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COMPOSITE WAVELET BASES FOR OPERATOR EQUATIONS 

WOLFGANG DAHMEN AND REINHOLD SCHNEIDER 

ABSTRACT. This paper is concerned with the construction of biorthogonal 
wavelet bases defined on a union of parametric images of the unit n-cube. 
These bases are to satisfy certain requirements imposed by applications to a 
class of operator equations acting on such domains. This covers also elliptic 
boundary value problems, although this study is primarily motivated by our 
previous analysis of wavelet methods for pseudo-differential equations with 
special emphasis on boundary integral equations. In this case it is natural 
to model the boundary surface as a union of parametric images of the unit 
cube. It will be shown how to construct wavelet bases on the surface which 
are composed of wavelet bases defined on each surface patch. Here the relevant 
properties are the validity of norm equivalences in certain ranges of Sobolev 
scales, as well as appropriate moment conditions. 

1. INTRODUCTION 

1.1. Background and motivation. Wavelets that are defined in a classical en- 
vironment such as the full Euclidean space or the periodic setting exhibit several 
remarkable features that make them very attractive for the numerical treatment of 
partial differential as well as integral equations. Due to the paramount importance 
of Fourier techniques for the construction of wavelets as well as for their analysis 
one encounters, however, severe obstructions when trying to construct bases with 
similar favorable properties for more general domain geometries arising in connec- 
tion with operator equations. The objective of this paper is to provide for domains 
of practical relevance wavelet bases whose properties will be described below. 

The principal features that make wavelet concepts interesting can be roughly 
summarized as follows. 

(a) Norm equivalences. Weighted sequence norms of wavelet expansion 
coefficients are equivalent to certain function norms. To be more specific, suppose 
that IF = fx: A E V} is a Riesz basis for L2. Here V denotes a suitable index 
set whose elements A typically have the form A = (j, k), and IAI := j refers to the 
scale, which for simplicity will always correspond to a meshsize of order 2-i. The 
index k will generally again be comprised of several indices expressing the type of 
the wavelet and the location of its support. 
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It is known [10] that the Riesz basis property implies the existence of a dual 
Riesz basis if, i.e., (f x, A, ) = x6A,A, A, A' E V, where (., ) denotes a scalar product 
in L2. Under ideal circumstances the Riesz basis property is actually only a special 
case of the following norm equivalences for a whole range of spaces namely, for 
some ty, > 0 one has 

2\ 

(1.1.1) IIV H E 2 Kv,( j 2) ) s E (-7'I)' 

where -y and y limit the Sobolev regularity of the elements in IF and ', respectively. 
Here and in the following a b means that a < b and b < a, where the latter means 
that b can be bounded by some constant times a uniformly with respect to any 
parameters on which a and b may depend. 

(b) Cancellation properties. The inner products I(v, XbA) are small when 
the function v is smooth on the support QA of XbA. In quantitative terms one has, 
for instance, when the wavelets have vanishing polynomial moments of order d, 

( 1. 1.2 ) (v ,,) < 2-1/Al(d+n/2) l 

where I lwj(Q2,) denotes the usual L,,-Sobolev semi-norm and n is the spatial 
dimension. We deliberately avoid the vanishing moments as the primary concept, 
since they may be cumbersome to describe for manifolds. What matters are the 
approximation properties of the spaces spanned by the dual system 'I. 

(c) Fast transforms. For certain purposes the (usually more local) single- 
scale representation of trial functions is preferable, so that fast well-conditioned 
transforms from single-scale to multi-scale representations are needed. Stability 
requires the Riesz basis property, while efficiency of both transforms in the sense 
that the computational work stays proportional to the size of the transformed arrays 
follows from the locality of the elements in IF and 'I. 

To motivate the subsequent development let us add a few comments on how the 
properties (a), (b) and (c) come into play when trying to use wavelet concepts for 
solving an operator equation of the form Au = f for any given f c H-t. Here we 
assume that for a given bounded domain or manifold Q which admits the definition 
of Sobolev spaces Hs for a certain range of s (see [1]). Hs is to be undeKstood for 
s < 0 as the dual (H-s)* of H-s. When Q is a bounded domain the definition of 
Hs may incorporate (homogeneous) boundary conditions. Furthermore, we assume 
that A is a boundedly invertible operator from Ht onto H-t, i.e., 

(1.1.3) I|AvI H-t -V ||V|Ht. 

The following examples fit into this setting. 
Differential operators. A typical case arises when Q is a bounded domain and 

A =-V B V, where B is a uniformly positive matrix on Q, or A =-V . B V + cI, 
c > 0, in which case t = 1 and H1 = Ho(Q), H1(Q), respectively. 

Boundary integral equations. More generally, we are interested in solving 
Au = f for operators of the form 

(1.1.4) (Au)(x) K(x, y)u(y) dy, 
r 
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where F is a boundary manifold of dimension n and the kernel K(., -) satisfies 
estimates of the type 

(1.1.5) la~x DwK(x, y) ? < c,,, distp(x, y)-(,+2t+joj+1/D) 

In this case we require that (1.1.3) holds for Sobolev spaces defined on F. Exam- 
ples are the single and double layer potential or the hypersingular operator with 
t =-1/2, 0, 1/2, respectively, obtained e.g. when transforming an exterior bound- 
ary value problem for Laplace's equation into an integral equation, see e.g. [19]. 
MIore generally, kernels of this type arise e.g. in connection with computing electro- 
static fields, scattering from 3D obstacles, transmission problems, and high quality 
computer visualization based on the radiosity concept. Again (1.1.3) holds for the 
respective values of t. 

We will consider Galerkin schemes based on the trial spaces Sj := span {4'A 

JAI < J}. The relevance of (a) lies in the fact that under the assumption (1.1.3) the 

scaled stiffness matrices AA := (2 t11A+11\(DFA,,A)) have for any trial 

space spanfb,\: A E A} uniformly bounded condition numbers [17, 12, 13, 21], 
provided that 

(1.1.6) y, > iti. 

When A is a differential operator, the stiffness matrix with respect to a wavelet 
basis is less sparse (in a strict sense) than the stiffness matrix with respect to a 
typical nodal (single-scale) basis. Since only the application of the preconditioned 
matrix matters in an iterative process, one can use the fact that when T takes the 
wavelet coefficients into the nodal coefficients, the stiffness matrix A,v relative to 
the wavelet basis is related to the stiffness matrix AN relative to the nodal basis 
by Aw = TTANT. Thus, even though only the sparse matrix AN is assembled, 
property (c) facilitates the efficient application of the preconditioned matrix. 

When A is an operator with global Schwartz kernel of the type (1.1.5), the sit- 
uation is different. Now the stiffness matrix is densely populated. But whereas 
essentially all entries in AN are significant, it was observed in [2] that most entries 
in Aw are so small that the application of a properly sparsified or compressed ma- 
trix causes a controllable error. Moreover, rather than considering a fixed threshold 
independent of the size N of the matrix Aw as in [2], an asymptotic analysis based 
on (a) and (b) was carried out in [15, 16, 17, 23, 25] that culminates in the following 
(simplified) statement: Aw can be compressed to the order of N nonzero entries 
so that the asymptotic accuracy of the perturbed system is still of the same order 
as that of the solution to the unperturbed system provided that the wavelet bases 
'', IF are suitably chosen. Here suitable means that in addition to (1.1.6) one has 

(1.1.7) d> d-2t, 

when 

(1.1.8) inf vj - L2(F) < 2- i 
d 

Hd(P), v C H d(F). 

