-11O ? 
+ t 11 111 <?C(t2- 0 f l) 

< CI(O,f)it, 

valid for 0 < t < tmIax, with a constant C independent of t. 
We begin with the proof of property (2.6). 

Lemma 3.1. There exists a constant C, independent of t, such that 

| - To)(O, f)| Hl(Q)2xH'(Q) < Ct (0, f)It, 

for all (O,f) C L2 (Q)2 x L2 (Q). 

Proof. Subtracting (2.5) from (2.4), we have 

I a(tt- o,r ) + (Qyt--yo, VV- ) - (0, 7), V (rj, v) C Ho' (Q)2 x Ho' (Q), 1 2 

1 at 
- t[V(wt-wo)-(fit-io )], 

and taking q = ft - fi and v = wt - w0, we obtain 
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Now, using the coerciveness of a and the a priori estimate (3. 1) for VytWo and lYoflo, 
we have 

3t - /3112 < Ct2110110 Ilo t _ it lo 0 + Ct2 (11_tl0o + 11o_11) 11_t0lo 

< Ct 1(0, f)lt fidt -fioblo + Ct21(0,f) f1, 

and therefore 

(3.2) fdit - 0011 C< Ct I(0, f) t. 

Finally, observe that 
t2 

V(Wt- wo) = (ft- 00) +-at, 

and so, using again the a priori estimate (3.1) for LytIIo, we obtain 

Wlt _ Woll, <. C (Illt _ 0o11o + t2l(o, p)lt) 

which together with (3.2) allow us to conclude the proof. D 

The arguments to prove the remaining properties are based on the fact that there 
exists an operator 

: Ho(Q)2x [Ho(Q) n H2(Q)] - Hh X Wh 

such that, if (i1,tw) := HQ(ry, w), then 

(3.3) R(Vw -y) =Vwv - R 

(R being the reduction operator satisfying (2.7), (2.8) and (2.9)) and 

(3.4) IIq - 71i? < Ch IIy 2 

The construction of such an operator is based on known properties of the spaces 
Hh, Wh and Fh (see [10] for details). It is worth observing that (3.3) corresponds 
to a commutative diagram property, usual in the analysis of mixed methods. In 
fact, introducing the operators B and Bh such that B(rj, v) := Vv - 7, for (71, v) C 

Hol(Q) 2x Ho(Q): and Bh(r,,V) := Vv - RI, for (?,qv) E Hh x Wh, that property 
can be summarized in the following commutative diagram: 

Hol(Q) 2 x [Ho'(Q) n H2 (Q)] -B_ H' (Q) 2n Ho (rot, Q) 

> , ~~Bh, 
Hh X Wh h Fh 

Note that, if R were an L2 projection, this commutative diagram would corre- 
spond to Fortin's well-known property (which in its turn implies that an inf-sup 
condition, analogous to that proved in [7] for the continuous problem, holds for the 
discrete case). Of course, R is not an L2 projection, and so the commutative dia- 
gram property given above can be seen as a generalization of Fortin's one. In fact, 
optimal error estimates in H1 for the rotations and the transverse displacement 
yielding (2.11) follow from this generalized property: 

Lemma 3.2. There exists a constant C, independent of t and h, such that 

I(Tto-lTtlh)((Of f))LH(Q)x2xLH(Q) < Ch I( f)It 

for all (O, f ) Ez L2 (Q) 2x L2 (Q). 
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Proof. Arguments identical to those in [10], combined with the a priori estimate 
(3.1), yield in our case 

(3 5) 110t - thl|l + t 11-7t - -thII0 -< Ch (|I0tII2 + t 11-ftIll + 11|ftI1o 

< Ch 1(O, f) lt, 
and, as a consequence, 

Wt- WthI 1 < Ch( lItII2 + t 11AtIll + 11AtI1o 

< Ch (O,f)lt, 

therefore concluding the proof. C: 

We will use a duality argument to show that, under the same conditions, optimal 
L2 error estimates for the rotations and the transverse displacement also hold. First 
we will prove a lemma which will be useful to bound the consistency terms arising 
from the reduced integration of the shear strain. 

