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ALMOST OPTIMAL CONVERGENCE 
OF THE POINT VORTEX METHOD 

FOR VORTEX SHEETS USING NUMERICAL FILTERING 

RUSSEL E. CAFLISCH, THOMAS Y. HOU, AND JOHN LOWENGRUB 

ABSTRACT. Standard numerical methods for the Birkhoff-Rott equation for 
a vortex sheet are unstable due to the amplification of roundoff error by the 
Kelvin-Helmholtz instability. A nonlinear filtering method was used by Krasny 
to eliminate this spurious growth of round-off error and accurately compute 
the Birkhoff-Rott solution essentially up to the time it becomes singular. In 
this paper convergence is proved for the discretized Birkhoff-Rott equation 
with Krasny filtering and simulated roundoff error. The convergence is proved 
for a time almost up to the singularity time of the continuous solution. The 
proof is in an analytic function class and uses a discrete form of the abstract 
Cauchy-Kowalewski theorem. In order for the proof to work almost up to 
the singularity time, the linear and nonlinear parts of the equation, as well 
as the effects of Krasny filtering, are precisely estimated. The technique of 
proof applies directly to other ill-posed problems such as Rayleigh-Taylor un- 
stable interfaces in incompressible, inviscid, and irrotational fluids, as well as 
to Saffman-Taylor unstable interfaces in Hele-Shaw cells. 

1. INTRODUCTION 

Standard numerical methods are generally not convergent for ill-posed problems. 
Typically, in an ill-posed problem, the linear growth rates increase unboundedly 
with increasing wavenumber. Such problems may have short time smooth solutions 
if the Fourier coefficients of the initial data have rapid enough decay (i.e., existence 
in analytic function spaces [5, 12, 23]). However, when standard numerical methods 
are used to compute them, the methods prove to be highly unstable. This is 
because, on the numerical level, the decay of the Fourier coefficients is linited by 
the numerical precision. For example, the Fourier coefficients of the initial data 
decay only until the roundoff level is reached. Roughly speaking, all subsequent 
modes are dominated by roundoff error and do not decay. Since these highest 
modes are amplified the fastest in time, the numerical solution becomes dominated 
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by spurious error and the computation breaks down, even though the true solution 
may still be very smooth. 

A prototypical ill-posed problem, and the one we will consider in this paper, 
is the evolution of a vortex sheet in an incompressible, inviscid, and otherwise 
irrotational fluid. This is a classical problem in fluid dynamics, and the sheet 
undergoes the Kelvin-Helmholtz instability. In this problem, the linear growth rate 
is proportional to the wavenumber of the initial perturbation. Moreover, singularity 
formation appears to be generic, even for vortex sheets initially near equilibrium 
[17, 15, 6, 22, 9]. One motivation for performing numerical simulations of the 
vortex sheet problem is to characterize the types of singularities that can form and 
to determine whether there is in fact a "generic" type. See [9] for a very recent and 
thorough study of singularity formation and evolution for the vortex sheet problem. 

To accurately compute the numerical evolution of a vortex sheet, one must over- 
come the spurious growth of roundoff error. This can be done using a numerical 
filter. However, standard linear filters, such as removing, or damping, a fixed 
band of modes, often "over-smooth" the details of the solution, making singularity 
characterization difficult. Moreover, through nonlinearity, the physically relevant 
spectrum typically expands in time into the region of artificially removed wavenum- 
bers. If this region is fixed independently of the discretization parameters and of 
time, then this type of filtering scheme will no longer converge at such times. On 
the other hand, a nonlinear filtering, introduced to this problem by Krasny [15], 
has proven very successful. The Krasny filter sets equal to zero all Fourier modes 
lying below a certain error tolerance and leaves those lying above the tolerance 
unchanged. The filter is nonlinear, because the modes it removes depend on the 
function to which the filter is applied. Important consequences of this filter are 
that it allows nonlinearity to produce non-zero modes anywhere in the spectrum, 
and that the linear growth rate is determined by the discretization and not the fil- 
ter. Using this nonlinear filter, Krasny [15] and subsequently Shelley [22] were able 
to accurately compute numerical solutions essentially up to the time they become 
singular. 

In this paper we prove that in the presence of simulated roundoff error and 
Krasny filtering, the point vortex method (PVM) and the spectrally accurate modi- 
fied point vortex method (MPVM [22]) both converge to the solution of the Birkhoff- 
Rott equation. The proof is in an analytic function class and uses a discrete form 
of the Cauchy-Kowalewski theorem [7, 18, 19, 21]. The proof is presented for the 
case in which the sheet is initially near equilibrium and convergence is obtained 
nearly up to the singularity time. This result is nearly optimal, and is referred 
to as a "long time" convergence theorem. This is a significant improvement over 
previous convergence theorems for this problem, where the time of convergence was 
restricted to be much less than the singularity time [8, 14]. The near equilibrium 
case was studied on the continuous level in [5, 23]. If the near equilibrium condi- 
tion is violated, convergence is obtained for a short time provided the true solution 
remains smooth. 

The improved result rests on two observations. First, the nonlinear filter must 
be included in the analysis to control the growth of the round-off error in time. We 
note that the previous convergence results did not include the nonlinear filter, as 
the analysis of it was incomplete at that time. Still, this is not enough to obtain 
a "long time" convergence theorem. Second, it also is necessary to separate the 
linear and nonlinear parts of the equation. Both parts of the equation must then 
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be precisely estimated. This is analogous, in spirit, to the continuous analysis of [5], 
where the linear part of the equation is solved exactly (by integration along complex 
characteristics) and precise bounds were obtained for the nonlinear operator. The 
analysis in this paper applies directly to other numerical methods, such as the 
modified point vortex method [22], as well as to other ill-posed problems, such 
as Rayleigh-Taylor unstable interfaces in incoinpressible, inviscid, and irrotational 
fluids, as well as to Saffman-Taylor unstable interfaces in Hele-Shaw cells. Further, 
if surface tension is included so that the problems are well-posed [2, 3], then the 
analysis of Krasny filtering presented here, combined with the analysis presented 
in [4], can be used to prove convergence in that case also. 

The outline of the paper is as follows. In Section 2, the nonlinear filtering is in- 
troduced and a sequence of model equations is analyzed, providing an overall frame- 
work for our analysis. In Section 3, the vortex sheet problem, the PVM and the 
MPVM are introduced, and the convergence theorem is given. In Section 4, the dis- 
crete Cauchy-Kowalewski theorem is presented. In Section 5, the main convergence 
theorem is proved. In Section 6, the discrete Cauchy-Kowalewski theorem with fil- 
tering and roundoff error is proved. A version of the abstract Cauchy-Kowalewski 
theorem for continuous time is presented in Appendix 1. Several technical results 
are deferred to the other two appendices. 

2. NONLINEAR FILTERING AND MODEL PROBLEMS 

The nonlinear filter introduced by Krasny [15] can be considered as a projection 
operator in Fourier space. It is described as follows. Given an error tolerance T, 

the projection operator P is given by 

(2.1) (Pf)k {=~ 
(2 1) \?: l~~~~~~) f Efk < -r. 

If f is a discrete function, then fk is the k-th mode of the discrete Fourier transform 
of f. If f is a continuous function, then the continuous Fourier transform is used. 
The continuous version of Krasny filtering is used in this section for illustration only. 
In all subsequent sections, P is defined through the discrete Fourier transform. 

The filter P is nonlinear because the wavenumbers at which it is applied depend 
on f itself. This filtering method is most effective when fk is rapidly decaying, i.e., 
the function f is periodic and analytic. It also requires high precision computations, 
since the filter level T must be much larger than the round-off error size E,. Typical 
sizes for a double precision computation are E, = 10-15, T = 10-12. 

The usefulness of this nonlinear filtering is that while it prevents the spurious 
growth of round-off error, it allows the linear growth rate to be determined by 
the numerical discretization rather than the filtering scheme, since the filter leaves 
those modes that lie above the tolerance level unchanged. This is most effective for 
nonlinear problems, because wavenumbers grow due to both linear and nonlinear 
interactions. 

In this section, we present a sequence of examples that show the essential effects 
of filtering, the necessity of using the abstract Cauchy-Kowalewski theorem and 
the overall strategy of our convergence proof. We begin with a linear example. 



1468 RUSSEL E. CAFLISCH, THOMAS Y. HOU, AND JOHN LOWENGRUB 

Consider the simple model equation 

(2.2) 
ut Hz 0-o(uj ), 

in which 7H is the Hilbert transform; i.e., ('U) )k = -i sgn(k)it k. Actually, (2.2) 
arises from the linearization of the equations of motion of an interface in an unstably 
stratified Hele-Shaw flow in the absence of surface tension [20]. Take the initial data 
to be iio(k) = e-lklPo so that the solution is 

(2.3) Utk (t) = ek(Pot) 

This solution develops a singularity at time To po, when the exponential decay 
of the Fourier components is lost. Of course, this singularity was "built into" the 
initial condition. 

Now suppose that the initial data is perturbed by simulated roundoff error, and 
solve equation (2.2) both with and without filtering. For simplicity, we will suppose 
there is no roundoff error in the equation. This will make the effect of filtering 
clearer. Moreover, because the equation is linear, the analysis of roundoff error in 
the equation essentially reduces to that given below for the case when initial data 
is perturbed by roundoff error. This is because, in the periodic case where k is an 
integer, multiplication by lkl ensures that if the initial data at mode k lies above 
the roundoff, then mode k lies above the roundoff at all subsequent times. 