Thus, the cancellation property should be sufficiently strong relative to the order 
d of the trial spaces and the order 2t of the operator. Note that, in particular, one 
iieeds c > d when t < 0, which rules out orthogonal wavelets in this case, stressing 
the importance of the more flexible concept of biorthogonality. 
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Note that the last comments primarily refer to efficient solvers for essentially 
uniform refinements; that is, the trial spaces are spanned by all wavelets up to 
some scale JAI = J. On the other hand, (a) suggests tracking only those coefficients 
of the solution which are needed to represent it within a desired accuracy, while 
(b) says that in many cases the number of these coefficients can be expected to be 
relatively small. A natural approach is to adapAively generate possibly lacunary sets 
A c V containing the most significant wavelet coefficients. In [9] the convergence 
in the energy norm of such schemes could be established rigorously without an a- 
priori assumption on the unknown solution (such as the saturation property that is 
commonly assumed in analogous investigations in a finite element context). Again 
(a) and (b) serve as the main ingredients of the analysis. 

1.2. The objectives. In this paper we construct biorthogonal wavelet bases for 
domains which can be represented as an essentially disjoint union of smooth para- 
metric images of the unit n-cube I := [0, l]n so that the above mentioned properties 
(a)-(c) hold to the following extent: 

* All wavelets as well as their duals have local support whose diameter is pro- 
portional to the respective level of resolution. Hence (c) holds. 

* For any order d of accuracy in (1.1.8) of the primal wavelets the cancella- 
tion property (1.1.2) holds for any desired d > d, so that the compression 
requirements (1.1.7) are met. 

* The norm equivalences (1.1.1) hold for y - 3/2, y = 1/2 even when dealing 
with nonplanar Lipschitz manifolds. Thus zero order and first order operators 
(such as the double layer potential and hypersingular operator) as well as 
second order operators are covered in the above sense. 

* The primal and dual wavelets are globally continuous. Hence in certain cases 
the norm equivalences (1.1.1) extend beyond -1/2 into the negative range, 
so that then also the interesting case of the single layer potential operator is 
covered. 

* Norm equivalences with respect to a somewhat different scale of spaces hold 
for the range -3/2 < s < 3/2. 

The envisaged class of domains is relevant for different types of problems. In 
the context of boundary integral equations it agrees with already existing elaborate 
surface modeling techniques employed in Computer Aided Geometric Design [20, 
24]. It fits into domain decomposition concepts for boundary value problems on 
Euclidean domains as well [4]. In general the quality of the bases depends also on 
the parametric mappings describing the domain partition. Strong unisotropies and 
distortions are of course expected to cause adverse effects. 

The difficulty with extending (1.1.1) further inlto the negative range (thereby 
missing an 'optimal' treatment of the single layer potentials) is caused by the fact 
that biorthogonality is always realized with respect to a modified L2-inner product, 
so that duality may give rise to a scale of dual spaces H8 that differ from (H-8)* 
for s < -1/2. However, since -1/2 is just the border case for the range of norm 
equivalences, the adverse effect on preconditioning for the single layer potential 
operator is expected to be mild. 

1.3. Organization of material. The starting point is that wavelet bases on the 
interval are by now well understood, see e.g. [8, 14]. Thus it is natural to form 
tensor products to deal with cubes, so that the main task is now to form globally 
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continuous wavelets on the union of parametric images of such cubes. The glueing 
technique pursued in this paper relies on a number of specific properties of the uni- 
variate ingredients. Therefore Section 2 is devoted to preparing these foundations. 
We can heavily rely on corresponding recent results from [14]. Nevertheless, there 
are two additional issues that are essential and therefore have to be taken care of, 
namely: 

* realizing suitable boundary conditions in order to deal with patch interfaces; 
* realizing certain symmetry properties of the bases on the interval in order to 

achieve invariance under similarity transformations of the cube and thereby 
keep the construction as independent as possible of local reparametrizations 
and the global topology of the manifold or domain. 

Although these issues by themselves are not the central objective of this paper, 
this material is necessary for the understanding and concrete realization of the 
subsequent construction. However, in order not to interrupt the flow of development 
too severely we have exported some of the proofs to an appendix. 

In Section 3 we carry the univariate results over to the unit cube essentially in 
a routine way. This serves mainly to set some necessary notation and to establish 
certain estimates that will be needed later for the stability analysis pertaining to 
(1.1.1). 

Section 4 is concerned with the construction of globally continuous wavelets on 
the type of manifolds that will be described at the beginning of this section. The 
construction proceeds in the following steps. First we construct globally continu- 
ous biorthogonal generator bases on the manifold. By the boundary and symmetry 
properties of the univariate ingredients this amounts to glueing only those genera- 
tors on adjacent patches which refer to the same knot on the common interface. As 
for the subsequent construction of corresponding wavelets, the basic point of view 
is that each complement basis spanning a complement between two successive mul- 
tiresolution spaces corresponds to a matrix completion of the refinement matrices 
for the generator bases [5, 26]. Again due to the properties of the univariate bases 
we then exploit the fact that certain such completions can be explicitly constructed 
from the univariate ingredients. With the aid of the techniques from [5] we are 
then able to project these initial completions into those corresponding to the de- 
sired wavelet bases. We obtain explicit representations of the wavelet filters in a 
way that makes it conceptually very easy to incorporate in addition homnogeneous 
Dirichlet boundary conditions into the multiresolution spaces. Finally, employing 
results from [10] we establish the norm equivalences and cancellation properties 
announced above. 

During the reviewing process we became aware of the manuscript by C. Canuto, 
A. Tabacco, K. Urban, The wavelet element method, Part I, Istituto di Analisi 
Numerica, Pavia, Preprint, 1997, to appear in Appl. Comput. Harmonic Anal., 
where similar bases are constructed in a completely different way. 

2. BIORTHOGONAL MULTIRESOLUTION ON THE INTERVAL 

A core ingredient of the whole construction is suitable biorthogonal wavelet bases 
on the unit interval. This section is devoted to deriving the relevant properties. The 
main issues are boundary conditions and symmetry properties, both of which will 
be essential for the construction of composite bases. 
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2.1. Multiresolution sequences. To set the stage, we begin by recalling some 
results from [14] which are necessary for the understanding of the subsequent de- 
velopments. The common approach to biorthogonal multiresolution on [0,1] begins 
with some dual pair (0, 0) of refinable functions, i.e., 

0(x) ZakO(2x - k), (X)- a&O(2x -k) 
kEZ kEZ 

and 

K0,0(.-k) = J(x)o(x -k) dx=6o,k, keZ. 

