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MESHLESS GALERKIN METHODS 
USING RADIAL BASIS FUNCTIONS 

HOLGER WENDLAND 

ABSTRACT. We combine the theory of radial basis functions with the field 
of Galerkin methods to solve partial differential equations. After a general 
description of the method we show convergence and derive error estimates for 
smooth problems in arbitrary dimensions. 

1. INTRODUCTION 

Interpolation by radial basis functions has become a powerful tool in multivariate 
approximation theory, especially since compactly supported radial basis functions 
are available. We shall collect the necessary results in the third section, but refer 
the reader to the survey articles [6, 8, 10, 11] for details. 

In this paper we describe how radial basis functions can be used to solve elliptic 
partial differential equations numerically. We choose the same Galerkin approach 
as in classical finite element methods. The results presented here are comparable 
to those of classical FEM. 

Since, in contrast to FEM, the effort for the construction of the finite dimensional 
subspace using radial basis functions is independent of the current space dimension, 
it is in principle possible to solve high dimensional problems as they occur in quan- 
tum mechanics (cf. [9]). For example, the n-body problem of n interacting particles 
leads in the stationary case to a time-independent Schr6dinger equation on IR3. 
Under certain additional conditions on the potential it is possible to approximate 
the solution of this global problem by a solution of a boundary value problem on a 
finite domain. 

But even in two or three space dimensions it could be reasonable to use our 
method: Classical finite element methods spend a lot of time on technical details 
concerning the mesh, especially for time-dependent problems with moving bound- 
aries. The mesh has to be generated, adapted to singularities of the solution, and 
adapted to the changes of the domain. Meshless methods don't need to handle such 
problems because they only use unrelated centers for the discretisation. See [2] for 
an overview of general meshless methods and applications in engineering. Finally, 
very smooth solutions can be constructed as simply as less smooth solutions. 

In the next section we describe in more detail the partial differential equation we 
are interested in. We restrict ourselves to second order partial differential equations, 
but a generalization to higher order equations can be done in an obvious way. As a 
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reference for finite element methods or elliptic partial differential equations we give 

[3]. 
In the third section we give a short summary of the theory of radial basis func- 

tion interpolation. In the fourth section we show how this theory can be used for 
Galerkin or Rayleigh-Ritz approximation, and derive results concerning a special 
kind of basis function, which generates SobolQv space as its native space. In this 
situation our results are comparable to those of classical finite element methods. 

In the last section we generalize these results to more general basis functions, 
which allows us to give approximation orders even if the exact smoothness of the 
solution is unknown. 

2. PDE AND GALERKIN METHODS 

For a bounded domain Q with C1-boundary DQ we consider problems of the 
form 

(2.1) - x- aij i) (x)+c(x)u(x) = f(x), x EQ, 

d Du(x) 
(2.2) E aj(x) t'v(x) +h(x)u(x) = g(x), x E OQ, 

i,ji= 

where aij,cLo(Q), i,j 1... ,n, f E L2(Q), aij,h E Loo(DQ), g E L2(DQ) and 
v denotes the unit normal vector to the boundary DQ. The matrix A(x) = (a-j(x)) 
is assumed to be uniformly elliptic on Q, i.e. there is a constant a such that for all 
x E Q and all a E Rd 

d d 

7E A2 < ai(x)aiap 
j=1 i,j=l 

We further require that c > 0 and h > 0, and that at least one of them is uniformly 
bounded away from zero on a subset of nonzero measure of Q or DQ, respectively. 

Under these asumptions the variational approach leads to the strictly coercive 
and continuous bilinear form 

(2.3) a(u, v) aD Dv ij dxj huvdS 

on V x V with V = W2(Q), and to the continuous linear form 

F(v) Jfvdx + gvdS. 

on V = W2 (Q). The corresponding variational problem 

(2.4) find u E W2 (Q) such that a(u, v) = F(v) for all v E W2 (Q) 

has a unique solution by the Lax-Milgram theory. 
This approach allows us to work with the whole Sobolev space W2 (Q) and does 

not restrict us to the subspace W (Q) consisting of functions with zero boundary 
values that often occurs with problems with pure Dirichlet boundary values. The 
boundary conditions themselves are incorporated into the bilinear form a and the 
linear form F. 