For b E HEj(Q)2, we denote by FN E Hol(Q)2 a piecewise linear average inter- 
polant as defined in [9, 18], satisfying 

(3.6) 4I"I 1 <_ CllV) 1 
and 

(3.7) <I) - V),i? < ChlI112- 

The following estimate holds: 

Lemma 3.3. Given ( E H(div, Q) and ' E Hol(Q)2, we have 

I (C,, 4i-R)I) I < Ch2 11 div (lo 4I' 1 1. 

Proof. FRom property (2.8) it follows that 

rot R'l = P (rot 4" ), 

where P is the L2 projection onto the piecewise constant functions. Now, since 
(rot "I) K E '0, then (rot 4") = P(rot 4"). Hence rot(4'j - R4'1) = 0, and so there 
exists r E H1 (Q) such that 

(3.8) Vr = Rj -R'I; 

actually, we can take r E Hol(Q) because the tangential component of (4'I - R4'1) 
vanishes on &Q. Then, we have 

(3-9) 1((), 4-RVI), = 1((, Vr)| = |(div (, r)I < 1? div (Ilo 0IrIIo. 

On the other hand, from property (2.7) defining R it follows that, for every edge 
? with end points A and B, we have 

r(A) - r(B) = jVr T j(4I - R4'1) T = 0. 

Therefore, since r vanishes on oQ we conclude that r vanishes at all the nodes of 
the triangulation. Hence, since rIK E 12, a standard scaling argument on each 
element K yields 

IIrIIo < ChIIVrIIo, 
which together with (2.9), (3.6), (3.8) and (3.9) allows us to conclude the proof. C 
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Finally, we will prove the main result of this section, property (2.13), concerning 
L2error estimates optimal in order and regularity. Let us remark that this result 
completes the analysis of the MITC elements carried out in [8, 15] for the higher 
order methods. (To simplify the notation, in this lemma we will drop the subscript 
t from /t, Wt, at and from their discrete approximations.) 

Lemma 3.4. Given (O, f) E L2(Q)2 x L2(Q), let (/,w) = Tt(O, f) and (3h, Wh) 

Tth(O, f ). Then there exists a constant C, independent of t and h, such that 

11/3-/hIO + ||W-WhIlo < Ch 1(O, f)lt 

or, equivalently, 

I (Tt - Tth) (O ) L2 (Q)2 x L2 (Q) < Ch2 (0, ) )1t. 

Proof. Subtracting (2.10) from (2.4), we obtain the error equation 

(3.10) 

a(o Oh,q) + (-ah, VV Rq) =(,-Rq), V(q, v) Ez -Uh X Wh, 

with ( =2(Vw-/) and ah =2(Vwh - R/h) 

We will use a duality argument: let (p, u) E Hol (Q)2 x Ho' (Q) be the solution of 

(3.11) 
{ a(r, ho) + (Vv- 8, v) = (v, W-Wh) + (, O-h), V(,, V) E Hol(Q)2 X Hol(Q), 

l6 = 2(Vu - P). 

An a priori estimate analogous to (3.1) is valid for this problem, namely, 

(3.12) 110112+ I U12+ 1110?+t &lllll /<3-C 11-hI10+ 11W-WhI1) 

and by taking r = 0 in (3.11) we have 

(3.13) -div8=w-whh 

By taking v = w- Wh and r, =/3 - Oh in the dual problem (3.11) we have 

IIW -Wh 112 + 11 - Oh 112 W-h0 /3/3 

= a(O -Oh, (P) + (V(W -Wh) - ( - ROh), 6) + (O h- R1 h 6) 

t2 
= a(/3- Oh, ) + -m-ah, 6) + (Oh -R hh, 6), 

and using the error equation (3.10) with (71, v) =(, ut) HIp, u) we obtain 

||W-WhlO +12 +112 

t2; =a(O Oh) 9 O + t27-h 6) -f -7ah uR(9) 

(3.14) 
+ (Oh -RRh,8 ) + (C, -Rb). 