The idea is then to construct (the primal) spaces Sj on [0, 1] by taking those trans- 
lates 0(2i . -k) which are supported inside [0, 1] supplemented by certain additional 
linear combinations of the translates overlapping the end points of the interval. 
These linear combinations are formed in such a way that the resulting span still 
contains all polynomials of a desired order (see [8, 14]). To our knowledge, only 
in [14] do the dual multiresolution spaces S; induced by 0 also exhibit the original 
order of polynomial exactness which is crucial in the present context. It is well 
known that the order of polynomial exactness determines the approximation order 
of the spaces. 

An important family of initial dual pairs is based on B-splines. Denoting by 
[xo, .. ., xd]f the dth order divided difference of f at the points xo, ... , Xd E R1 (see 
e.g. [3]), the dth order centered cardinal B-spline is defined by O(x) = dO(X) := 

d[0, 1, ... ,d] ( x -x- Ld) , where x4 := (max{0,x})1 and Lxi ([x]) is the 
largest (smallest) integer less (greater) than or equal to x. Thus 0 is centered 
around '(d), where u(d) :=dmod2, and has support suppdO [I], [d]] 

[?i, f2]. The B-spline dO is well-known to be refinable with finitely supported real 
mask. 

It has been shown in [7] that for each d and any d > d, d N , such that d + d 
is even, there exists a function d d- which is also refinable and has support 

(2.1.1) ISUPPddO= [tl - d+ 1,2 + d-1 =: [1] 2] 

so that d? and dd? form a dual pair, i.e., 

(2.1.2) (d?d d-( --k))R =0,k, k E Z. 

Moreover, we shall exploit the fact that they both share the same symmetry prop- 
erties 

(2.1.3) dO(X + I(d))= d(-X), d,dO(X + (d)) d,d?(X), x R. 

Finally, d,d- iS exact of order d, i.e., all polynomials of degree less than d can be 

represented as linear combinations of the translates d d-?(- k), k c Z. It is also 

known that the regularity of d d- increases proportionally with d. 

In the following d, d will be arbitrary as above but fixed, so we can suppress 
them as indices and write briefly 0, 0 if there is no risk of confusion. 

We next briefly recall from [14] pairs of generator bases ej, Oj which span mul- 
tiresolution sequences of spaces Sj ([0,1]), S ([0,1]) which are exact of order d, d, 
respectively. These collections have the form 

(2.1.4) e>r(I = (L U (1f Ue, (Rr =( U U(R. 
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Settingg[j,k] 23/2g(2i -k), the sets 0-e, 6e' consist of the interior basis functions 

0[j,k], 0[j,k], k E A , respectively, which do not interfere with the end points of 
the interval. Here the corresponding index sets are 

(2.1.5) zf:= {t?,..*v2 -t?- (d)}) \= ) ..{ . ) 2. -.f2-- (d)}) 

* f := f-(d- d). 

To ensure that the interior functions are indeed fully supported in [0, 1], ? has only 
to be bounded from below by 

(2.1.6) i > i2, 

see (2.1.1). In addition one needs the collections 

Ox) Ox {? k (E Axj }v (8j 0 : k EE A\ jj-{0kkezj} Oj-{Ok:ke i 
of boundary adapted basis functions, where for X E {L, R} 

(2.1.7) 
-A L - - --R. -. - - \j := { - d, ... -1}) Ai = {23 -f + 1- I-(d)) ... ., 23 - + d-/I t(d)}) 

and 
(2.1.8) 

ij = {f - d, .. ,. 2-1} -j ={ f + 1- I-(d)) .. , 2i - + d-/I t(d)}. 

The functions oL 6jL are certain fixed linear combinations of the translates 
ilk) j,k 

0[j,k] |[0,1], ?[j,k] |[0,1] chosen so as to ensure that the linear spans of the collections 
EY and 0 contain all polynomials of degree less than d, d, respectively. Specifically, 
we set 

e-l1 e-l1 

?j,e-d-Vr Cm,r 0[j,m] 1] jd?i E [j ] [0,1] 
rn-e2-i+ m=-2+ 

for r = O,... , d- 1 and I =O,.. , d-.1, respectively, where am, ((.)l, 0(- -m))R, 

6zm,r = ((.)r, 0(.-m))R (see [14] for details on the evaluation of these quantities). 
On account of the symmetry properties of 0 and 0 (2.1.3), one can show that 

suitable generator basis functions adapted to the right end of the interval can be 
defined via symmetry by 

(2.1.9) 

j,2j2-f+d-p(d)-r(1 -X) i, ?e-d+r(X), ,... -1 

0j2je-?+d-(d)r(1 - X) =J e-d+r(X), r =0,... d- 1, 

while we will also frequently exploit the fact that for m E A (respectively A;') 

(2.1.10) ()[j,m] (X) = ([j,2i-m-p(d)] (I - ) = 0,0. 

To make sure that the collections of boundary functions E)0x, 0&x are separated we 3 3 

will assume in the following that j > [log2( + ?2 - 1) + 1 j 
Defining for any set (D of functions in L2 (Q) 

S(E0) := closL, (span 0), 

the following facts have been proved in [14]. 

Proposition 2.1.1. Let 0Y, O'. be given by (2.1.4). 3 
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1. The spaces Sj,[0,1] = S(E)0) and Sj,[o,] := S(O) are nested, i.e., Sj,[o,1] C 
- ~ ~~~ - 

Sj+i,[O,j], Sj,(oj] C Sj+i,[O,j], i > Jo. 
2. The spaces Sj,[0,i], Sj,[o,i] are exact of order d, d, respectively, i.e., 

Hd([O, 1]) C Sj,[o,1], IHj([O, 1]) C Sj,[o,], j > jo, 

where Hd denotes the space of polynomials of order d. 

The nestedness of the spaces S(E0') and S(E)0) follows from the fact that also 
the boundary functions satisfy two-scale refinement relations whose exact format 
is given in [14]. Of course, the refinement filters of the boundary functions differ 
from those of the interior functions. However, there are only finitely many of them, 
namely d, d for each end of the interval, respectively, and the filter coefficients are 
independent of the level j. 

Nevertheless, in the absence of translation invariance, it will be extremely con- 
venient to view the collections 0E, or 0 as (column) vectors whose entries are 
the respective basis functions. More generally, we will extend this convention in a 
canonical way to any other collections of functions 0 or b in some Hilbert space XH 
with inner product (,.) which will arise below. Specifically, 

(e,) () := ((O, MOC),0CD+ 

will denote a matrix. Thus (0, ID) is a column or row vector when b or 0, respec- 
tively, consists of only one element. Likewise the fact that, due to refinability, each 
Oj,k can be written as a linear combination of elements in 0'. means that these 
refinement relations can be conveniently expressed by a matrix relation between EY 
and 041 (and likewise for the collections 0)') of the following form: 

(2.1.11) ITf (0-1)TM% Tm (0/)T = (6'+1)TMi'0. 