The roundoff error is simulated by a perturbation er with e,(k) = E, in each 
Fourier mode (with E, 10-l5). The perturbed problem without filtering is 

(2.4) O~~ftVk~ jkj9k, 
(2.4) {Vk(0) -eHklPo + ?, 

which has solution 

(2.5) Vk(t) = e lkl(po-t) + Erelklt 

Notice that the initial roundoff error is amplified exponentially in time with a rate 
proportional to lkl. 

Now consider the perturbed problem with filtering. It is given by 

&tWk = PM(Wa)}k, 

(2.6) wk(0) = (P{Uo + er})k 

JelklPo + r if e-IklPo + Er > T, 

if e-lklPo + Er < T 

where, for simplicity, we assume that Er > 0. The solution Wk (t) to (2.6) is given 
by 

(2.7) {W-k ek(po-t) + gejkjt if e-klpo +Er > T 

0 ~~~~if e-lklpo + Er < T. 

Moreover, if Er < T, then e-lklPo +Er > T only for I kI < kf, where 

(2.8) kf log . 
Po \T - r 
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Thus, even though the initial roundoff error in (2.7) is amplified exponentially, it 
only influences the solution in the lowest modes lkl < kf. 

Now compare the error (v - u) and (w - u) made in the two approximations. 
For the perturbed problem without filtering, the dominant contribution to (v - u) 
is due to the growth of the largest wavenumber, krnax= N/2, so that 

(2.9) Iv- Nt/- Ee 

The approximation fails when this error is of size 0(1), which occurs when t = T= 
2 log(1/r)N-1, a time that depends on the discretization and roundoff level, rather 
than on the singularity time of the continuous problem. Therefore, if N > 1, then 
T1 < To; i.e., the solution with roundoff error but no filtering diverges from the 
unperturbed solution well before the singularity time. One can see that by taking 
the roundoff error E, to be exponentially small in N, this problem can be overcome. 
However, without the use of special software packages, this is impossible to do in 
real computations. 

On the other hand, for the problem with filtering there are two sources of error. 
For k < kf, the dominant error is due to the roundoff error at the wavenumber kf; 
that is, 

(2.10) | w-u I-re kft = t/ 
-(TgEr)t 

This error remains small, i.e., O(Er/T), when t To = po, which is the singularity 
time for the original problem. For lkl > kf, the dominant contribution to the error 
comes from the smallest wavenumber kf + 1 that is set to zero, i.e., 

(2.11) lw- - e-((kf +1)(po-t) = (-Er)l-t/Poe-(Po-t) = O(T1-t/Po). 

This error becomes 0(1) when t = To. Putting these together, we see that w - u 
is dominated by the error for IkI > kf, and is o(Tl-t/po). 

These estimates for the errors show that the unfiltered problem with roundoff 
is close to the exact problem for only a short time, whereas the filtered problem 
is accurate almost up to the singularity time. This is precisely the behavior that 
has been observed in numerical simulation of the vortex sheet problem with and 
without filtering [15, 22]. 

Now, consider the following nonlinear modification of (2.2) Suppose that E is a 
small parameter, and take 

{nt = [7im,] + EA[r](ca, t), 
(2.12) A[77] = (? (71(()-1(0)3)) dozl, 

Tlk (?) =e-polkl. 

The choice of A[77] is motivated by the expansion of the integral operator in the vor- 
tex sheet problem given in Section 5 for the discrete case (see (5.8)). The parameter 
E arises from rescaling the equation given small initial data. Although we cannot 
write the explicit solution to (2.12), we expect that its solution remains smooth until 
t po, since E may be expected to keep the nonlinearity small. Roughly speaking, 
the operator A[7E] behaves like the product -[7( [] . H[7 ] (also see Section 5). There- 
fore the nonlinearity contains derivatives of the same order as the linear term. This 
fact, combined with the linear ill-posedness of the equation and the nonlocal nature 
of the nonlinear terms, requires the use of the abstract Cauchy-Kowalewski theo- 
rem to prove existence. The abstract Cauchy-Kowalewski theorem is a fundamental 
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theorem on the existence of "analytic" solutions of functional differential equations, 
such as certain integro-differential equations. Actually, solutions are obtained in 
certain more general Banach spaces, but we always use analytic function spaces in 
this paper. For completeness, a precise statement of the continuous version of the 
abstract theorem is given in Appendix 1. 

To prove that solutions to (2.12) exist up to t po, it is instructive to rewrite 
(2.12) by integrating in time and using the linear integrating factor. This gives 

t 

(2.13) 7(Ca, t) = U(c, t) + E A[](C, t, t') dt'l 

where 

(2.14) A[ij](k, t, t') - 

and u is the solution to the linear equation (2.2). Thus, the linear part of the 
equation is integrated exactly. The abstract Cauchy-Kowalewski theorem can then 
be used to show existence of solutions to (2.13) for times arbitrarily close to po for 
E close to 0. We will use a discrete analogue of this exact integration of the linear 
part of the numerical scheme when we prove the convergence of the point vortex 
method for long times in Section 5. 

Now, consider the case with both filtering and roundoff error. Since the equation 
(2.12) is nonlinear, the mode interaction makes the analysis of the effects of filtering 
and roundoff error in the equation (scheme) much more difficult than the case 
where filtering and roundoff error perturb only the initial condition. Therefore, 
we consider equation (2.12) with filtering and roundoff error in both the initial 
condition and the equation 

(t P{NH[(] + EA[(] + er}, 

(2.15) e-fpolkl + ?r if elklPo + ?r < T, 

O otherwise. 

Again, we expect that if the roundoff error er is small (i.e., &jr(k)j < Er), then 
solutions to (2.15) exist for t po as well. The presence of the nonlinear filter- 
ing and roundoff error makes it difficult to apply the abstract Cauchy-Kbwalewski 
theorem directly to obtain this result. This is because additional assumptions are 
required to control the effects of the filtering and roundoff error. Using the ap- 
propriate assumptions, a careful mode by mode analysis shows that (2.15) does in 
fact have solutions existing for t arbitrarily close to Po when , Er are close to 0. 
More specifically, it is shown in Sections 4 and 6 how (on the discrete level) the 
assumptions of the abstract Cauchy-Kowalewski theorem, its statement, and its 
proof must be modified to accomodate numerical filtering and roundoff error. The 
continuous version follows analogously. 

Finally, the difference 79-( can also be analyzed using the Cauchy-Kowalewski 
theorem as follows. Let v = 7 -(; then 

(ca, t) = u(c, t) - w(c, t) + F(c, t) 
(2.16) jt 

+< E (A[ln] o,t t' f- _A[j- v] (a, t, t')) dt' 
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rt 

(2.17) F(k, t) = elkl(t-t')f(k t') dt', 

(2.18) f (a) t) = 'H[(] + EA[(] -P{H[?,] + EA[(j] + et, 

where w is the solution of (2.6). Therefore, treat F as a forcing function by using the 
fact that the solution ( of (2.15) is smooth, a'ppropriate properties of the nonlinear 
operator A, the consistency of the nonlinear filtering operator P, and the fact that 
Iu - W T t/po is smooth; then the abstract Cauchy-Kowalewski theorem can 
be applied to show that smooth solutions to (2.16) exist in a slightly smaller time 
interval than for either 79 or (, but that this solution is, roughly speaking, of size 
Tl-t/po (1 + Er/T). This result is almost optimal, because it shows that the error 
7- ( remains small for t < po, nearly the singularity time of the smooth solution. 

The above scenario provides an outline for the approach we take to prove the 
convergence of the point vortex method in the following sections of this paper. 

3. VORTEX SHEETS AND MAIN RESULT 

The equation governing the motion of a periodic, planar vortex sheet, with single- 
signed vortex sheet strength, is called the Birkhoff-Rott equation and is given by 

(3.1) dt - iPV j cot (c(,')-2( / dav', 

(3.2) z (a, ') =a + so(C), 

in which z(ca, t) is the complex position of the interface and ca is the Lagrangian 
circulation variable. If the initial vortex sheet strength is not single-signed, then 
the circulation variable cannot be used to parametrize the sheet, and the vortex 
sheet strength must be explicitly introduced. Our analysis also applies to this case; 
however we omit it here for simplicity. The explicit inclusion of the vortex sheet 
strength only introduces minor modifications of the analysis presented here, since 
the vortex sheet strength is time independent in the Lagrangian frame. See [16] for 
details. 

In (3.1) the integral is a Cauchy principal value integral, due to the singularity 
at ca' = c, and * denotes the complex conjugate. The periodicity implies that 

(3.3) Z(a>, t) = cl + S(a>, t), 

in which s(ca, t) is 27r-periodic in ca for each t. Since filtering can be applied only 
to functions that are periodic, the operator P will be applied to s, but cannot be 
directly applied to z. For simplicity of notation, however, we denote 

(3.4) Pz= a+ Ps. 

Denote by Zj the discrete approximation of z(aj, t), in which aj = jh = 27rj/N. 
Discretizing in space, leaving time continuous and applying the complex conjugation 
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* yields the following semi-discrete versions of the PVM and MPVMVI: 

N12A (3-5) -E cot N j 2Z) (PVM), dt 47i 2 3 o 

I1=-N/2+1 

2?1 

(3.6) di E-ct ~ N/2M) dt 2iri _S ctj2Z1 MV) 
l+j odd 

Time discrete versions are obtained by applying any consistent time discretization. 
For simplicity, we consider the Euler time discretization. Including roundoff error 
and filtering, the fully discrete versions of (3.5) and (3.6) we consider are given by 

(3.7) Zj+l P - 
_ 4i E cot( ' 2 + A\t . e} (PVM), 

(3.8) 47+1 P - ( t2 i 2E cotE( 2 1 

1=-N/2+1 

3-8) I+nn 
A 

l?j odd )+ At . (MPVM), 

where Zjn is the discrete approximation to z(ca,,t,,) with tn = n\t. The roundoff 
error er is assumed only to satisfy the bound 

1jr(k)l < Er 

uniformly in k, and is otherwise arbitrary. We refer the reader to [15, 22, 8, 14j for 
additional details. 