MESHLESS GALERKIN METHODS USING RADIAL BASIS FUNCTIONS 1523 

To solve (2.4) numerically, the Galerkin method starts with a finite dimensional 
subspace VN of V and computes the solution of the discretization 

(2.5) find UN E VN such that a(UN, v) = F(v) for all v E VN. 

The error between the solution u of (2.4) and the numerical solution UN can be 
bounded via Cea's lemma, which is in this cointext given by 

(2.6) U -UN -,V21 (Q) <0C inf lU-vjjw2 (X) 
VE VN 

Here and in what follows, C will denote a generic constant. 
We shall require u to be more regular than u E W2 (Q). More precisely, we need 

u E W2k(Q) with k > d if d is the current space dimension. This is, for instance, 
satisfied if the boundary of Q and the given functions are sufficiently smooth. 

3. RADIAL BASIS FUNCTIONS 

In this paper we want to use finite dimensional subspaces VN of V = W1 (Q) of 
the form 

(3.1) VN := span{D(. - x),... , J(. - XN)} + 'pd 

where d>: Rd - R is at least a C1-function, 1Kd denotes the space of polynomials of 
degree less than rn and X = {x1, . . ., XN} C Q is a set of pairwise distinct centers. 
The most interesting case is when 1d is compactly supported and m = 0, i.e. no 
polynomials are added. In this case the stiffness matrix 

a (<(D( - Xj), @(D - Xk)) 

is sparse. Moreover, for a radially symmetric L and a radial d>, i.e. d>(x) ( x1 2), 

x E Rd, with a univariate function $R>0 --* R, most of the entries of the stiffness 
matrix can be easily computed (cf [13]). 

We are now considering the approximation error determined by (2.6). Therefore 
we invoke the theory of radial basis functions. 

Definition 3.1. A function d>: Rd d-E R is said to be conditionally positive definite 
of order m iff for all sets X= {X,)... , XN} C Rd consisting of pairwise distinct 
centers xj and all a E RN \ {0} satisfying ZN=1 %X 0, P < i, p E N0, the 
inequality 

N 

E a3ak'I)(Xj - Xk) > 0 

j,k=l 

is valid. A conditionally positive definite function of order 0 is called a positive 
definite function. 

The (radial) basis function interpolant s,, to a function u E C(Rd) on a set of 
centers X is given by 

N 

Su (x) -aj @ (x- ) + p(X), 
j=1 

where p is a polynomial of degree less than m. By interpolation, su has to satisfy 
su(xj) =U(xj), 1 < j < N. The additional degrees of freedom are bounded by the 
conditions 1Z>=i gajp(xj) = 0, where p runs through a basis of Ilpd It can be shown 
that there always exists an s,, satisfying the required conditions (cf. [7]). 



1524 HOLGER WENDLAND 

Knowing that interpolation is always possible, we turn to the error analysis. 
Therefore we assume that the function 1d possesses a (generalized) Fourier trans- 
form 1d which is positive almost everywhere. This is satisfied for all common ba- 
sis functions. We now introduce the native space Jce consisting of all functions 
f Rd R R which can be recovered via 

f(x) = (2w>) d f(w)eixTWsdw, 
d 

where f is a function satisfying 
_ 

V/; E L, (REd). 