Thus the ith column of M:}, M. consists of the filter or mask coefficients of the 
ith element of W0, 0[, respectively. As mentioned above, the dependence of the 
refinement matrices M', M: on j is very weak in the sense that there are only 
finitely many different coefficients, whose numbering but not whose values depend 
on j. In fact, the refinement matrices have a stationary interior block which grows 
with j, and an upper left and lower right block of fixed size which corresponds to 
the boundary functions. Moreover, these blocks are symmetric in thatV the lower 
right block is obtained from the upper left one by reversing the order of rows and 
columns this is an immediate consequence of (2.1.9). Again see [14] for details. 

2.2. Boundary conditions for generator bases on [0, 1]. Due to the boundary 
modifications, the collections EY and 0'. are no longer biorthogonal. However, it 
has been shown in [14] that these collections can always be biorthogonalized, a fact 
we shall make essential use of. In [14] this has been realized by a change of basis 
in 09'. Here we will depart somewhat from this strategy in order to deal with 
additional requirements concerning boundary conditions. To describe this, note 
first that by construction the interior functions in 6f and 0' are still biorthogonal. 
Therefore they will be left essentially untouched, and it suffices to confine the change 
of bases to the collections of boundary functions. Since generally d > d, we will 
always tacitly assume in the sequel that the primal collections EOf, X E {l, R}, 
are extended by the corresponding number d-d of interior functions to match the 
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size of Ox. To formulate the main observation we denote for any matrix M the 
matrix which is obtained by reversing the order of rows and columns of M by Ml 
and recall from [14, 18] the following facts. 

Proposition 2.2.1. The matrices 

Tx := (@,Ejx) [0,1] 
are independent of j. Moreover, one has 

(2.2.1) det Tx 7,& ? det To 7,& ? 

where Tx is the submatrix of Tx obtained by discarding the first row and column. 

These facts will allow us to control the behavior of the generator basis func- 
tions at the end points of the interval. This is essential for a later construction of 
composite bases. 

Proposition 2.2.2. There exist d x d matrices Cx, Cx, for X E {L,R}, inde- 
pendent of j > jo, satisfying 

(2.2.2) CR - Cj v CR = CL' 
such that the collections 

(2.2.3) Ex,j := CxEfX, X, j (X 

satisfy 

(2.2.4) (EX,j, OX,j) =I, X E {L, R} 

Denoting the sets of new boundary functions by 

Ex,j = {?j,kk: k Af}, AX,j {jk: k E Ax}, 

and likewise 

Oj,k = 0[j,k], k E A-, ?j,k 0[j,k], k E A-j' 

one has for 

(2.2.5) Oj := EL,j U 0j U OR,j, 0j : L,j U 0j U 0R,j, 

that 

(2.2.6) (1j) 6Qj)o,i I, 
and the collections Qj, Qj are uniformly stable in the sense that 

(2.2.7) IIC11t2(Aj) ||IC T(j 11 L2 Q0,1]) 

(and analogously for Qj) holds uniformly in j and the coefficient sequences c. 
Moreover, the following boundary conditions hold: 

(2.2.8) Oj,k (?) = ?j,k (?) = Oj,k (l) = ?j,k (l) = 0, 

k E Aj \{j -d,23 -1?(d) -?+?d}, 

while 
(2.2.9) 

Oj,e-d(O) = Oj,2i-e(d)-+ld()= 2j/2, Oj,i-_(o) = ?j,2ij-(d)_i+d(1) 
- 2j/2,r 

where 

(2.2.10) T= det To /det TL. 
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The proof of Proposition 2.2.2 is deferred to the Appendix. 
Examples of the boundary adapted generator basis functions for d d = = 

2 (see (2.1.5), (2.1.6) for the definition of these parameters) are displayed in Figures 
1 and 2. The properties (2.2.8) and (2.2.9) readily facilitate adjoining generator 
basis functions across patch interfaces, since at most one function from'each patch 
has to be glued. This is illustrated below in Figure 3 (at the end of p4.2) for the 
case of d = d = 2 and two adjacent intervals. 

2.3. Symmetry. 

Remark 2.3.1. It immediately follows from (2.2.2) and (2.1.9) that the biorthog- 
onalized boundary functions in E)X,j,E)X,j inherit the symmetry properties from 
(2.1.9). 

It is now easy to derive from the refinement relations of the collections E;., E) 
the new refinement matrices Mj,o, Mj,o for the biorthogonalized bases ej, Oj. 
For instance, one has Mj,o = C-T M, OCT, where the matrices Cj are obtained 
by padding a suitably sized identity matrix with the blocks CL and CR from 
Proposition 2.2.2; see [14] for further details. FRom Remark 2.3.1, (2.2.2), (2.1.9) 
and (2.1.10) one concludes the following facts. 

0.8 ) 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 ( 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80.7 

0.2 0.3 

FIGURE 1. Primal generators 0Lk k=O,1fod=d= = =2 
at the left boundary 

2 :4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~05 , , _ 

02-6 . . . . . . . . 03 
- 

. . . . . . . . 

-1 2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. 

FIGURE 2. Dual generators OL k - 1, for d - f - 2 
the left boundary 
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Remark 2.3.2. The refinement matrices Mil 0 Milo in 

(2.3.1) e; 1M30, eET _ ET MOT = O+MT 

also satisfy 

(2.3.2) M = Milo) Mjl= Mlo 

Moreover, one infers from (2.2.8), (2.2.9) that 

(2.3.3) (Mj,o)k,k' = (MJ,o)k,k' = 0 

for 

k d) k', k, 
{ 2j+ - p(d)-f +d, k' 2 - p(d)-f +d, 

that is, the refinement relation of basis functions vanishing at the boundary involve 
only basis functions on the next finer scale which also vanish at the boundary. 

As for the symmetry of corresponding wavelets, we recall first from [14] that for 
any d + d even, d > d, and corresponding biorthogonal generator bases QJ, Qj as 
above one can construct wavelet bases 

(2.3.4) 4j - {fb)j,k: k = 1, ...2}, 2j = f{J,k: k = 1, ... , 2}, 

which are biorthogonal: 

(2.3.5) ('j) 'j, "',)[j & = ,I>, , j, > jo 

Moreover, expressing the corresponding two-scale relations in matrix form as 

(2.3.6) xFT = E)T lMj) 
qT = T 

eTlmj , 

one has 

(2.3.7) MjTeM.,e, = I e,e", e, e {0, 1}. 

Each column of any of the matrices Mj,e, Mj,e contains only a uniformly bounded 

number of nonzero coefficients forming the filters of the wavelets and generator 
basis functions whose supports therefore satisfy 

(2.3.8) 
diam supp VPj,k, diam supp Pj,k, diam supp Oj,k, diam supp Oj,k - 23. 

However, the particular matrices Mil1, Mil1 constructed in [14] do not ne'cessarily 
share the same symmetry properties as the refinement matrices in Remark 2.3.2. 

One can check that the construction in [14] does give 

(2.3.9) Mj 1 = Mill) j 1 = Mill) 

when d is even. Let us point out first how to arrange (2.3.9) also when d is odd. 