We now introduce some notation. For p > 0 and f = f(a), define a norm as 
follows: 

+00 

(3.9) lIIJ lIP= E lIfkl_plkI, 
k=-oo 

where fk is the k-th continuous Fourier coefficient of f. Assuming that Ilf Ilp is finite 
is roughly equivalent to assuming that f(ca) is analytic in the strip Iru(c) I < p. 
Denote such analytic function spaces by Bp, i.e., 

(3.10) Bp = {f: fIl Ilp < oo}. 

This norm will only be used in Theorem 3.1 below. All other norms in this paper 
are the discrete version of (3.9) given below. 

Suppose now that f is defined on the grid {aj = 27rj/N} for j = -N/2 + 
1, ... , N/2. Then the discrete norm corresponding to (3.9) is given by 

N/2 

(3.11) If lIP = E Ifk IeplkZ, 
k=-N/2+1 

where fk is the k-th discrete Fourier coefficient of f. This is the norm in which 
convergence is proven. 

In the continuous case, Caflisch and Orellana [5] showed the following near- 
equilibrium result. 
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Theorem 3.1 (Long Time Existence; Caflisch and Orellana). Let c be sufficiently 
small and z(ac, 0) = c + so(ac), with 

(3.12) 110,Soll,jP0 < c and so(O) = 0. 

Then, there exists , > 1 such that for 0 < t < To = 2po/', the Birkhoff-Rott 
equation has an analytic solution z(ac, t) = a"+ s(ac, t) in which the perturbation s 
continues to have 0 mean and remains of size c, i.e., 

(3.13) Oc,Qs(t, c) a (t) < c and (0, t) = 0, 

where -p(t) = po - t/2, and, moreover, s is arbitrarily close to 1 when c is close to 
0. 

For initial data in Bpo, there may be a singularity at position c>* in the complex 
ca plane with p* = Im(ca*)I > po. For such data, linear theory predicts that a 
singularity will occur at time t* = 2p*. It was shown in [6j that, for E small and 
for a restricted set of initial data, the nonlinear and linear solutions are nearly 
identical up to and including the singularity time. Therefore, the time of existence 
To is nearly optimal. 

The main result of this paper is to show that, with roundoff error and filtering, 
both the PVM and the MPVM converge to the types of solutions considered by 
Caflisch and Orellana for a time interval almost up to the singularity time. 

Theorem 3.2 (Almost Optimal Convergence with Roundoff Error and Filtering). 
Assume that z(a, t) = c + s(a, t) is a near equilibrium, periodic solution of the 
Birkhoff-Rott equation satisfying (3.12) and (3.13). Suppose that zjE is the solution 
to either the PVM (3.7) or the MPVM (3.8) with simulated roundoff error and 
filtering. Then, for any 0 < w < 1 there exist constants C and c, independent of 
the numerical parameters but depending on w and z(ac, t), such that 

(3.14) Z - p2(t) ? t + h + C + (PVM), 

(3.15) [ + hn1p2(t) ? C [/\t + e(lw)po/h + 
T + Er (MPVM), 

for a time interval 0 < tn < T2, where tn = n\t and in which 

(3.16) T2 = 2wpo/(1 + C), 

p2(t) = wpo - (1 + c)t/2, 

for , 'At, h, r1-w /At, and Jr/T sufficiently small. Further, 2ZXt/h < 1. 

Remarks. 1. Theorem 3.2 shows that the numerical solutions ijn converge to the 
true solution z(cj, tn) nearly up to the singularity time if the filter level T and 
roundoff level E, are treated as convergence parameters, in addition to the usual 
parameters h and A\t. Note that since the MPVM is spectrally accurate [22], its 
spatial error O(e-(l1-)Po/h) is much smaller than that for the PVM, which is 0(h). 
The convergence proofs for the PVM and MPVM differ only in the details of the 
estimates, such as the consistency estimate described above and the estimate on 
the linear part of the operator. Otherwise, the proofs are identical. The differences 
are pointed out in the proof as they appear. 

2. Although the restriction 2/\t/h < 1 appears to be a Courant-Friedrichs-Lewy 
condition, it actually arises in the analysis of the filtering error and is probably not 
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optimal. For example, in the proof we require that the derivative of the roundoff 
error satisfies jk6,(k)j < T/(2/At). Since we assume that 16,(k)I < cE, the condition 
2/\t/h < 1 naturally arises since E, < . 

3. One could also include roundoff error in the computation of the velocity. 
Consider, for example, the following version of the PVM: 

(3.17) 

n+ h 
p j - t_ E ct( i z+ C-r,j C-r'l)+t z. P icot (z_ =N/-- r} 

1=-N/2+1 

where the functions e, and E, model the effects of roundoff error in the sheet 
positions and discrete velocity (cotangent sum). While this version of the PVM is 
appealing because it is perhaps more realistic than the method given in (3.7), it 
is significantly more difficult to analyze. Nevertheless, the techniques presented in 
this paper can be adapted to prove the convergence of (3.17), although much more 
restrictive, and hence less realistic, assumptions are required because of technical 
difficulties in the proof. 

4. The proof of Theorem 3.2 relies on two versions of the discrete Cauchy- 
Kowalewski theorem, which will be presented in the next section. One version 
includes the effects of numerical filtering and simulated roundoff error. In addition, 
careful estimates must be obtained for the filter P and for the linear part of the 
discrete operator as well as the nonlinear part. The V in the theorem arises 
naturally from the choice of constants in the application of the discrete Cauchy- 
Kowalewski theorem. 

5. If the solution is far from equilibrium, then the careful estimate on the 
nonlinear part of the discrete operator breaks down. It still can be estimated, 
however, but only in a way that results in short time convergence (if the true 
solution is smooth). 

6. The technique of proof can be used to prove similar convergence theorems for 
other ill-posed problems to which the abstract Cauchy-Kowalewski theorem can be 
used to prove existence of analytic solutions in the continuous (spatially and tempo- 
rally) case. Such problems include Rayleigh-Taylor unstable interfaces in inviscid, 
incompressible, and irrotational fluids as well as Saffman-Taylor unstable interfaces 
in a Hele-Shaw cell. See [16, 20, 11, 24, 25, 1], for example. The appropriate con- 
vergence proofs are then obtained by carefully analyzing the particular numerical 
method in question, obtaining an error equation, and then applying the discrete 
Cauchy-Kowalewski theorems to these cases. In order to be sure that the discrete 
Cauchy-Kowalewski theorem can be applied, two things are important. First, it 
must be possible to apply the continuous version to prove existence of analytic 
solutions. Second, it must be possible to write the spatial discretization so that 
it does not explicitly contain discrete derivatives of higher order than 1. This is 
because the Cauchy-Kowalewski theorem applies only to first order operators. One 
consequence of this is that our proof cannot be directly applied to the case with 
surface tension (see [10, 2] for example), as this contains high order derivatives. 
However, the problem with non-zero surface tension is in fact linearly well-posed 
[2], and our analysis of Krasny filtering, presented here, combined with the conver- 
gence analysis presented in [2, 3], can be used to prove convergence in that case as 
well. Since surface tension regularizes the instability, one can always find a large 
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but finite level of precision in which convergence in the presence of roundoff error 
may be proven (at a fixed time T) without Krasny filtering. For example, in the 
vortex sheet problem, one requires that the roundoff error e,. satisfy a condition of 
the form 16,(k)l < e-P(T)/J, where a is the surface tension and p(T) is the analy- 
ticity strip width at time t = T. In the Hele-Shaw problem, an analogous condition 
holds with a replaced by u. Thus, for small a, these conditions may be difficult 
to satisfy, and so filtering or quadruple precision are typically used in the presence 
of small surface tension (e.g., [10]). 

4. THE DISCRETE CAUCHY-KOWALEWSKI THEOREM 

The Cauchy-Kowalewski theorem is a fundamental theorem on the existence 
of analytic solutions to partial differential equations. In its abstract form [18, 
19, 21] it is applicable to integro-differential equation such as the Birkhoff-Rott 
equation (3.1). The abstract form of the theorem is directly applicable to semi- 
discrete equations (with continuous time), and needs only superficial modification 
for equations with discrete time. For completeness, a precise statement of the 
continuous time version is given in Appendix 1, although the proof of Theorem 3.2 
only requires the discrete time versions given in this section. 

Of course, for fully discrete equations the existence of solutionis is trivial, and the 
real point of the theorem is to obtain uniform bounds on the solution. A discrete 
version of the theorem was proved in [8]. However, in that work the linear and 
nonlinear parts were not separated and so the result is not optimal. In this section, 
two versions of the discrete Cauchy-Kowalewski theorem are given. The first is a 
discrete version of the strengthened formulation and simplified proof of the abstract 
Cauchy-Kowalewski theorem by Safonov [21]. It has been modified to serve as a 
result for estiinating perturbations, as needed for the nearly optimal convergence 
result with filtering. The second version modifies the first by allowing the inclusion 
of simulated roundoff error and numerical filtering. Again, a nearly optimal bound 
results. This is necessary for the convergence proof (presented in the next section) 
by providing uniform bounds on the numerical solutions of the PVM and MPVM 
with filtering and roundoff error. 