The space }-o possesses the semi-norm 

If I (27wdj dw 

id p 

( ) 

with the nullspace pdl. 
Thus 1 is a norm if 

1 
is positive definite. In this case 

Jo is a Hilbert space. If d) is conditionally positive definite of order m > 0, then 
the space jFc/Id is a Hilbert space. For functions u E So it is possible to bound 
the error by 

(3.2) lu(x) - sU(x) < Px,(D(x) Iu I 

with the so-called Power function Px,(D (x) defined pointwise as the norm of the error 
functional. This Power function can be bounded in terms of the local data density 
given by h(x) supini<<N IIY - X 12, p > 0 (cf. [17]). But if we 
restrict ourselves to basis functions having an algebraically decaying (generalized) 
Fourier transform, the proofs given in [17] allow us to choose X C Q and to bound 
the Power function also in terms of the global data density 

(3.3) h = hx,Q: sup mmi<n || x-xj 112, 
XciQ 1<j<N 

as long as Q satisfies a uniform interior cone condition. In this case the Power 
function can be bounded via Px,D(x) < CF(h). For the particular basis functions 
that we investigate, the order of conditional positive definiteness and F(h) are given 
in table 1. As a reference for the Sobolev splines we give [4]. The results for the 

TABLE 1. Radial basis functions 

Name 'D(x) = (r),r = ||X 12 m F(h) 

Thin plate splines (-1)1+[b/2r, logr, ,u E 2N ,u12 + 1 h/2 

(-1) tli/2]rtt ,u'E IR>0 \ 2N, [M/2] 

Sobolev splines K,,-d/2(r)r,-d/2, , > d 0 ht-dI2 

K MacDonald's function 

Compactly supported (1 - r)+p(r), p polynomial 0 he+l/2 

functions, Of ?P=f, ,= Ld/2i + 2f + 1 
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compactly supported radial basis functions and explicit formulas can be found in 
[14, 151. The degree of the polynomial is ininimal under the following conditions: 

1) d>(x) = 001xI12) is a compactly supported function which consists of a uni- 
variate polynomial within its support. 

2) The function 1d is positive definite on Rd and the even extension of X is in 
c2f. 

4. APPROXIMATION IN SOBOLEV SPACES 

We now turn to the investigation of the approximation error between u as the 
solution of (2.4) and the discrete Rayleigh-Ritz solution UN coming from VN, 
where VN is given by (3.1) belonging to a special positive definite function d>. 
As mentioned in the introduction, we assume u to be somewhat more regular, say 
u E W2k(Q) with k > d. Furthermore, according to the Cl-smoothness of the 
boundary of Q there is a continuous extension mapping E: W2k(Q) -- W2k(Rd) 
(cf. [3]), and we will denote the extended function Eu E W2k(Rd) by u again. This 
allows us to use the theory of radial basis functions and to identify W2k(Rd) with 
the native space fo to a radial basis function 1d E L1(IRSd) with Fourier transform 
1d having the property 

(4.1) c1(1 + w )12k < @(w) < C2(1 + w )12k 

with positive constants c1, c2. This property will be abbreviated by 

(4.2) q(D(W) (I + 11412)2k 

Following Cea's lemma (2.6), we have to bound 

inf I|u - vjjW2(Q) 
V EVN 

in terms of h as defined in (3.3). 

Theorem 4.1. Let Q C Rd be an open and bounded domain, having a Cl -boundary. 
Denote by su the interpolant on X x{X1,... ,XN} C Q to a function u E k 

with k > d/2. Then there exists a constant ho > 0 such that for all X with h < ho, 
where h is defined by (3.3), the estimate 

I|IU- sullw2(Q) < C h i |U||Wk,(Q) 

is valid for 0 < j < k. 

Proof. Let us first assume 0 < j < k- d. Since k > d, this covers, in particular, the 
case j = 0. The function u E W2k(Q) can be extended to a function EQU E W2(Rd), 
and the extension EQ is continuous. Combining this with the results from [17], we 
derive for all ce E Nd with acel < k_ d and for all x E Rd the estimate 

(4.3) ID'u(x) - D'su(x)l < C P(,) UlWk(Rd). 