Proposition 2.3.1. Given Mio,0Milo from (2.3.1), let M>, M' be the partic- 
ular matrices constructed in [14] satisfying (2.3.7) as above. Then there always 
exist matrices Mj,1, Mil1 which also satisfy (2.3.7) and inherit the same sparseness 
properties of M/,1, M/VI so that 

(2w3i10) e(m , ) || )(m , Mj, 1) additio 

while in addition 
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A proof of Proposition 2.3.1 can be found in the Appendix. 
In the sequel we will always refer to the symmetric version when dealing with 

(2.3.7) and (2.3.6). 

2.4. Boundary conditions for wavelets on [0,1]. Recall that our ultimate goal 
is to generate wavelets on F by glueing functions on adjacent patches together in 
order to realize global continuity. While, as pointed out above, according to (2.2.8) 
and (2.2.9), this poses no problem for generator basis functions, a simple dimension 
argument reveals that glueing wavelets that do not vanish on a common patch 
boundary will not result in a basis for the full complement spaces. However, things 
would be very simple if there existed wavelet bases whose elements all vanish at 
the end points of the interval. Unfortunately, according to the following remark 
which we state here without proof, this is not possible for the above construction 
of biorthogonal complements. 

Remark 2.4.1. There exist no biorthogonal wavelet bases Tj, Tj for the spaces 
S(E)j), S(ej) as above such that all elements of Tj vanish at 0 and 1. 

One could try to construct directly additional wavelets across interfaces to come 
up with full complement bases. However, since this would depend strongly on the 
local mesh topology, we will pursue here a different approach, based on the concepts 
in [5], that will automatically generate the right wavelets across patch boundaries for 
any given mesh topology. See [22] for an alternative approach in the case d d 2 
where successive projections are used. 

A crucial ingredient will be some auxiliary bases that span a complement of 

S(E)j) in S(E)j+?) such that all their elements do vanish at the end points of the 
interval. We will point out next how to generate these bases. In view of the 
envisaged boundary conditions and the structure of the index sets (2.1.7), (2.1.8), 
we will employ the following univariate functionals: 

(2.4.1) Aj, _d(f) := 2 -jl2f(0)) Aj,2i-pt(d)-t+d(f) := 2 jl2 f(1), 

and set j, o : \ {Oj,- 

Lemma 2.4.1. The collections of functionals 

(2.4.2) Aj {Aj,-d, Aj,2i-p(d)-y+d} U Oj,O 

satisfy 

(2.4.3) (, Aj) [0,] I, 

so that 

(2.4.4) Py f := (f,AA)0,1 (9j 
are projectors onto S(E)j). Moreover, one has 

(2.4.5) 11 (Dj+i Ad) [0,11 1 = OM() , 0 oo 

where IJAII denotes the spectral norm of the matrix A. 

Proof. The biorthogonality of Q), and Aj is an immediate consequence of (2.2.6) 
and the boundary conditions (2.2.8), (2.2.9) combined with the definition (2.4.2). 
(2.4.5) follows from the fact that the number and modulus of nonvanishing entries 
in each row and column of ()j+1, Ad) [0,1] are uniformly bounded in j. D 
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We wish to find bases 'j for the spaces 

(2.4.6) W(AJ) := (Pj+l - Pj)S(Dj+,). 

Combining Lemma 2.4.1 with Theorem 3.3 in [5] yields the following result. 

Remark 2.4.2. Let My 1, My 1 be the matrices constructed in Proposition 2.3.1, and 
set 

(2.4.7) Mi1l:= (I - 1'o(O-j+l, Aj)[o1])iNljl Mj: (Miy,, M,il). 

Then the inverse Gj (Gil) l 
is given by 

(2.4.8) G 1o = J0 + (0?l,lj)[{o]Mj,MI, Gj,l MjI . 

Moreover, by construction, one has 

(2.4.9) M - =M, Gi = Gj. 

The collections 

(2.4.10) 'j1< => IMi+ 

span the spaces W(Aj), i.e., W(Aj) S(qd). 

For later use we record the following important consequences of the above facts. 

Remark 2.4.3. The only nonzero entry in the first and last row of Milo and Milo 
occurs at the first, respectively last position. The first and last rows of Mil1 have 
only zero entries. 

Proof. The first part of the assertion has already been established in (2.3.3). Com- 
bining this with the fact that, by construction, all elements in the complement 
spaces W4(Aj) defined in (2.4.6) vanish at zero and one, we can prove the rest of 
the assertion. D 

3. WAVELETS ON THE UNIT CUBE 

3.1. Tensor products. The next step is to take tensor products of the univariate 
constructions. This follows mostly canonical lines, and one only has to fix some 
notation. We will apply the following rules: Super- or subscripts D1 indicate quan- 
tities defined on the unit n-cube D1 := (0, 1)n, usually obtained as tensor products. 
For instance, AR = j x . x Aj. Likewise, k is to be understood as a multi- 
index k = (k1,... , kn) whenever it is associated with a multivariate quantity. The 
wavelets now require a further index e E { 0, 1 } n, namely 

Xj,e,k (x) = Oj,el ,kl (X1l) 
... 

*bj je, k, (X n) v 

where 

)j, e { OkJ,kk EAj if e=0, 
e, |ik) k E Vj, if e = 1, 

and it will be convenient to identify the indices of the complement basis functions 
with the set 

Vj := {1/2,... , 2 - 1/2}. 

It will therefore sometimes be convenient to write ),Fk instead of 0O' i.e., not to 
use an extra notation for the scaling functions. 
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The matrices M', GT are now naturally blocked into components M'e) G1 e) 

e E {O, }in, where 

(3.1.1) (M;e)k,k' = (Mj,el)kl,k' (Mj,en)kn,k', 

and M'l is comprised of all the components M;e) e E {O, 1}n \ {?}, while M;o is 
the refinement matrix of eT. 
3.2. Direct and inverse estimates. Tensor products of functionals defined on 
univariate functions are canonically defined by their action on the respective vari- 
ables. Defining in this sense the collections A' based on (2.4.2), we will make 
crucial use of the projectors 

(3.2.1) Pjf := (f, )DE9 

onto the spaces S(E)'). To describe their relevant properties, let us denote by 

T3 :={k E/\ : ki E {T-d,3 2-p (d)-f + d}, for some 1 < i < n} 

and analogously by &Aj the set of indices associated with the boundary of F1I. The 
following facts will be needed later for the stability analysis of the wavelet bases. 

Lemma 3.2.1. The projectors P , have the following properties. 

(i) Whenever k E A' belongs to OA', then the quantities (f, AR)[ depend only 
on values of f restricted to the intersection of all faces of L1I which k is asso- 
ciated with. In particular, one has that P3E interpolates at the vertices of L, 

i.e., (Pj f)(e) = f(e), e E {0, 1}r. 
(ii) When d > n/2 the projectors P, have the following approximation properties: 

(3.2.2) f - jf IIL2(E) < 2dj ||f |lHd(EI) f EI Hd(LI). 

Proof. (i) is an immediate consequence of the definition (2.4.2) of the functionals 
in Aj. 