Consider first the discrete equation without roundoff error and filtering 

(4.1) u?b+l 
= 

Lu + A\tAn [unj 
v 

in which u, = {tu4} is a discrete function in Bp. Suppose that the linear operator 
L satisfies the following. 

(i) L is a linear operator on Bp, and there exists A0 such that for any p' > p > O 
and any u E Bp+AoAt 

(4.2) IlLullp < Jjujjp+-0At, 

and, for anyuE BpI) 

(4.3) 11 (L -I)ullp < AoA\t(p - p)-1 Ilullp/. 

Suppose further that the nonlinear operator A satisfies the following assumptions: 
(ii) For any 0 < p < p' < po - Aon\t, A,, is a continuous mapping of 

{u E BpI, Ilullp/ < R} into Bp. 
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(iii) For any 0 < p < p' < po - AonAt, and for any u,v E BpI with Ilullp/ < R, 
llvllpl' ?R, 

(4.4) IAn[U]-An[v111p < C1?(p'-p)-11 u-vllpl 

where Ci is a constant independent of u, v, p, p', n. It may depend on R. 
(iv) For any 0 < p < po-AonA\t I 

(4.5) 11An[011p< K, 

where K is independent of p and n. 
(v) For any 0 < p < p' < po-Ao(n + I)\t and any u E BpI with Ilullp/ < R, 

(4.6) I1An+l[U] - An[U] IIP < C2(P - P) -1At 

where C2 is independent of p, p', u, n. It may depend on R and boundedly on At 
as A\t - 0. 

Theorem 4.1 (Discrete Cauchy-Kowalewski theorem). Suppose that L and A sat- 
isfy assumptions (i)-(v) for some positive constants po, A0, K, Cl, C2 and R. Then, 
there is a constant A (defined explicitly below) such that for fnt < po/(AA\t) the 
solution un of equation (4.1) satisfies un E BPn and 

(4.7) I|Un||p.ln < R) 

in which Pn = po - A1n1\t and A is given by 

I A + 

(4.8) A = max Ao(l + Ro2l )) 
-Y 1[C021+-Y(l+ R)+2C20P0] 

for any 0 < -y < 1 and Ro > Kpo. 

The bound (4.7) will be used to estimate the difference between the solutions 
of the Birkhoff-Rott equation and the discretized equation, in order to show con- 
vergence of the discretized solutions. Note that in assumption (v), which does not 
appear in the statement of the continuous version, the values of the operator A 
are compared at two different discrete time values n and n + 1. In the application 
to the convergence Theorem 3.2, the n dependence of A will be due to the time 
dependence of the exact solution. The proof of Theorem 4.1 is a simplified version 
of the proof of Theorem 4.2 and will not be presented separately. 

The time interval of existence for the linear operator L alone would be po/Ao. If 
the nonlinear operator A is small, as would be the case if the solution u were small, 
then the constants C1,C2, K and R can be taken to be small. By careful choice 
of these constants, the resulting value of A will be only a small perturbation of AO; 
that is, by separating the linear and nonlinear parts of the equation, we obtain a 
nearly optimal time of existence. 

Now consider the discrete equation with filtering and roundoff error 

V?i+ = P{Lvn + AtAn[vn] + Z\ter}) 
(4.9) vo= given, 

where P is the nonlinear projection operator defined in (2.1) with filter level T and 
e, is the simulated roundoff error which is assumed to satisfy the bound 

(vi) 16,(k)I < E, < T/2A\t for all wavenumbers k. 
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In this theorem, the filter level T is allowed to depend on the wavenumber k. This 
is needed in the convergence proof for the Birkhoff-Rott equation, since the Cauchy- 
Kowalewski theorem will be applied to the derivative of the original equation. 

The linear operator L, in addition to satisfying (i), is also assumed to be diago- 
nalized by the Fourier transform, i.e., 

(vii) Lu(k) = l(k)u(k). 
The nonlinear operator A, is assumed to satisfy assumptions (ii)-(v). Unlike the 

previous case, non-zero initial data, vo, is allowed. This is because the nonlinearity 
of P makes it difficult to absorb the initial data into the equation. The projection 
is performed on the initial data, and it is further assumed to satisfy 

(viii) IIv0oI p0+, < 8R and vo = Pvo0 with 6 < 1 and for some 3> 0. 
F'urther, let H be an arbitrary linear Fourier projection operator such that Hu(k) 

is either 0 or u2(k), and set 0 < -y < 1. Define the constants R2 and R1 such that 

(4.10) R2 > p' sup JJAo[Hvo] IlpO) 
U ri 

(4.11) ~~~~~R, > Po' 
11(L -I)vo lpo. 

A\t 

Note that assumptions (i), (iii), (iv) and (viii) imply that R2 > (8RC1/f3 + K)po 
and R1 > 8(AoR//3)p' satisfy (4.10) and (4.11). 

Theorem 4.2. (Discrete Cauchy-Kowalewski Theorem with Roundoff Error and 
Filtering) Suppose that P is defined by (2.1) and that L, A, vo, e, and T satisfy 
assumptions (i)-(viii) for some positive constants po, Ao, K, Cl, C2, R, R2, R1, 6, 3 
and ?r. Then, there is a constant A (defined explicitly below), such that for n < 

po/(AA\t) the solution Vn of equation (4.9) satisfies vn E BPn and 

(4.12) IIV?IIIPn < R, 

in which Pn = po - AJn \t and A is given by 

26At)(1_-8--_)l2'- Ao0 + (1 + r 0 
)1Rp 

(4.13) A = max { Ao[1 + R 21+Y(1 + 2ErAt)] + ?Po, 

a[Ci12+(1 + Ri + 2ErAt) +2CP + 2 RR ] y Rf2 T2 TR2 P0J 

for any 0 < -y < 1 and t = max(lnl)At. If the filter level T depends on k, then 
T = minor(k). 

The bound (4.12) will be used to estimate the solution of the PVM and MPVM 
with filtering and roundoff error. This requires the additional assumptions (vi)- 
(viii). Furthermore, if 6 << 1 (i.e., smallness of initial condition, see (viii)) and if 

,r << y'T, then A given by (4.13) is close to that given by (4.8), which gives a nearly 
optimal result in the case of filtering and roundoff error. 

Before giving the proof of Theorem 4.2, we first prove the convergence result 
stated in Theorem 3.2. The proof of Theorem 4.2 will be given in Section 6. 

5. CONVERGENCE PROOF 

In this section, the proof of the convergence theorem (Theorem 3.2) is presented. 
We begin by using the discrete Cauchy-Kowalewski theorem (Theorem 4.2) to prove 
uniform bounds for the numerical solution of the point vortex method with roundoff 
error and filtering. This bound plays an important role in the convergence proof 
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by providing a control on the error introduced by the filtering. We treat the PVM 
and MPVM in tandem, pointing out their differences when necessary. 

Define the discrete periodic function sj by sj = z;- aj, where ao- = jh. Then, 
in terms of -j, the PVM and MPVM with roundoff error and filtering are 

(5.1) 

N12 Sgn+1 = p (sn-/\t4 
h 

cott i 
- 

2ai 
+ S 

+ At er) (PVM), 
1=-N/2+ 1 

1#j 

(5.2) 

h N/2 * 
? 

(+1 ::{~T~Z\2hri E cot ( + 2 ) +/\t (MPVM). 
1- N/2+ 1/ 
I+j odd 

It is convenient to expand the cotangent kernel as follows. Extend the discrete 
solution ?j periodically outside the interval (-N/2 + 1 < j < N/2), i.e., j+N = S. 

Then, it is a straightforward computation to see that, in terms of ij a= + sj so 
extended, one gets 

N12 h N(M+1/2) 

(5.3) h cot (i 2 z) = lim 
h 

I=-Nc2+1 1=-N(M+1/2)+l 
1#&j 1#&j 

for the PVM (see [4] for details). We adopt the notation 

(5.4) FPvM[~]~ h 1h N(M+1/2) 1 (5.4) F PVM [] hE _li hm1\E/ 
2wiZ ij - Zl m-oo 2wri z 

1#j 1=-N(Ml+1/2)+l1 
1# j 

The operator FMPVM is analogously defined. 
Define D to be the discrete spectral derivative, i.e., D = ik for -N/2 + 1 < 

k < N/2 and periodically extended to all k. Then, it was shown in [8] that if 
IlDfIlp, < 1/2 and IlDgllp, < 1/2, where 11 IlP is the discrete norm in (8.11), then 

C 
(5.5) ||DF[f] - DF[g]j1p < lDf - Dglip, 

where F is either FPVM or FMPVM. 
We now separate the operators FPVM and FMPVM into their linear and nonlinear 

parts. Write 

(5.6) FPVM = FLt + FNM and FMPVM = FLPVM + FMPVM 

where 

(5.7) FL = 2-i (aE - ( a)2 and FNLM= FPVM - FPVM 

and analogously for the MPVM. 
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If JIDsj p < 1, then FNPLVM can be expanded in the series [8] 

(5.8) FLM [9]= h (O t _ ?)+ -L'NL 3 2wi ~'S(ax - -Ojm 

The operator FMPVM has an analogous expansion. 
Discrete Fourier analysis can be used to analyze both the linear and the nonlinear 

parts of FPVM and FMPVM. In fact, FLPVM is exactly 1/2i times the trapezoidal 
quadrature (omitting the singular point) of the continuous spatial derivative of the 
Hilbert transform 

(5.9) P.fV](a) = - f(a) f' )da' 

applied to periodic functions (see [13]). It is not difficult to see that 

(5.10) FPVM Iki(I ) 

and 

(5.11) FMPVM k 
2i 

for -N/2 + 1 < k < N/2 and periodically extended to all k. See [4] for example. 
This should be contrasted with the continuous case (1 HO,), which has the symbol 

ikl for all k. 
We now drop the PVM, MPVM notation and simply refer to FL and FNL. Both 

the PVM and MPVM schemes can be written as 

(5.12) Sj+ = P{?n + Z\tFL[n]* + ZtFNL [?n] + Ate,} . 