The Power function P(a) (x) can be bounded from above in the following manner. 
There exists an h1 such that for all X with h < h1 and all x E Q the estimate 

(~~~~~~~~~ )P( ) ) |<Ck-d-latl (4.4) PjX ~D(x) I<_ChkA2 

is valid. Here, C denotes a constant independent of x and X. 
Now, we form uB := EB(EQuIB) E W2k(Rd) for a ball B C Rd. It is possi- 

ble to choose the extension mapping EB in such a way that the constant C in 
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IIEBU IW2k(Rd) < CIu IW2k (B) is independent of the radius and the position of the 
ball B (cf. [15]). Thus (4.3) leads to 

DG~~) B 
IlDu - suIIL2(B) < C vol(B) 2 

11 
() |' 'LX,,DI L .(B)II U I I V2k(Rdl) 

According to [5] there exist M, M1, h2 > 0 and for h < h2 a finite subset Th C Q 
such that the balls B(t, h) and B(t, Mh) with radii h and Mh, respectively, centered 
at t C Th, satisfy 

B(t, h) C Q C U B(t, Mh) 
tETh 

and such that EtETh XB(t,Mh) < AMl. Here XA denotes the characteristic function 
of the set A. This leads to 

|DR - L2(Q) ? 1 2 < Du- -L2(B(t,Mh)) 
tETh1 

< C h (d IIp(a) 2 I\ t B(t,Mh) 112 < C h~~ X,~ L~ (Q~) zZ U W2"(Rd) 
tETI, 

< C h ||p(c) 2 

for h < h2, where Q* UtETh B(t, Mh). If we choose h < h1 so small that also 
(M + 1)h < ho, we find for all x E Q* certain points t E Th and xj E X such that 
we have IIX-t 2 < Mh and It-Xj 112 < h, which means that IIX-Xj- 2 < (M + ?1)h. 
Thus we can use (4.4) on Q* with (M+ 1)h instead of h. But as M does not depend 
on h we get 

IlDRu - Das,I L2(Q) < Chh k 
Wk(Q) 

for lal < k - d/2 and sufficiently small h, using the continuity of EQ again. This 
means that 

Il u - Sul w2j(S2) < C h 3ufl 

for 0 < j < k - d. For the remaining case kF-d < j < k we use the fact that st, is 
already an element of W2k(IRd). This leads to 

|| U - Su 11 4/k (52) EQU | W2k (Q) 

? 1 1EQ U-St W2" (Rd ) 

? C IEQu - Su12 
? C |EQu-sD ? C IEQuII < C IlEQUlWl2"'(Rd) 

< C ||U|12 

if we use the fact that Su= SEQ,u is the best approximation to EQU from VN with 
respect to (., .),. Thus we have proven the case j = k. As we already know the 
estimate for j = 0, we can invoke an interpolation theorem [1] 

IUIW2j(Q) < C U- jItIIL2(Q) ? & U u 
W2(Q)} 
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with the Sobolev semi-norm Jul :lDu 1L2(Q) to get 

Iu-SUIWi(Q) < C {E jhkluHwk(Q) +? _ki H k(Q)} 

< C h kuW.jQ) 

with E = h. Summing up the semi-norms, we get the stated estimate. D 

Corollary 4.2. If u E W2k(Q), k > d/2, is the solution to the variational problem 
(2.4) and UN E VN is the solution of (2.5), where VN belongs to an X satisfying 
h < ho, then the error can be bounded by 

IIU - UN||W2(Q) < Chkl kU-(Q) 

Proof. We use Cea's lemma in the form (2.6) to get 

IIU-UN IW2 (Q) ? C inf Ilu-vllw (Q) 

< Cllu - Su1W2i (Q) 

< Ch1 kU W(Q) 

So far the radial basis function interpolant has to be formed with a specific @ 

satisfying (4.1). In the next section we will pay attention to more general basis 
functions. These basis functions have to possess a (generalized) Fourier transform 
with a faster decay than given in (4.1). 

5. APPROXIMATION USING GENERAL BASIS FUNCTIONS 

A disadvantage in the application of the results of the last section is that the basis 
function @ and the spaces VN have to be chosen as functions of the smoothness of the 
unknown solution u. But since this smoothness is unknown in general, we have to 
look for convergence results where @ can be chosen independent of the smoothness 
of the solution. Therefore we still assume u to be an element of W2k(Q), and thus 
by extension of W2k(IRd), but take UN from a VN formed with a basis function that 
generates not the whole W2k(IRd) as its native space, but a smaller space. This 
means that we put more regularity into @ than we assume for u. It will turn out 
that in this setting the same convergence results can be achieved as in the last 
section. 