The basic idea for proving (ii) is also familiar. Only the fact that functionals in 
Aj are not all bounded on L2(0) deserves a little care. To this end, let 

j,k: SUppOj,k, /jA,k {k' E /\ : j,kn9i,k/ 7 0} 

and 
&j,k U supp ?j,k'- 

k'CAj,k 

Note that 

(3.2.3) #Aj,k = 0(1), diam&j,k - 2 j, j E N. 

By construction, S(Ej) contains the space Hj,E of all polynomials of total (even 
coordinate) degree less than d on 1I. Since Pj is a projector, one has Fjp p for 
all p E Hj,E. Hence for any f E Hs(D), s > n/2, and any p E Hj,g, one has 

f l P3f PIlL2(CTj,k) <v llf L2 (0ujk) 
+ Pi (f P) IIL2(3j,k) 

(3.2.4) lf-PIIL2(j,k) 
+ k,max k3f,k 

_ 
P) 1 

where we have used that l2k lL2(E<) < 1. Recall that the functionals A' are tensor 
products of L2-inner products and (scaled) point evaluations. Taking the respective 
scalings into account, it is easy to see that 
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where Cj,k' SUpp 0j,k' . For d > n/2 the Sobolev embedding theorem ensures that 

(3.2.6) flf-PHL('m) 11 f-P11Hd(M), 

while a Bramble-Hilbert type argument yields 

(3.2.7) inf Hlf -PlHd(M) < | lSHd 

where the latter expression is the familiar dth order Sobolev semi-norm. Thus a 
straightforward scaling argument combined with (3.2.5), (3.2.6) and (3.2.7) implies 
that for every k E A' there is a polynomial p E Hj,m such that 

2-jn/2 1f -PIQ ,k) < 2-dj SfHd(jk) 

Bearing the definition of Aj,k and (3.2.3) in mind and substituting the latter esti- 
mate into (3.2.4) provides, upon summing over k E A' 

(3.2.8) <f pOfi2 (i) < 2-23dHfHd(E) 

which completes the proof. O 

Define in analogy to (2.4.1) Aje-_(f) := 2-i/2T-1f(0), Aj2ij-(d)K?+j(f) 

2-i/2T-1 f(1), where T is defined by (2.2.10), and set 

(j,O :_ =j \ { Oj,e-d) 0j,2i-p(d)-e+d}- 

Then the collections of functionals Aj :{= {A j,d) Aj,2i-[z(d)-i+?} U ej,0 satisfy, in 

view of (2.2.8) and (2.2.9), (e)jA)[O,l] = I. Taking again tensor products, the 
mappings Pjof := (f,A')zQ; are projectors onto the spaces S(eT). Employing 
the above arguments provides the following facts. 

Lemma 3.2.2. The assertions of Lemma 3.2.1 remacin true when A', OA', P', 
A' and d are replaced by A', OAT, PP, AP arnd d, respectively. 

Now let y sup {s > 0 0 E Hs (R)}. The following inverse estimates are valid 
(see e.g. [14, 11]). 

Lemma 3.2.3. One has 

(3.2.9) flVj1JHs(Er) < 2is JvjflL2(E), Vj E VI), 

provided that 

(3.2.10) < d- 1/2 =y, V) 

4. GLOBALLY CONTINUOUS WAVELETS ON THE MANIFOLD F 

4.1. Domain decomposition and representation of geometry. Whenever a 
domain admits a reasonable decomposition into parametric images of cubes we will 
construct composite wavelet bases on such domains. The following setting covers, 
in principle, a wide range of bounded domains in Euclidean space as well as closed 
surfaces embedded in some higher dimensional Euclidean space. In view of bound- 
ary integral equations, two-dimensional surfaces in R3 deserve special attention and 
serve in fact as the primary motivation of the subsequent developments. Neverthe- 
less, open manifolds such as bounded domains in Euclidean space are covered as 
well. Thus the approach is also suitable for boundary value problems involving 
second order partial differential operators. 
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Throughout the paper the manifold F will be assumed to be a piecewise smooth 
manifold (with or without boundary) which is at least globally Lipschitz contin- 
uous and endowed with a metric g. Denoting the surface element given in local 
coordinates by dsx, we can define the inner product 

(4.1.1) ~ ~~~(u, v)r = u(.T)v(x) dsx 
for the space L2(F). An important role in the subsequent development will be 
played by the modified inner product 

N 

(4.1.2) g') := EY, g)i, Y' g)i =(f ? Ki,9 g 0 i)M, 
i=1 

which is equivalent to (, )r in the sense that (, )r (, ). In addition to the space 
L2(F) we will have to work with Sobolev spaces HS(F) defined on F. A natural 
way to define these spaces is to view them as trace spaces. For a certain range of 
s these spaces can be defined equivalently via an atlas and partitions of unity. We 
will always assume that we are working in that range. Thus for Lipschitz surfaces 
we cover s < 1. Here it is important to note that for closed surfaces one has 

HS(F)* = H-s(F), 

where HS(F)* is the normed dual of Hs(F). 
The construction of xJ depends crucially on the way the manifold F is repre- 

sented. Piecewise defined parametric surface representations appear to be the most 
practical and rest on the perhaps best developed concepts in computer aided design 
(CAD). In the sequel we will always assume the following mathematical represen- 
tation of F. As above we denote by F = (0, l)n the unit square, which will serve 
as a fixed parameter domain, and we set 

N 

(4.1.3) F= Fi ri = ri(F2)) i = 1)... , N, 
i=1 

where for some n < n' the ,i: ]R" ---> R are smooth functions chosen in such a 
way that F has the desired degree of global smoothness. Note that the patches Fi 
are not supposed to overlap: 

(4.1.4) Fin rj =0 i 74 j, 

i.e., the different patches do not intersect. However, we do require that the partition 
(4.1.3) is conforming in the sense that the intersection of any two patches Fi, F1 is 
either empty or a common lower dimensional face. F is said to be a Cm-surface 
if there exist local Cm reparametrizations, i.e., for any neighborhood JA C F, say, 
such that Af n ri : 0, Af n rj ,& 0, there exist an affine map u-, a neighborhood 
M AC F U oj(F) and a function i E Cm(M) such that 

(4.1.5) InM K, 
= 

( =)nM KS 0 p0 
0 

where p is some regular reparametrization of cr(EZ). In practical realizations for 
most of the patches the local reparametrizations p can be chosen as the identity, 
which means that the parametrizations join in such a way that their coordinate 
functions are cm. In the case m = 0 we will always assume that F is a Lipschitz 
manifold. The only places where nontrivial reparametrizations have to be employed 
is near singular vertices, by which we mean vertices sharing a number of patches 
which is different from 2'. Depending on the genus of the surface, such singular 
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vertices may always have to occur. We also remark that in all practical realiza- 
tions the parametrizations /i are actually polynomial or piecewise polynomial with 
sufficiently high componentwise smoothness. 