Define 

(5.13) vn+1 D - n+1 

(5.14) Lvn= vn + z\tFL[vn]*, 

(5.15) A[vn] = DFNL[D-1Vn]* = DFNL[?n], 

(5.16) er De e 

Taking a discrete derivative D, i.e., D = ik, of (5.12) yields 

(5.17) vn+1 = P{Lvn + AtA[vn] + AtE1}, 

where P denotes the projection operator with T replaced by T kJ for each Fourier 
mode -N/2 +1 < k < N/2. The reason for this is that D has been passed through 
the original projection P. This makes the equations quasilinear. 

Equation (5.17) is exactly in the form required to apply Theorem 4.2. It remains 
now to verify the assumptions (i)-(viii). 

(1) Since IFL! < Jkl/2, for both the PVM and MPVM, we have 

(5.18) iLvl p = || (I + AtF) [v] Ilp < Vt1p+At/2, 

(5.19) 11(L - I)vllp = \tJFL[v]*Ilp < (p' - p)- llvllp -2 
with p' > p > 0 and v E Bp+At/2, Bp,, as required. This shows that (i) is satisfied 
with A0 = 1/2. 
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(2) We have 11A[u] - A[v]llP = IIDFNL[D-lu]* - DFNL[D-lv]* IIP In [8], it was 
shown that for the PVM if IIullP,, llvllP/ < R < 1/2 then there exists a c > 0 such 
that 

(5.20) IIDFNL[D-lu]*- DFNL[D-lv]* l cR 

where 0 < p < p' and c is independent of u, v, p and p'. The analysis in [8] can be 
straightforwardly extended to the case of the MPVM. This shows that (ii) and (iii) 
are satisfied with Ci = cR and R < 1/2. 

(3) A[0] = 0, so that (iv) is satisfied with K = 0. 
(4) Since A is independent of n, (v) is satisfied with C2 = 0. 
(5) Recall that we assumed that the roundoff error 1r (k)l < E,; this implies 

er(k)j < Cr/h. So, if /\t/h < 1/2, then (vi) is satisfied. 
(6) Condition (vii) is satisfied with I (k) k Ik (1 - IkL) for the PVM and l(k) 
Ik for the MPVM, both appropriately extended. 2i 
(7) Now consider the initial condition. Suppose that vo = Pvo. Further suppose 

that IIV0 IPOIpO < for some 30 > 0. This is essentially equivalent to assuming that 

|10I,SO0o+00o < E. Then, (viii) is satisfied with R = E/E for any 0 < 6 < 1. 
We are now almost ready to apply Theorem 4.2. It remains to choose R1,R2 

according to (4.10) and (4.11). This is a little delicate, as we want to ensure that 
the A = Af resulting from the theorem is a small perturbation of A0 = 1/2. One 
can check that for 6 = 1/2 and -y = 1/2, by choosing 

1/2 C 2 1/2 

(5.21) R, = cp and R2 = 27/2 CP 
2,3o 3 

and requiring that E, E//3o and ?, be small enough, Theorem 4.2 does indeed yield 

(5.22) IlDgnIlPn < 2C, which implies that llsnllpn < 2E, 

where 

(5.23) Pn= po - AfAn/\t 

and Af is a small perturbation of the linear result A0 = 1/2; i.e., 

(5.24) Af = + C, 

where c is a global constant that can be bounded independently of all the numerical 
parameters. The bound (5.22) will be used to control the effect of the filtering error 
in the convergence of the numerical scheme. 

Now we turn to the question of the convergence of the numerical scheme. Fol- 
lowing the analysis in [8], it can be shown that, for either the PVM or MPVM, the 
continuous solution sn = z(aj, nm\t) - aj satisfies the discrete equation 

(5.25) Sin= syn +?nt(FL[sn] ?FNL[Sn]) + t(fyt + fhn)j, 

where FL and FNL are as defined before and f,t, fhn are the temporal and spatial 
consistency errors, respectively. Assuming that -p(t) = po - t/2 and II0,&s(a, t) I -(t) 
< as in Theorem 3.1, the analysis in [8] shows that with p < -(t), the temporal 
error is bounded by 

(5 . 26) P (- (t) - p)3 
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for both the PVM and MPVM. The spatial error is bounded by 

(5.27) IlDfnll < C? or PVM, 
- (-(t) - p)3 ~e-(t)/h, for MPVM. 

The -3 power in the estimates (5.26) and (5.27) is not of much significance and 
is probably not optimal. The bound can be controlled by keeping p sufficiently 
smaller then p. For example, if p < wpo - t/2 with 0 < w < 1, then 

(5.28) Df < [(1t-wA)po]3 

and 

(5.29) IlDfh~l cfrPM 
[(1-w)po]3 e-(1-w)po/h for MPVM 

These can be made arbitrarily small, for any E, by taking A\t and h sufficiently 
small with respect to (1 - w)po and c?. 

Define the error to be diSn -n = zn _ zn. Letting un+1 = Ddn+1 gives the 
error equation 

(5.30) un+1 LuUn + AtAn[Un], 

where L is defined as in (5.14) and the nonlinear operator A,l is given by 

(5.31) An[Un] = DfNL[sn] -DFNL[Sn - D lun]* + n + en + en 

and eZnAt e , e7" denote the temporal, spatial, and filtering errors, respectively. They 
are given by 

(5.32) en = DfRt, 
(5.33) en = Dfhn, 

(5.34) ef i D[Ls?z + AtFNL[9'1] - P{ L + AtFNL[?'I] + A\ter}] . 

Consequently, equation (5.30) is exactly in the form to which Theorem 4.1 may 
be applied once conditions (i)-(v) are verified. This is what we do next. 

(1) Equations (5.18) and (5.19) ensure that (i) is satisfied with A0 =max(Af, ri/2), 
since both Af and r,/2 are larger than 1/2. We need A0 > ri/2 to control the 
discretization errors, as seen above, and we need A0 > Af to control the filtering 
error. This will be made apparent below when we verify (iv). 

(2) Suppose that 0 < w < 1 and 0 < p < p' < wpo - AOn\t, with A0 as above. 
Suppose that IIullP,, Ilvllp/ < R and Ilc,Snllp? < E and R < E < 1/2. Then 

An[U] - An[V]|jp = |lDFNL[Sn - D-lu]* - DFNL[Sn -D-lv]*Ilp 
(5.35) |u-V P 

This follows from the analysis in [8], and shows that (ii) and (iii) are satisfied with 
Cl = cE and R < E < 1/2. 

(3) Consider JHAn[O]H1p. We have the estimate 

(5.36) IlAn[0|1p <eAp + h f 
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For 0 < p < wpo - Aon\t, (5.28) and (5.29) show that 

(ntllp +1 IIniI < CE ft + h, for PVM, (5.37) ie7At + h fel [1-w)po]3 z?t+ e-(1w)p0/l orMPM 

It now remains to estimate the filtering error en. For this, we use the following 
two lemmas, which show that P is consistent both with and without roundoff error. 

Lemma 5.1 (Consistency Property of P). Let 0 < p < p' and assume that f E 
Bp,. Then 

(5.38) 11 (I - P)f IlP < Ilf 1llP/P'(2 + p-1 + (pl - p)-1)T1-P/P' 

If T = T(k), then T = maxk IT(k)l in (5.38). 

Lemma 5.2 (Filtering with Roundoff Error). Let 0 < p < p' and assume that 
f E Bp,I. Let er represent simulated roundoff error, with 16j(k)I < E, < T/2 for all 
k. Two estimates on the filtering in the presence of roundoff error are the following: 

(5.39) IIP(f + er) -Pf IP2 ) log ( I )+ 411ff-P2rf Ipl) 

(5.40) IIP(f + er) - Pf lp < ? [1 + (p' -P)]If llpl + 41If - P2-rf lpl 

in which P2T is the filtering operator of (2.1) with Tr replaced by 2Tr. If T = T(k), 
then in the above T = mink IT(k)l, except in the projections where the dependence 
of T on k is kept. 

A third lemma, which we present but do not actually use, shows the sense in 
which P is a stable operator. 

Lemma 5.3 (Stability Property of P). Let 0 < p < p' and assume that f E p 
andg c Bp. Then 

(5.41) IlPf - Pgllp < Ilf - gllP + lf IlP/P/ (2 + p-1 + (p'- p)-1)T1-P/P' 

If T- = -T(k), then F = maxkT(k) in (5.41). 

The proofs of these three lemmas are given in Appendix 2. 
Now, estimate efn by 

(5.42) 

e I 
(? - p)-1l(I - P)(L?n + Z\tFNL[?n])Ilp 

+ (p - p)- |P(LT + A\tFNL[ ]) - P(Ls + A\tFNL[S ] + Z\ter ) p' 

As we have seen by applying Theorem 4.2 to the discrete filtered equation, ?? 
satisfies the uniform bound 

(5.43) llgnll, < 2c 

with p < po - AfTn\t, where Af = 1/2 + c?. Then, by restricting p and p' in (5.42) 
by 0 < p < p' < wpo - AfTn\t, Lemmas 5.1 and 5.2, together with the estimates 
(5.18)-(5.20), can be applied to show that 

(5.44) | ef|P<cw( +) 
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Putting everything together shows that (iv) is satisfied with 

=w/th1r (PVM), 

K Cw= (/\ t + e(l-w)po/h + T + ) (MPVM). 