= a(3 - Oh, p - b) + -y - h, 8-R6) 

+ (Oh-Rh,8 ) + (-,s -Rsb), 
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where we have used the commutative diagram property (3.3), R= -t2 (Vt -R) t2 
for the last equality. Now it only remains to estimate the four terms in the last 
expression. 

The first two can be easily bounded. In fact, using the error estimates (3.4) and 
(3.5) and the a priori estimate (3.12) we have 

Ia(/3- Oh,pO-9)I < C|| O-hhII 1 (p- 11 < ClO Oh-/I h 110112 

(3.15) < Ch 21(, f)lt (11-OhIo? + llW- WhK) 

and, from (2.9), (3.5) and (3.12), 

t2 
-z ('-'ah:6 - R6) 

(3.16) < Ct2 <h 0 
-Rjo < Ct2 j-h 0h 81 

< Ch 21(O, f)It (IIO-hIIo+ IW-Wh 0) - 

For the third term in (3.14) we have 

(/h-ROh,8 6)=((/(h -/I) -R(/(h - OI), 6) + (/3 - R/I, 6). 

Now, using successively (2.9), (3.5), (3.7), (3.12) and (3.1), we obtain 

((Oh -/3I) R(3h /-3I)),) 

< C11611o h /30h-I II1 < C11611o h(||1h -/3|1 + ||3- 3II11 

< Ch 2/II-hI 0+ IIW-WhII0 o(),f)It, 

whereas by using Lemma 3.3, (3.13) and (3.1) we have 

I (/1-R R,I) I < Ch2 /31l1l 1i div 011o 

< Ch2I(0,f)It IIW - Whl 0 

Therefore 

(3.17) 1(/h-R/h,) 6)1 < Ch 2(O, f)It( -3/3hIlO + ||W-WhIlO 

The last term in (3.14) can be bounded in an almost identical way, by using (3.4) 
to estimate I I- p 1 and the fact that 

- div a~t = f, in Q 

which follows by taking r= 0 in problem (2.4) and (2.5). 
By so doing we obtain 

(3.18) 1 (-Y,( '- R() I < Ch 21(?, f)It 11| - OhIlO + ||W -WhIlO) - 

Finally, from (3.14), (3.15), (3.16), (3.17) and (3.18), simple algebra allows us to 
conclude the proof. C: 
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-7 

FIGURE 1. Finite element mesh for the square plate: N =8 

4. NUMERICAL EXPERIMENTS 

In this section we summarize the numerical experimentation carried out with our 
method. The aim of these computations was two-fold: to study the performance of 
the method and to discuss the pertinence of the assumptions made in Section 2 to 
prove error estimates. 

To validate our codes and to test the effectiveness of the method to deal with dif- 
ferent boundary conditions, we have first considered a typical benchmark problem: 
the computation of the lowest frequency vibration modes of a square plate. We 
have applied our codes to thin and moderately thick plates and compared the re- 
sults with those reported in [1], in which the same problems were treated by means 
of a method introduced by Huang and Hinton in [12] that is based on biquadratic 
rectangular finite elements with enhanced shear interpolation. 

We have considered a square plate of side length L and two thickness-to-span 
(t/L) ratios of 0.1 (moderately thick) and 0.01 (thin). In each case we have also 
considered four different types of boundary conditions: 

* a clamped plate (as described in Section 2); 
* a hard simply supported plate (i.e., with transversal displacements and rota- 

tions tangential to the boundary, both vanishing on each edge); 
* a plate with mixed boundary conditions (with two opposite edges being hard 

simply supported and the other two clamped); 
* a plate with a free edge (with three clamped edges and the fourth being free, 

i.e., no constraints either on the transversal displacements or on the rotations 
along this edge). 

We denote each case by C-C-C-C, S-S-S-S, S-C-S-C and C-C-C-F, respectively (C 
stands for clamped, S for hard simply supported and F for free edges). 