We have chosen this setting since a variety of practical tools have been developed 
in the CAD community realizing such surfaces for an essentially arbitrary topology. 
Specifically, in [20, 24] a practicable concept for generating C0, Cl and C2 surfaces 
of arbitrary topology is developed employing only quadrilateral patches, as required 
above. Moreover, these surfaces can be refined by means of subdivisions, which 
therefore fits into the present context. Thus we may view a surface F of the above 
type as the true target surface, or as an approximation which could be successively 
improved if necessary. 

4.2. Globally continuous biorthogonal multiresolution on F. It is now 
straightforward to construct wavelet bases on F by parametric lifting of the bases 
on F to each patch Fi. The resulting functions are, of course, only continuous in 
each patch, so that the corresponding bases on F are suitable for zero order op- 
erators. Note that the cancellation properties on F are naturally preserved. An 
advantage over (discontinuous) multi-wavelets is that, due to the smoothness inside 
each patch, the space dimensions increase less rapidly with the order of the trial 
spaces. However, when dealing e.g. with conforming methods for second order 
differential operators, the trial spaces and their multiscale decompositions should 
be continuous over F. We will concentrate on this case for the remainder of this 
paper. 

The following way of joining adjacent multiresolution bases continuously makes 
essential use of the following consequence of the symmetry relations in (2.1.9) and 
the properties listed in Remark 2.4.3. 

Remacrk 4.2.1. Suppose that p is an affine mapping of F onto itself. Then 

(4.2.1) oj 0 = (j zt ejO=6j 

In order to organize patching the local spaces together, it is convenient to work 
with a geometrical grid that reflects topological connectivities. To this end, consider 
(again for the univariate case) the mapping qj defined on Aj = Afj U A} U A` (see 

(2.1.5), (2.1.8)) by 

0, k =f -d) 
(4.2.2) qj(k) 1, k 2i- p(d)- +d) 

2-3k, k # -d,23 -p(d) - +d 

(i.e., the first and last index are identified with the end points of the interval), and 
set 

qj (k) :=(q(ki),.. ,q(kn)), k EE A\2 

Moreover, let the physical local grids, their 'interiors' and the physical global grid 
be defined by 

N 

Dj,i := i(qj(Ar\j)), F i := si (qj (A' \ OAi)), ' j U ji- 
i=1 

The local 'grid boundaries' and the 'discrete skeleton' are given by 

N 

E1j,i := i \ gji ,i & U & j,i. 
i=1 
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Of course, points which geometrically coincide will be identified. Thus cLj, cUj i, ? it 
&L19 stand for all grid points on F, the grid points on patch Fi, the grid points 
in the interior of patch Fi and the grid points located on the faces of the patches 
Fi, respectively. Each grid point in Wj is identified by the patch number i and the 
corresponding parametric image of the point qj (k), k E A'. We collect this infor- 
mation in the index ( = ((i, k) = /i(qj (k)). F6r R j D2 \ &D0 the representation is 
unique. However, 0 E &D3 may have several representations 

(4.2.3) , = /j (qj(k1)) = = /i,(qj(V)), 

where r(Q) is the number of patches Fi containing (. We will always refer to this 
representation, where of course r(() = 1 if ( E LIj \ 8W3j. 

For the simple case F = [0, 1] U [1, 2] Figure 3 illustrates the glueing of generator 
basis functions across the interface { 1}. This carries over to the multivariate case 
in a straightforward manner. In fact, with the above conventions in mind we define, 
for ( E nir=1I) r7l, 

(4.2.4) qj(x) =51k1(1K1(X)), x TE , 1i = 1,... 

i.e., the restriction of Oj, to any patch Fil containing ( is a parametric lifting of 
a tensor product generator involving corresponding factors of boundary adapted 
univariate generators. Except for normalization, the q5j, are defined analogously 
by 

(4.2.5) qj$, (x) := y Omkl(1 l(x)), x E , I= 1,. ..r 

In view of the boundary conditions (2.2.8), (2.2.9), it is clear that qj,t, qj, are 
fully supported in a single patch Fi if 0 C W, for some i (r(Q) 1), and hence 
are continuous on F. By Remark 4.2.1, also those Oj,Stqj,~ with 0 C &Wj, whose 
supports intersect r(Q) patches, are continuous, and the normalization ensures that 
the sets 

i:j= {5j, EE Cij } j? := CE Fj}j 

are still biorthogonal: 

(4.2.6) (i?3, J?y) I, 

1.2 1.5 

0.8 , 

0.6 -0.5 

0.4 -1 

FIGURE 3. Generators q$j,~ and q5gS, d =d =2 across the interface 

{(=1} 
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where (,*) is defined by (4.1.2). Moreover, invoking for instance Lemma 2.1 in [14], 
we immediately confirm the uniform stability 

(4.2.7) c1T lc 112(p) Ilc 
T j HIL2(F) 

of the generator bases by, by. 

4.3. Refinement relations. The bases %j, j are, of course, still refinable. We 
will briefly identify next the corresponding refinement matrices MY??, M4r;? satisfy- 
ing 

(4.3.1) @, = X+ MF 
T = 1X+T Mr . 

Proposition 4.3.1. For the matrices M' in (4.3.1) one has that the im- 

equallity (Mr;?X),S, (MYD), 7& 0 can only occur when there exists an i such that 
both C and S belong to (the closed patch) Fi, i.e., 

(4.3.2) (M00)= (M>;)( 0, when (n n 0, 
where S n = 0 means that there exists no i such that both S and C belong to ri. 
Moreover, for C E Fi, i.e., i,i(qj+l(k')) EE Lj+?i, i =,i (qj(k)) E ?j,i, one 
has 

(4.3 3) (M,;O[)(,(:= (M'0)k,,k, (M;) : ( (M1O)kl,k. il il ~~~~~~~r(0 i 

Proof. (4.3.2) follows directly from the definitions (4.2.4), (4.2.5) and (2.3.3) and 
Remark 2.4.3. 

As for (4.3.3), let i,i(qj(k)) E EZj,i. Then for x E Fi one has 

?,((X) = Ok k(/-i (X)) = E (M2;0)k',k0F' 1,k' (i () 

kAEj+1 

- Z (MF;)k/,k j+1, Ki(qj+I(k/))(X)- 

k'cAOj+1 

So it only remains to confirm that (4.3.3) is consistent when ( and ( both belong 
to the same patch boundary. On account of (4.1.5) and (2.3.2) this is indeed the 
case, which finishes the proof for M;0. The same reasoning works for qj,~ when 
S C ?j?. Now suppose that 0 C &L?j,i satisfies (4.2.3). Then for x E Fi, one has 

q$ oEk1(K-1(x)) > Z (Mm0)k/,k1O5I?,k (Ki1(X)) 

= , ( t ( q2(( ) ( MS,;, 1) k', k Oj + 1, s i (qj + I (k' )) (X), 

k'~ k' A C 
j+1~~~~~~~+ 

which finishes the proof. C 

4.4. Stable completions and wavelets. Our objective now is to construct com- 
plement bases Ij, Ij which are stable in the sense of (2.2.7) or (4.2.7) such that in 
addition the biorthogonality relations 