Again, c, is a generic constant depending only on w and z(ca, t). 
(5) Finally, it remains to show that (v) is satisfied. We have 

An+[U] - An[U] = DFNL[sn+l]* - DFNL[sn+l -D-u]* 

(5.45) - DFNL[Sn]* + DFNL[Sn- D-lu]* 

+ (en+l - en t) + (en+l - en) + (en+l en). 

It is not difficult to show that 

(5.46) (e t1 + en) + (en+1 - en) + (en+l -en)j1 < Z\LK 

for p < wpo - Ao\t, with K defined as above but with a redefined constant c.. The 
estimate of the remaining terms in (5.45) is more subtle. 

The obvious estimate of these terms is 

DFNL[Sn+l] - DFNL[sn+1l - -DFNL [Sn] + DFNL [Sn-D1zt] I 

< -|DFNL [Sn+ ] -DFNL [Sn] ll| 

(5.47) + IIDFNL[S71+l D- -DFNL[s --D 

< c 
JIDSn+l DSnl, 

C?/\t 
(5.48) < -p,t 

for p < p' < wpo - Ao(n + 1)z\t, provided that Ilullp < R < 1/2. We have further 
used the inequality JID(sn+l s_n)lp < c?/\t, and c is a generic constant. Combining 
(5.48) with (5.46) shows that 

(5.49) -|An+ [U]-An[ < , [E + poK]. 
p/ - p 

This suggests that (v) is satisfied with C2 c= [E+po K]. It turns out, however, that 
this estimate is not sufficient to obtain convergence. The reason is the following. 
When Theorem 4.1 is applied to the error equation (5.30), the result is that the 
error |jUn+l IlP < R for p < wpo - A(n+ 1)Z\t. To obtain convergence, it is necessary 
that R -> 0 as the numerical parameters -> 0. An optimal result is obtained by 
having A be a small perturbation of A0. The actual value of A is given in (4.8) 
of Theorem 4.1. Note that A depends on the quantities po, ty, A0, Ro/R, R/Ro and 
C2/Ro. An optimal A requires the ratios Ro/R, R/Ro and C2/Ro to be small, 
even in the limit as the numerical parameters -? 0. Since R -- 0 in this limit, in 
order for the ratios to be well-defined, we must have Ro -- 0, which implies that 
C2 -+ 0 in this limit as well. However, the value of C2 we obtained above does not 
vanish in the limit, because the first term depends on E, which is independent of 
the numerical parameters. Thus, an optimal result is riot obtained using this value 
of C2. 

This difficulty arises because the terms involving u and n+s sn have been han- 
dled in (5.47) and (5.48) so that the dependence on u (the error) is removed. It 
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is exactly this dependence that is required for C2 -- 0. It turns out that if the 
estimate is not broken up as in (5.47), then the highest order terms involving s'+l 
and s' cancel and only cross terms involving u and sT+l - sn remain! This shows 
that C2 in fact -- 0 as the numerical parameters vanish. The following lemma 
summarizes the result. 

Lemma 5.4 (Time Difference of Nonlinear Operator). Let IIullP < R and IlDf lp, 
IlDgllp < f with R < Rf < 1/3. Then 

(5.50) ||FNL[f] -FNL[f-D1u] -FNL[gl +FNL[g-D u]| Ip < cRftD(f-g) l. 

The constant c is independent of f, g and u. 

The proof uses discrete Fourier analysis to obtain the explicit cancellation, and 
will be presented in Appendix 3. 

Applying Lemma 5.4 with f = sn+1 and g = Sn to (5.45) gives 

(5.51) IIAn+1[U] - An[u] ,p [RIID(s,n+l_-n) II / + AtpoK], 
-p 

where p < p' < wpo - A(n + 1)At, Ilullp, < R and IIDsII-p(t) < E. Using (5.25) and 
the analyticity of the smooth solution s, it is straightforward to show that [8] 

(5.52) ID(sn+1 -_ n)IIP, < cEAt. 

Using (5.52) and (5.51) gives 

(5-53) I|An+ [U] - An[u] 1 <p -p [cRE + poK]. 

This shows that (v) is satisfied with C2 = cRE + K, which -> 0 as the numerical 
parameters vanish, provided that K -> 0. Requiring that K -> 0 places obvious 
constraints on how the numerical parameters may be taken to 0. 

We are now almost ready to apply Theorem 4.1. It remains to determine R, Ro 
and 'y. It is natural to take 

(5.54) - w. 

As in the filtering case, the choices of R and Ro are a little delicate, since we want 
to ensure both that the method converges (i.e., R -- 0) and that the resulting A is 
a small perturbation of A0. One can check that if we take 

(5.55) Ro = Kp/IfIE and R = K/Ew 

and require K/(Ew) < 1/2 together with the appropriate smallness conditions on 
At, h, T, Er, then Theorem 4.1 yields 

/ 
T1-wo 

\ 

(5.56) 11D(sn+1 - n+)ll+ C (At?+h + -j (PVM), Pn?i - ~~~At T/ 

(5.57) 1D(s1- fl?) + At + e(lw)po/h + r + ) (MPVM), - ~~~~~~tW T 

where 

(5.58) Pn+1 =wpo-A(n+ 1)/At and A = 1/2+c, c 

since A0 = max(Af, ,/2) = 1/2 + cE for some c. Finally, since Il -n+1 -n+1 Pn+1 < 

11 D(sn+l - n+?) 11 Pn+lt this completes the proof of Theorem 3.2, which is the main 
result of this work. 
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6. PROOF OF THE DISCRETE CAUCHY-KOWALEWSKI THEOREM 
WITH ROUNDOFF ERROR AND FILTERING 

In this section, the proof of Theorem 4.2 is presented. This theorem provides 
uniform bounds for the numerical solution taking into account roundoff error and 
filtering. The proof of Theorem 4.2 is performed by carefully estimating each 
wavenumber separately and using induction. 

Since the projection is applied to the right hand side of (4.9), the nth iterate vn 
satisfies 

(6.1) I9M(k) > T or Mk) = 0. 

This implies that there are three cases for the next iterate: 

(a) in+I(k) = 0, 

(b) KIv(k) > T and 9(k) = 0, 
(c) I?n+l(k) > T and K(k) > T. 

Cases (b) and (c) can be used to estimate the size of the Fourier coefficients of 
the roundoff error in terms of the nonlinear term An and the previous iterate vn, 
respectively. Consider (b) first. This implies that 

(6.2) |An [vn] (k) + er (k) I > T/At. 

Further, assumption (vi) implies that 
T 

(6.3) 1A77vn1(k)I > 2AtL 

Again using (vi), this implies that 

2E,At-- (6.4) |e-r (k) I < I An [Vn] (k) . 
T 

For case (c), it is straightforward to see that 

(6.5) 16, (k) I < Er I vn (k) 1 . 
T 

These bounds will be important in the proof. 
Now, let 0 < 'y < 1, let H be a linear Fourier projection operator as described 

above, let m < n, let A be as in (4.13), and let R2,R1 be as in (4.10) and (4.11). 
Further, let p be such that 

(6.6) 0 < p < po-AmAt. 

Suppose, by way of induction, that 

(6.7) lvm llp < R, 

(6.8) (P0 - p - AmAt) Am[IHvm]IIp < R2, 

(6.9) (Po - p - AmAt)' (L - I)vm 1 p < At . RI 

for any Fourier filter H. It is straightforward to see that (6.7)-(6.9) hold at m = 0 
by assumption (viii) on the initial data and the definitions of R2 and RI. The proof 
will be complete when it is shown that (6.7)-(6.9) hold for m = n + 1. 

The bound (6.7) will be established first. For each wavenumber k, define mk to 
be the largest integer such that 

(6.10) 0O<mk<n+l and Vmk(k)=O. 
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On the other hand, if 

(6.11) im(k) # 0 for all 0 < m < n +1, 

then set mk 0. Given Mk, the solution vn+1 can be written as follows: 
n 

(6.12) ?n+l (k) = E lnm(-m?m+1 -_lm) + lnI-Mk Vmk, 

m=mk 

where L = 1. Roughly speaking, mk measures the amount of time a mode is 
inactive. Note that if mk :& 0, then the last term in (6.12) vanishes. Each Fourier 
mode of vn+1 will be estimated separately to establish (6.7). In this analysis, the 
effect of the filter P will be written out explicitly, so that the nonlinearity of P can 
be handled. There are now two cases to consider. 

Case 1. vn+l(k) = 0. In this case, the bound is trivial. 

Case 2. Ivn+l(k) > T. Estimate each term in (6.12). Since Ivm+?(k) > T, then 
the filter has no effect and the equation for vm+1 is 

(6.13) m+j1 = 13m + At(Am[vm] + er). 

Consider first the subcase n > m > mk or n >_ m > mk if mk = 0. This implies 
that 

(6 .14) |IVm(k) I > T) 

since otherwise the solutions would be set equal to zero by the filter. Therefore, 
case (c) applies, to give 

Im+j 
- 1Uml < At( Am[vm]l + 16rl) 

(6.15) ?At (K|Am1 +vm). 

T 

Now, consider the subcase m = mk with mk :& 0. This implies that 

(6.16) IVmk+? I > T and vm = 0, 

which is exactly case (b). This implies that 

|Vmk? -lUVmkI <?At(IArk[Vmkl + lr) 

(6.17) <A/\t ( ?2At) Amk[Vmkl 

Finally, it remains to consider the term imc. If mk = 0, then this term is equal to 
0. Otherwise, it is i0. This completes the analysis of Case 2. 