From now on let us denote the basis function @ appearing in (4.1) by 4%. This 
function generates the space Jf0 = W2k(Rd) as before. It will turn out that we 
now have to assume at least k > d+ 1 to bound the W2 (Q)-error. The function i1 
which generates the subspaces VN is supposed to be "smoother" than bO or, to be 
more precise, to satisfy f11 C ?b. Thus we have to investigate the approximation 
property of VN in fb W2k(RId). This was done for the LOO-error in [12] and we 
are going to carry this over to our purpose. We start our investigation by chopping 
off the Fourier transform. 

Lemma 5.1. Let 4Do be given, such that 4Do satisfies (4.1) with k > m + d/2. For 
u E JfFb we define the function UM by its Fourier transform UM := UXm, where 
XM denotes the characteristic function of the ball centered at zero with radius M. 
Then for all ce No with Icel < m and all x E Rd we have 

IDU(x) - DUM (X) I < I u co,H (M) 
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with 

2o lC|l/)=( -dA 11,1121al-oUd co,C,I(M) =(27wYdJ w KJo (w) dw. 
'~~~~~~~~~W1 -l,l> 1I 

Proof. The assumptions on (D give J70 = W/k(Rd) C Crn(Rd), and allow us to use 
the inverse Fourier transform for u e f10 to,get 

D'u(x) = (27r)/ (if)d e'x u()dw, 
d 

which leads to 

ID c(u -u m)(x) I < (2-F) /d 11,1121l lu-()dc 
W11l2>AiM 

1/2 ~~~~~~~1/2 
_ ?~~~~~~ (w) 12 
< d J 1d w1121 I 

*_( (F dow)2(o()d 
WHl2?A/I H l2?Ms 

< IulOco,jal(M). 

Now we make use of the fact that Um is an element of f'b, for u e f10 if the 
conditions of the following theorem are satisfied. The domain Q is still supposed 
to have a C1-boundary. 

Theorem 5.2. Let VN be given by (3.1) using the basis function 4)1. Let 4)o satisfy 
(4.1) with k > m + d/2, and let (07/(DI be bounded in every ball centered at zero. 
Then for every u e W2kj(Q) there exists a function s e VN such that for every x e Q 
and every Ce C Nd with lal < m 

DNu(x) - Ds(x) ? (co,Ic,I(M) +CoI (M)P} j i(x)) -t0 

< c (co,II(M) + Col(M)P x(741l(x)) U W2(Q) 

with 

C021(M) sup 
11W112?<MAl1 4)I(w) 

The function s does not depend on oz. 

Proof. We choose s = sum and get 

lDc (u-s)(x) < ID'(u-uMv,)(x) -+l D (uNI/-su,,I)(x) 

? co,>II (M) Iu 1O + P-)X (x) IUM 1- 

But by 

MUI 12 
| -d ? w 2 (w) /d < I U | 

2 
0 C01 (M) 

IW2 < M (o0 (w) i( I ( ?) 

we derive 

ID(u - s)(x)I < (co,I cI(M) + Co I(M)Pcl?)(X)) P 

Finally, IuIbO < Cllullvvk(Q) leads to the last inequality. L 
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The approximation order will now be achieved by bounding the term on the right 
side (co, I (M) + CoI(M)P () (x)) by powers of h. This is done in two steps: 

* Choose M such that Co1(M)Pp(l)X(x) < coI,jl(M). This leads to the error 
bound Da(u - s) (x) ? < 2Cco, 1 I I uV() 

* Give an upper bound for co, I(M). 
Of course, this has to depend upon the basis functions (D and b1. While (Do is 
determined by (4.1), I is the basis function in question. As co, I,I (M) only depends 
on (D, we can compute it: 

c2 ,CU, (M) < Cf 111121al (? + III12) -2k d 
W11l2->M 

(5.1) = C r21 e+d-l(1 + r)-2kdr 

= CM2I al+d-2k 

for lozl < m. The last constant C can be chosen independently of o and M. 
As every basis function we have in mind has an algebraically decaying Fourier 

transform, we use functions (DI which generate smoother and more general Sobolev 
spaces, i.e. we assume that 

(5.2) 4 (Iw) - (1 + w12)- - 

In contrast to (4.1), 3 need not be in N. To ensure 1b1 C 1b0 we have to require 
/3> k. This leads to 

(5.3) Co1(M) sup (1 + w 11 2)232k - CM2(/k) 

Theorem 5.3. Assume u E Wk(Q) and (I satisfies (5.2) with / > k > d + i. 