We have used succesive refinements of a uniform mesh like that in Figure 1, the 
refinement parameter N being the number of element edges on each side of the 
square (hence, h =v~2L/N). 

We have applied our codes to the original unscaled problems analogous to (2.1). 
Thus we have computed approximations of the free vibration angular frequencies 
Wt =tN/At/p~. In order to compare our results with those in [1] we present the 
computed frequencies w h in the following non-dimensional form: 

w L(2(1 ? v)p) 1/2 

m and rn being the numbers of half-waves occurring in the modes shapes in the x 
and y directions, respectively. 



APPROXIMATION OF THE VIBRATION MODES 1459 

Tables 1 and 2 show the four lowest vibration frequencies computed by our 
method with three different meshes (N = 10, 20, 40) and each set of boundary 
conditions for each thickness-to-span ratio (t/L = 0.1 and t/L = 0.01, respectively). 
Each table includes the results obtained by Huang and Hinton's method in [12] 
(column H-H) and also by an analytical approximation obtained by Dawe and 
Roufaeil in [11] (column D-R), both as reported in [1]. In every case we have used 
a Poisson ratio v = 0.3 and different correction factors depending on the boundary 
conditions, but always the same as those used in [1] to allow for the comparison: 
k = 0.8601 for C-C-C-C and C-C-C-F, k = 0.8333 for S-S-S-S and k = 0.822 for S- 
C-S-C. The reported non-dimensional frequencies are independent of the remaining 
geometrical and physical parameters, except for the thickness-to-span ratio. 

Both tables show that the method can be safely used for any of these boundary 
conditions and for thin as well as moderately thick plates. 

The goal of our second experiment was to test if the hypothesis on the uniform 
separation of the spectrum assumed throughout Section 2 is actually necessary. 
For any convex clamped plate, according to Theorem 2.2, the convergence for each 
eigenvalue is quadratic. However, the constants in the error estimates arising in its 
proof blow up with the inverse of the distance from the approximated eigenvalue 
to the rest of the spectrum. 

In order to test if this assumption is essential or if it only arises because of the 
techniques used to prove the theorems, we have considered a clamped rectangular 
steel plate with two very close vibration frequencies, but not exactly coincident. 
We have chosen the following values of the physical and geometric parameters: side 
lengths: 2 m and 1 m; Young modulus: E = 1.43 x 1011 Pa; Poisson ratio: v = 0.35; 
density: p 7.7 x 103 Kg; and correction factor k = 5/6. 

TABLE 1. Lowest non-dimensional vibration frequencies for mod- 
erately thick square plates: t/L = 0.1 

Bound. cond. Mode N =-10 N =-20 N 40 H-H D-R 
C-C-C-C Wil 1.5947 1.5921 1.5913 1.591 1.594 

w21 3.1181 3.0595 3.0441 3.039 3.046 
w12 3.1181 3.0A595 3.0441 3.039 3.046 
W22 4.4477 4.3106 4.2746 4.263 4.285 

S-S-S-S w11 0.9384 0.9323 0.9308 0.930 0.930 
w21 2.2893 2.2366 2.2236 2.219 2.219 
W12 2.2893 2.2366 2.2236 2.219 2.219 
w22 3.5657 3.4450 3.4153 3.405 3.406 

S-C-S-C Wil 1.3060 1.3016 1.3005 1.300 1.302 
w21 2.4664 2.4120 2.3984 2.394 2.398 
w12 2.9617 2.9043 2.8895 2.885 2.888 
w22 4.0126 3.8830 3.8500 3.839 3.852 

C-C-C-F ? 1.0959 1.0848 1.0814 1.081 1.089 

W31 1.7759 1.7525 1.7454 1.744 1.758 
W 12 2.7413 2.6787 2.6612 2.657 2.673 

_ 
_51 

w 3.3186 3.2282 3.2035 3.197 3.216 
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We have considered again two plates of different thickness: one moderately thick 
(t = 0.1 m) and the other thin (t = 0.01 m). For each of them we have computed 
the lowest frequency vibration modes with different successively refined uniform 
meshes analogous to that in Figure 1, the parameter N being now the number of 
edge elements on the shortest side of the plate. 