Now, combining the two cases and (6.12), (6.15) and (6.17), an overestimate for 
(6.12) is obtained: 

(6.18) 

k /\t E Ill-nm [(I + 2 Am[vm](k) + 
r 

im (k)] + Illn1 

If we recall that the p-norm is given by 

(6.19) IIvIIp = E ep'k, Iv(k) , 
k 
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then (6.18) implies that 

(6.20) 
nAVi 2E,AtY1~AV 

Vn+1 lp < At I + ) n-mAm[vm]llp + Er L mVm l p + I Tn+h?lvl p 
T ~~~~~T 

< +AtZ [(\1 + 
T 

2A Am[Vm]llp+Ao(n-m)At + T ||Vmllp+Ao(n-m)At 

+ llVO llp+Ao(n+1)At 

using assumption (i). Let p < Pn = po-AnAt. Since A > AO, then p+Ao(n-m)At < 

po - AmAt for m < n. So, the induction hypothesis (6.8) implies that 

(6.21) tA P+kin] tp?Ao(m-m)At 
- 

[Po - (p + Ao(n - m)At) - AmAt]< 

Writing A Ao + A' and using (6.21) and the induction hypothesis (6.7) in (6.20) 

gives 

(6.22) 

2( At R A (p--tn\tp// + (6 + -rt) Rv .n+ ?i (< I+ 
IFAt 

R2A E (po - p - A0nAt - A'mAt>Y +y 
(+ T) 

in which t = nAt, where we have also used assumption (viii). Estimate the sum in 

(6.22) by the integral inequality 

n 1nAt 
At E 1 j p - p - AonAt - A't) 

-- dt 
(6.23) mn=0 (PO - P - AonAt - A'mAt)<y - dt 

p0-? 
- A'(1 - a 

Now, using (6.23) in (6.22) gives 

(6.24) ,. ? (1 + 2 c;AL A'() + (6 + t) R. 

Therefore, since 

(6.25) A' = A-Ao> 1 + AT) (I 6 _ T t> Rt(- 

by (4.13), the estimate 

(6.26) ||vn+l?|Pn < R 

is proved. Since Pn+? < Pn, this proves the induction hypothesis (6.7) for m n + 
and in fact proves the theorem once the n + 1 induction step is proved for (6.8) and 

(6.9). 

So we turn to the proof of (6.8) for m = n + 1. Begin by defining p' to be 

/ 1 
(6.27) p =(Po - AnAt + p) 

for any p. Thus, 

(6.28) 0 < p < po-A(n + l)At =? p < p' < po-AnAt. 



1488 RUSSEL E. CAFLISCH, THOMAS Y. HOU, AND JOHN LOWENGRUB 

Further, for any Fourier projection HI define the Fourier projections H7,?+i and I' 
by 

(6.29) Hn+l = {~~~ if vbn+1 = 0) 

( otherwise, 

(6.30) H' Hn+lH 

Since p' < Pn, (6.26) implies that Iv In+ Ip' < R. Thus we may apply (v), as well 
as (iii) and the induction hypothesis (6.8) for H' on vn, to obtain 

IlAn+1 [IlVn+l] IIP = |IAn+1 [11/Vn+l] IIP 
? IlAn[II'Vn] IIP + IlAn+1 [1I/Vn+l - An[II'Vn+l] IIP 

(6.31) + 1An[ITVn+1] - An[ITVnl] lp 
< _IIA Vn_llp_+ -IlVi + C2At 

The middle term is handled by estimating each Fourier mode separately as follows. 
There are two cases. 

Case 1. ~n+l (k) = 0. By the definition of I', this implies that 

(6.32) Hvn+1 (k) - Tvn (k) = 0, 

so the bound is trivial. 

Case 2. An+I(k) 7& 0. This implies that lbn+I(k)I > T, so that 

(6.33) bn+l (k) = l1n(k) + AtAn[Vn](k) + At&^r(k). 

For such k, 

(6.34) bn+l (k) -Vn (k) =(1 - 1)n (k) + AtA [Vn] (k) + Ater (k). 

The roundoff error 6,(k) is estimated by combining cases (b) and (c) to give 

(6.35) 16r(k)I < r (lvn(k)I + 2AtIAn[Vn](k) ) 
T 

Now, combine (6.34) and (6.35) and use the linearity of H' to estimate the middle 
term in (6.31) by 

|IvI Vn+I - H'VnIIp, < I IVn+ - vnP, 

(6-36) ~~~~2&rAtN CAt 

(6.36) < ?1 (L - I)vn llp + At + 
T) 

IAn [vn] lp + 
T 

l vn liP 

This completes the analysis of Case 2. 

Applying the induction hypotheses (6.7)-(6.9) and the two cases with the defi- 
nition of p' from (6.27) to (6.31) we get 

(6.37) 

IAn+l [llvn+l ]llp < R2(PO - p - AnAt)>-- 

+ [C 2rAt R+2c2At] (po-p-AnAt)-' 

+ AtC121+- [R, ++ rA) R2 (pO - p - AnAt)->--. 
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Now, anlother integral inequality implies that 

(6.38) 

(po - p - A(n + 1)/t)A-t > (po - p - AnAt)>-- + tyAAt(po - p - AnAt)-1-. 
Using (6.38) in (6.37) and the inequality 

(6.39) yA?C>21 [R + C1+ 'Er )]+2C20 +C 2Cr Rpo 
ft2 T ~I R2 T ft2 

as guaranteed by (4.13), yields the bound 

(6.40) (po - p - A(n + 1)At)jI An+I [I[vn+I] I ? R2 

with 0 < p < po - A(n + 1)/At. This proves the n + 1 induction step for (6.8). 
It now remains to prove (6.9) for Tr = n+1. Again, we estimate each wavenumber 

individually. As before, there are two cases. 

Case 1. v71+1 (k) 0. This implies that (I- 1) n+ 1(k) = 0, and the bound is trivial. 

Case 2. vn+i (k) 0 0. As before, this implies that 

(6.41) ?n+i (k) = lvn (k) + AtAn [vn] (k) + Ater (k). 

This implies that 

(6.42) (I -l)n+I (k) = (I-l )lWn(k) + /\t(l-l 1)An [vn] (k) + /\t(l -l )er (k). 

Now, using (b) and (c) gives the bound 

(6.43) 
(1-l )n+1 (k)l| < | (-l 1Wn (k) l 

/ Cr E,At 

+ At (1 + 2 ) (|- 1)An[vn](k)l + T (1 - 1)in(k)j 

This completes the analysis of Case 2. 

Combining Cases 1 and 2, the induction hypotheses, assumption (i) and the 
definition of p' gives us the bound 

(6.44) 

(L - I)vn+l Ilp < AtRf (po - p - (An + Ao)At)- + tR (po - p - ArAt)Y 
T 

+ At2A AR221+y + 2ErAt) (p - p - AnAt)-1-. 

Another integral inequality gives 

(6.45) (po - p - A(n + 1)At)- > (po - p - (An + Ao)At)-- 

+ Aty(A - AO)(po - p - (An + Ao) At)-<-y 

Thus, using (6.45) in (6.44) as well as the fact that 

(6.46) A > Ao + AR 1 + 
2At 

2+1 + Er PO 
-yft1 TT 

as guaranteed by (4.13), we get the bound 

(6.47) (PO - p - A(n + 1)At)At>l(L - I)Vn+l Ip P <A t R1 

with 0 < p < po - A(n + 1)At. This proves the n + 1 induction step for (6.9) and 
completes the proof of Theorem 4.2. 
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7. APPENDIX 1: ABSTRACT CAUCHY-KOWALEWSKI THEOREM, 
CONTINUOUS VERSION 

In this appendix, a time continuous version of the abstract Cauchy-Kowalewski 
theorem is presented. This version is a modification of the strengthened formulation 
of Safonov [21] and is specialized for perturbative problems. See also [18, 19, 7]. 
Consider the equation 

t 

(7.1) u(aU, t) = E J 

- 
N[u](a, t, tl) dtl. 

Let Bp be a family of Banach spaces for 0 < p < po with norm 11 IlP such that 

Bp, C Bp and Ilullp < Ilullp, for 0 < p < p'. Suppose that N satisfies the following 
assumptions: 

(A) For any 0 < p < P' <po - Aot and t > t', 

(7.2) IiN[u](,t,t')jjp < ?jN[u](.,t)jjp+Ao(t-t'), 

where N is a continuous mapping from {u E BpI, IIullP, < R} into Bp. 
Moreover, N satisfies 
(B) For any 0 < p < p' < Po- Aot and for any u,v with u,v E BpI and 

I|ul|P,K IIvlip' < R, there exists a constant C such that 

(7.3) IIN[u](., t) -N[v](., t)Ilp < , 1 u- v 

where C is independent of u, v, p, p', t. 
(C) Finally, suppose that N[O]((a, t) is a continuous function of t for 0 < t < po/Ao 

with values in Bp for p < po such that 

(7.4) jN[0](.,t)j p < K 

for p < po - Aot and some K independent of t and p. 

Theorem 7.1 (Abstract Cauchy-Kowalewski Theorem). For any R, K, C, Po, AO 
and 0 < p3 < 1 such that (A)-(C) are satisfied, there exist A and a unique so- 
lution u to (7.1) such that 

(7.5) IIullP < R 

for 0 < p < po - At and 

(7.6) A=max{Ao+ 0(id) Ao + 2 2j}' 

where Ro > Kpoa and C is the constant in assumption (B). 

The proof of Theorem 7.1 closely follows that presented in [21], and we do not 
give it here. 