Let VN be given by (3.1) using (DI. Then there exists a function s E VN such that 
forxEQ and lol <n 

lDcu(x)-D%s(x) I < C hk UWQ) 

if h is sufficiently small. In particular, the estimate 

ilu- SlIW2e(Q) < C h k- UWm(Q) 

is valid for h < ho. 

Proof. We extend u to a function u E W2(Rd) = *0. According to Theorem 5.2 
and (4.4) we have for x E Q and Ica < m 

Dc((u-suA,I)(x)I < lult (co,I,j(M) +CoI(M)P(7)x(z)) 

< lul.1 (coIclI(M) +Co,(M)ChO '23 ) 

with arbitrary M > 0. Now we have to choose M such that Co1(M)ChC-d2-I I < 

co,lc,I(M) for lal < m. Replacing col,>l(M) and Col(M) by (5.1) and (5.3) respec- 
tively, we see that this is satisfied if M < C/h. Substituting this M, we get 

Da (u -s,,,, ) (x) ? < 2co, 1I (M) I u 10 

< Ch 2 | 

< Ch 2- U wk(Q). 
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Following the lines of the first part of the proof of theorem 4.1, we gain an additional 
factor hd/2 and derive the stated inequality. C 

Using Cea's Lemma, we get 

Corollary 5.4. Under the assumptions of u E W2-(Q) and (D satisfying (5.2) with 
> > k > d + 1, the discretization error for ~UN E VN with VN from (3.1) formed 

with (D can be bounded by 
U - UN||W2(Q) < C h kU W(Q) 

for sufficiently small h. 

As W2k(Q) is dense in W21 (Q), standard arguments yield 

Corollary 5.5. Let (i satisfy the conditions of the last corollary. Let VN belong 
to a set of centers XN satisfying h = hxN,Q > 0 for N -> oc. Then the solutions 
UN converge to u: 

Iu -UNIW2 (X) ?-0 

Finally, we have to check the condition on 3 for the basis functions mentioned 
previously. The parameters refer to table 1. 

Corollary 5.6. Under the assumptions of theorem 5.3 and corollary 5.4, 

U - UNVV21(Q) < Ch U Wk(Q) 

for the choice of 1i as 
* thin plate spline with At > 2k -d, 
* Sobolev spline with j > k 
a compactly supported functions with f > k _ d+I1 

Proof. The (generalized) Fourier transform (I for thin plate splines, Sobolev splines, 
and compactly supported functions satisfies 

(DI = C11I12 ,(gDI = (1 + 11wI12) 

and 

DI1(w) - (1 + 11w112)-d2-1 

respectively. This is well known for thin plate splines, and Sobolev splines, and 
can be found in [16] for the compactly supported function of minimal degree. Thus 
/ equals (d + pt)/2, p, f + (d + 1)/2, respectively. The condition: > k gives the 
conditions on the parameters. C 

6. CONCLUSION 

We have shown that our approach using radial basis functions leads to the same 
error bounds in the energy norm as the classical finite elements: 

IIU - Uh|W(Q) < C hkI lU Wk(Q) 

for U E W2k(Q), k > d, if we use basis functions that generate W2k(Rd) as their 
native space. We also derive this approximation property for k > d + 1 if we use 
smoother elements than necessary. Furthermore, our approach works in arbitrary 
space dimension. Using the technique of Nitsche, we can get approximation or- 
ders for estimates in the L2-norm, which are again the same as for classical finite 
elements. 
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