We have observed that the relative error of the approximated angular frequencies 
w h roughly behaves like 

Wmn 

with an order of convergence a very close to 2 and constants Cmn which depend on 
the numbers of half-waves m and n, but which are almost independent of the thick- 
ness of the plate. We have also observed that these constants remain I2emarkably 
stable even for very close eigenvalues. 

Then, for each mode, we have estimated the exact vibration frequencies Wmn, 
the value of the constants Cmn and the order of convergence a by means of a least 
square fitting of the model 

Jhm /Jmn (I + Cmnh') 

to the approximate frequencies computed on highly refined meshes (N = 16, 32, 
48, 64, 80). 

We summarize our results in Table 3 for the moderately thick plate and in Table 4 
for the thin one. 

It can be observed that the fourth and the fifth eigenvalues in both tables are 
very close (approximately 1% of difference). However the corresponding constants 
Cmn are not larger than those for other eigenvalues. This fact suggests that the 

TABLE 2. Lowest non-dimensional vibration frequencies for thin 
square plates: t/L = 0.01 

Bound. cond. Mode N = 10 N = 20 N = 40 H-H D-R 
C-C-C-C Wil 0.1754 0.1754 0.1754 0.1754 0.1754 

w21 0.3668 0.3599 0.3580 0.3574 0.3576 
w12 0.3668 0.3599 0.3580 0.3574 0.3576 
L022 0.5487 0.5323 0.5279 0.5264 0.5274 

S-S-S-S il 0.0972 0.0965 0.0963 0.0963 0.0963 
L021 0.2486 0.2426 0.2411 0.2406 0.2406 
L012 0.2486 0.2426 0.2411 0.2406 0.2406 
w22 0.4035 0.3893 0.3859 0.3847 0.3848 

S-C-S-C il 0.1417 0.1413 0.1412 0.1411 0.1411 
W21 0.2748 0.2688 0.2673 0.2668 0.2668 
w12 0.3474 0.3402 0.3383 0.3377 0.3377 
w22 0.4814 0.4657 0.4617 0.4604 0.4608 

C-C-C-F 1 0.1182 0.1170 0.1167 0.1166 0.1171 

w32 0.1977 0.1956 0.1950 0.1949 0.1951 
w 212 0.3193 0.3109 0.3086 0.3080 0.3093 

_ _51 w 0.3874 0.3771 0.3744 0.3736 0.3740 
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assumption on the separation of the spectrum made in Section 2 is not really 
necessary. 

Finally, we have made a stringent test of this hypothesis and, at the same time, 
of the stability of the method as t goes to zero. The eigenvalues of Kirchhoff 
equations for a rectangular plate with simply supported boundary conditions are 
exactly known: 

F-r 4 (i2 &n22 
Amn l+l 1 ? 1 m,n=1,2,3,.... 

where a and b are the side lengths of the plate. If we consider the same lengths as 
in the previous experiment (a = 2 m, b = 1 m) the fifth and the sixth eigenvalues 
exactly coincide: A41 = A2. 

In Reissner-Mindlin equations, this double eigenvalue splits into two different 
ones, both converging to this common value and hence getting closer and closer 
to each other as t goes to zero. This phenomenon occurs for both hard and soft 
simply supported plates. We have chosen the latter (i.e., with vanishing transversal 
displacements but no constraint imposed on the rotations along the edges) in order 
to test our method also for these boundary conditions, but similar results are valid 
for hard simply supported plates too. 

We have considered the same values of the physical parameters and successively 
refined uniform meshes like those of the previous experiment. We have computed 
approximations A)4 and A22 on the meshes corresponding to N = 8, 16, 32, 64, for 
decreasing values of the thickness t = 0.1, 0.01, 0.001, 0.0001 m. 