Finally, this theorem can be applied to the nonlinear model problems (2.13) and 
(2.16) to show existence of solutions as follows. Take the analytic norm 

| IP=E eplkl lfk | (7.7) lfK Ze'1 
k 

and differentiate (2.13) and (2.16) to obtain the equations in quasi-linear form. 
Further, shift the solutions by u and u - w + F, respectively. That is, take the new 
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variable X = - uO, for (2.13) and X = vOg-uc, + w, - Fo, for (2.16). In addition, 
suppose that the mean of the initial data q(O, t) and v(O, t) is exactly 0. Then, 

(7.8) N[x] = &A[&1x +u], where & 1x = U-U 

for (2.13) and 

(7.9) N[x] =& 0A[0&Xx+u-w+F1, where 1X= v-u+w-F, 
for (2.16). Then, it can be shown that assumptions (A)-(C) are satisfied for some 
R, C, K and with po replaced by -YjPo for (2.13) and %Y2Po for (2.16), where 0 < -Yi < 
%Y2 < 1. The reason for this is that the initial conditions given for these equations 
in Section 2 are in Bp for p < po, i.e., lk (0) = e-PoIkl is not in Bpo 

8. APPENDIX 2: PROOF OF FILTERING LEMMAS 

In this section, the proofs of Lemmas 5.1-5.3 are given. 

Proof of Lemma 5.1. By the definition of P, we have 

(8.1) )ffk 0, if lfkl > T. 

To bound lftk when lIkl < T, use lIkl < |IfjIp,ep'jIkj if ep'Ikl < u- (i.e., if 

Ilog oI/p' < Ik ), and use IfkI < T if cr < e-P'ki (i.e., if Ilogo-I/p' > lkl). It 
follows that 

11(I-P)fllp< E lfkleplk1 

If k J<T 

< S lf llp,e(P-p')/k + 5 plk 
(8.2) 1logoj/p'<jkj jkj<jlogaj/p' 

1 - a b -i 

lif IIP,sJ1-P/P' (1 +(p p)-) + T-P/P (1+ p-1), 

in which 

(8.3) n = I logo I/p', a = e(P-P)t b eP. 

Choose = T/ llf Ilp', to obtain 

(8.4) -(I-P)f II ? (2 + p-1 + (P' - p)1) llf lPP'T1-P/P'. 

This proves Lemma 5.1. If T = T(k), then in the above T = maXk T(k). 

Proof of Lemma 5.2. Decompose the sum IIP(f + er) - Pf lp into three parts, as 

(5 P(f + e Tr) 
- Pf+l(p 

(8.5) 1 t /\I 
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In the first sum, P(f + e ) (k)-pf (k) = er (k), so that p(f + e ) (k)-pf (k) < 

Er . Moreover, 2T < lIk ?< If Ilpie-P'lkl, so that I k < k1 plog( If Ip,/2T). Thus 

Z epiki P(f + e )(k) - pf(k)l < r E (lif ip,/2T)P/P 

(8.6) jfk 1>2r k<kl 

< Er 
(l||f || pX/2T)P/P' log(Il|f ||lp,/2T) . 

p/ 
A cruder bound on this sum is 

E epIkIE7 3 < -E eP1k'I1kI < 2 IlflP, E e-(p p)lk3 

(8.7) fkl>2T 

< 27 (1 + (p - P)')Ilf llP'- 

In the second sum, P(f + er)(k) = pf(k) = 0. Thus, it contributes nothing. 

In the third sum, a straightforward argument shows that I p(f + er) (k) -pf (k) < 

2T < 4ifk I = 41 (f-P-2f) (k) 1. Thus 

(8.8) E < 411f - P2Tf Ilp. 
T/2<1 f^I<2T 

This proves Lemma 5.2. If T = T(k), then in the above T = mink T(k) except in 
the projection, where the dependence of T upon k is kept. 

Proof of Lemma 5.3. Decompose the norm IPf - Pgll into four parts, as 

IlPf - Pgll = IlPf - pgll(l) + IlPf _ Pgll(2) 
(8.9) 

+ IlPf - Pgll(3) + IlPf _ Pgll(4) 
in which 

(8.10) plPf - Pg $) = f(k) -jpg(k) 
keKi 

with 

K, = {k: If(k)|I > T, 1g(k) I > TIJ} 

K2 = {k: If(k)| < T, 1g(k)I < TI} 
(8.11) 

K3 = {k: If(k)| < T, 19(k)I > TIJ 

K4 = {k: If(k)|I > T, 1g(k) I < TIJ. 

For k e K1, we have Pf = f and Pg = g, so that 

(8.12) lPf - pgll( ) = lif - gll(I) 
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For k e K2, we have Pf = 0 and Pg = 0, so that 

(8.13) IlPf - pg1(2) = 0. 

For k e K3, we have Pf = 0 and Pg = g, so that 

gIPf - Pgll(3) = 11g1j(3) < Ilf _ g1j(3) + Ilf _ pf 1(3) 
(8.14) 

? Hlf - g113) + (Hffl@())P/P' (2 + p-1 + (pl - p)-1)71-P/P' 

For k E K4, we have 

(8.15) glPf - Pglj(4) = Ilf 114) = Si + S2, 

in which S1 is the sum over k e K4 satisfying e-P'lkl < cr and S2 is the sum over k e 
K4 satisfying eP'IkI > c. If k e K4 and Ik > I logol/p', then If(k)I < lf4)eP'IkI 
and 

Sl < 11 f 11(4) E -(p-p)lkl P/?Hf~ E 
(8.16) jk>j logal/p' 

< Ilf 1(4i)( + (p' _ p)-1) l-p/p' 

Similarly, for k e K4 we have e-P'lkl > cr (and Tr> >IkD), so that 

S2 < : (lfk-k I+ r)ePIk 
e-p' Ikl >T,r>jgk j 

(8.17) < lf - g14) + T eplkl 

Jkl<K log ol/p' 

< Ilf - g1j(4) + Tr-P/P'(1 + p-1). 

Choose P- = T/Hf4) as above, to obtain 

(8.18) IlPf - Pg1j(4) < Ilf - g1j(4) + (2 + p1 + (p, _ p)1j)jjf 1(4)p/pT1-p/p. 

Combine these four sums together to obtain Lemma 5.3. If r = r(k), then in 
the above r = maxk r(k). 

9. APPENDIX 3: PROOF OF TIME DIFFERENCE 

OF A NONLINEAR OPERATOR 

In this section, Lemma 5.4 is proved by explicitly analyzing the discrete Fourier 
transform of the nonlinear operator. We begin by writing 

00 

(9.1) FNL [f] = E (-1) mFNL [f] I 

m=2 
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where 

(9.2) FNL [f]j = 2>ri F (0j_ >m+ 
1:Aj 

using the PVM. Since analogous expressions can obtained for the MPVM, we focus 
on the PVM here. A straightforward computation shows that 

(9 3) FNL[f]k = ( ) 
kl + .+kr>-=k r=1 

where 

(9.4) I(k1r ..*. ) km) k ) =27 F i 8 rI: (, 1 ) 
1/AO r=1 

Using the analysis presented in [8], it is straightforward to show that 

m 
(9.5) I(k I..km)k)I < ?ifJ kr,1 

r=1 

where c is independent of all kr and m. Consequently, one gets 

FNL [f] k- FNL[f - V]k- FNL [YI k + FNL[9 - Vlk 

(9S6) E I(ki, . . .km) k) 
kl + .+kr,,=k 

m m m m 

i k, -1 (ik, -Vkr, - II k, + II (gk, 'bkr 
rl r=l r=l r=l 

It is clear now that the terms flrmI fk,, flrm,= gkr, jmrm=j vk, cancel in the bracketed 
term on the RHS of (9.6), leaving only the cross terms remaining. For example, if 
m = 2, this yields 

(9 7) 'bk2 (fk-l - gkl) + Vkj (Yk2 - gk2 )) 

and for m = 3 one gets 

'bk3 fk 2(fk 1 
- gkj + bk3Jkj( 2 - 

gk2) 
- 'kl'bk2( 3 

- gk3) 

(9.8) + Vbkl ( fk2 -gkM k3 -Vk3 ) + Vkj gk2 ( fk3 
- 

kJ 

+ V)k2 [( fkl -gk ( k3 -Vk3 ) + gkj ( fk3 
- 

k3 ) - 

The higher order terms are handled analogously, and, after tedious computation, 
exact formulae can be obtained. 
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Now, using (9.5) and (9.7), one gets 

|IFNL[f]-FNL[f-V] -FNL[gl+FNL[g-V] lp 

? cEeP1 E [| klkl |k2 (fk2 -k2 ) I + k2ik2 kl(fk1 -Yk1) I 
lkl kl+k2=k 

(9 9) + lH0 +Ee 1kH.O.T.1 
lkl 

? 2cjjDvjjpjjD(f_g)Ilp + E ePlkl I H. O. T. 1) 
lkl 

where H. 0. T. stands for the higher order terms. A straightforward but tedious 

computation shows that if IlDvllp < R and IlDf lp, IlDf lp < f with R I R < , 

then the H. 0. T. are estimated by 

(9.10) 
00 

S epk I H. 0. T. I < cIlDf Ilp ID(f - g) 11P ftm-2 [2(m - 1) + (m + 3)2m-21 
Ikl m=3 

< cjjDvLjpjjD(f-g)j1p, 

where c is independent of v, f, g, since 
00 [f+ 6 28 1 

(9.11) 5 Rm-2 [2(m -1) + (m + 3)2 m2 < R '(1 f) 2 +(12\21 C 
Finally, putting (9.9) together with (9.10) and (9.11) proves Lemma 5.4. 
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