TABLE 3. Lowest vibration frequencies (in rad/s) of a clamped 
moderately thick rectangular plate: 2 m x 1 m, t = 0.1 m 

Mode N = 8 N-16 N-32 a Wmn Cn 

wh1 3035.212 3025.827 3023.214 1.97 3022.317 0.071 
wh1 3918.755 3875.817 3864.488 1.98 3860.631 0.242 

h1 5441.309 5351.958 5328.053 1.97 5319.841 0.365 
h2 7536.399 7333.836 7280.257 1.98 7262.144 0.616 

h41 7630.812 7399.422 7338.489 1.98 7317.795 0.689 
h2 8340.381 8076.061 8006.128 1.98 7982.469 0.731 
h2 9673.715 9326.597 9233.320 1.97 9201.449 0.830 

TABLE 4. Lowest vibration frequencies (in rad/s) of a clamped 
thin rectangular plate: 2 m x I m, t = 0.01 m 

Mode N = 8 N=16 N=32 a Wmn Cmn 
wh7 328.760 327.663 327.347 1.99 327.240 0.086 
wh1 429.627 425.210 424.050 2.00 423.665 0.239 

h1 607.831 598.992 596.605 1.98 595.794 0.336 
h41 878.302 851.895 844.852 1.98 842.468 0.702 

h12 888.126 860.941 853.510 1.98 850.980 0.727 
h22 991.486 957.454 948.250 1.98 945.136 0.819 
h2 1162.198 1121.967 1110.801 1.97 1106.970 0.828 
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We have observed that the relative error of the computed eigenvalues roughly 
behaves again like 

An- A?\mrn 

tm n Cmnhc 
At 

with constants Cmn depending neither on the thickness t nor on the mesh size h 
and orders of convergence a close to 2. 

For each thickness t and both vibration modes, we have estimated the orders 
of convergence a, the constants Cmn and the exact eigenvalues Amn by a least 
square fitting of the computed approximate eigenvalues Amn similar to that of the 
previous experiment. Finally we have also estimated by extrapolation the limit 
values Amn = limt,o Athn. 

We summarize these results for A 41 in Table 5 and for A" in Table 6. 

Two conclusions arise immediately from these tables. First, the constants do 
not deteriorate as the thickness becomes small (and consequently the eigenvalues 
of Reissner-Mindlin equations get closer). Secondly, the method is locking free and 
provides very accurate approximations of the eigenvalues of the Kirchhoff equations, 
in this case, A4 1 A= 2 = 3330.225 x 1010. 

TABLE 5. Fifth eigenvalue A41 (multiplied by 10-10) of Reissner- 
Mindlin equations for a soft simply supported rectangular plate: 
2mxlm 

Thickness N-8 N = 16 N-32 N N-64 a AtY' - C41 

t = 0.1 3032.768 2801.861 2736.523 2718.535 1.83 2711.216 2.817 
t = 0.01 3670.259 3407.412 3341.052 3322.356 1.96 3316.899 3.180 
t = 0.001 3678.556 3416.164 3351.528 3335.415 2.02 3330.245 3.459 
t = 0.0001 3678.639 3416.253 3351.638 3335.572 2.02 3330.405 3.464 
t = 0 (extrap.) 3678.640 3416.254 3351.640 3335.574 2.02 3330.406 3.464 

TABLE 6. Sixth eigenvalue A" (multiplied by 10-10) of Reissner- 
Mindlin equations for a soft simply supported rectangular plate: 
2mxlm 

Thickness N-8 N = 16 N = 32 N = 64 a A 22 C22 

t = 0.1 3039.576 2802.288 2736.243 2718.268 1.85 2711.174 2.994 
t = 0.01 3676.006 3407.927 3341.083 3322.346 1.98 3317.021 3.322 
t = 0.001 3684.276 3416.686 3351.582 3335.421 2.04 3330.376 3.613 
t = 0.0001 3684.359 3416.775 3351.693 3335.579 2.04 3330.536 3.618 
t = 0 (extrap.) 3684.359 3416.776 3351.694 3335.581 2.04 3330.537 3.618 
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