S((Dj+l) =S(j) S('JQ, S(SOP1) = S(b=j) S('J?) 

and 
(f s 

_T ~ _L 
r 
( T\/ \., 
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hold, i.e., the union of the VJ (respectively iJV) over all levels j are candidates for 
biorthogonal wavelet bases. This is known to be necessary for the validity of norm 
equivalences including L2 [10]. The construction will proceed in two steps. First 
we will idenitify some 'easily available' initical complement basis 'J, which will then 
be modified into the desired one. The main vehicle is the observation that space 
decompositions of the above type are equivalent to finding some #ftj+l x (#R+- 

#D2;) matrix Mr;l such that the composed matrix M (M , M0 1) is invertible 

and the spectral norms of M"r and Gr - (G3r ) := (MI?)-l are uniformly bounded an te pctalnrm om3 - _ j,1 

[5]. Matrices Mr;l with this property are called stable completions of MY?. 
To describe first appropriate index sets for the wavelets on F, recall that V : 

{1/2, ... , 2i - 1/2} denote the index sets for the univari ate complement basis func- 
tions on the interval [0, 1]. The structure of the index sets for the wavelet bases T' 
looks then as follows: 

(4.4.1) Vj := U Vi 
eC{O,l}n\? 

where 

(4.4.2) V1;e := X Vj,e, Vj,el { Vj el =I 
l11 

As before we will associate the elements of VT with grid points in the patches Fi. 
Define 

wj (k, e) :=(wj (ki, el ) ..wj (kn, en)), k EE V;-ie) 
by 

( 3) j(ki el) t) {2-3.ki el =1, ki E Vj. 

This gives rise to the grids 
N 

(4.4.4) Vj,i,e i Ki(w (VTe, e)), V : U U Vj,i,e 
i=l eC{O,l}1T\{f} 

We are now prepared to formulate the central ingredient of the construction, 
namely to identify a suitable stable completion for the refinement matbrices M]F 
described in Proposition 4.3.1 with the aid of local univariate stable completions of 
the refinement matrices Mi,o corresponding to generator bases on the interval. 

Theorem 4.4.1. Let Mi,l be any (untivaricate) stable completion of Mi,o M:io 
(on [0, 1]) with the following properties: 

(i) For the corresponding inverse blocks Gj,o, Gi,l one has 

(4.4.5) MvI = MI, G G = G3, 

(see Proposition 2.3.1 arnd Remark 2.4.2). 
(ii) The first arnd last row of Mi,l have only zero entries: 

(4.4.6) 

(MJ,1)k,k = 0, k E {-d, 2i+1- (d) - f + d}, k' EVj 

(see (2.1.8)). 
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(iii) The M3,1 are uniformly sparse, i.e., the number of nonzero entries arnd their 
modulus in the rows arnd columns of M.,j remacin uniformly bounded. 

Let MDe and GMe be defined according to (3.1.1). Moreover, let 

(4.4.7) c(v, i EE Fi A v E Fi}, 

arnd define, for i = K(qj+I (k')), EE si (wj (k, e)), 

(4.4.8) 

(Me) (Me)k' ,k (GYe) )kk', e E {Q } v 

while we let 

(4.4.9) (MYe)4 (G;e),4 0, if n (= 0. 

Then Mil = (M%e)ec{0,l}\{?} is a stable completion for MY?, and 

(4.4.10) GY;eMY;ei = 68e,e/I, e, e' E {0, 1} - 

Proof. In view of (4.4.5), the consistency of the definitions (4.4.8) follows by the 
same reasoning as before for the refinement matrices. To verify (4.4.10), suppose 
that 

(4.4.11) v = Ki 1(wj(k1, e)) = Ki.(,) (wj(kr(,), e)), 

and consider the entry 

E e,e/ = (Ge), (M'e 4 
(Goj+1 

of the product in question. We wish to break the sum over Lj+1 into sums over 
the local grids Lj+1,j. By (4.4.9) the factor (GYe)ii,S can only differ from zero if 

E E Lj?i,1, 1 = 1,... ,r(v). Likewise, for any Di E L1,i1 the factor (M 'ei) I can 
only be nonzero if there exists i' such that ( and ,u both belong to Fj/. Suppose 
first that i' :& il. Then ( must belong to an interface Dj+,,i, n Dj+,,i/, whereas ,u 
does not lie on that interface. However, then 

(M;e/)()t = (i7e/)r-i/(qj+l(-k/)),r-i/(wj(-k,e/)) (; k, 

has a factor (Mj,,, )T where kp is a boundary index while kp is not, so that 

(2.3.3) and the assumption (4.4.6) imply that this factor vanishes. Hence 

G(v,At) {i E {ii,... ,ir(v)} At EC i} 

selects those local grids ? that could contribute nonzero summands to e,e. 
However, when summing over each such + 1i some interfaces may be visited 
several times, so these summands have to be properly weighted. In fact, setting 

C(V, (, U) = { , (, a E r} 

the quantity E'' 
/ 

reduces, on account of (4.4.8), to 

(4.4.12) z (v, Ki(qj+1(k/)) 
iGG(.,,,)kGE0j+?1i r(v)c(i(wj(ki,e)), i(qj+,(k/)), i(wj(k,e/))) 
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We will show next that 

(4.4.13) c(v, , ) c(v, () or (G;e)ki,k (M;eI)k,' = 0. 

Obviously c(v, (, At) < c(v, (). Suppose that for some ( strict inequality c(v, P, At) < 
c(v, () holds. This means that ( and v belong t'o some interface which does not con- 
tain ,A. Hence (M;e/)k, i contains a factor (Mj'e/)k/ ,V such that k' is a boundary 

index (referring to one of the two generator basis functions in ej+j that do not 

vanish at zero and one), whereas kp refers either to an element in Qj or to a basis 
function in Qj whose index does not belong to the end points of [0,1]. By assump- 
tion (4.4.6) and the nature of the refinement equations for ej (see [14]), in either 
case these functions vanish at zero and one. Therefore the two-scale relation does 
not involve an element of E)j+1 that does not vanish at zero or one, which means 
that (Mj,eP)k/ ,T = 0. This confirms (4.4.13). Since for all nonzero summands in 

p' p 

ze,e therefore c(v,() c(v,(,At), we obtain from (4.4.12) 

Se,e' G )/,'(;'k, 
V4 /\ iI )k' / mIIe )k Ik 

iGG(zv,,) k/G0j+1,i 

Since obviously by (3.1.1) GjMj = I implies GjeM;e/ = 8e,e/I, one has 

S (G;e)ki,k/(M e/)k/ ki = ikv 
k' E j+1,i 

so that 

Se,e' / E e,el8kiki. 

-i 

But when k= k one clearly has #G(v, ,) = #G(v, v) = r(v), which confirms 
(4.4.10). 

By construction, each row and each column of the matrices M, G" contains only 
finitely many nonzero entries, whose number and modulus is uniformly bounded in 
the level j. Hence their spectral norms are uniformly bounded. By Corollary 2.1 in 
[5], this implies the stability of the completions Mr;1 (MYe)e{o,}n\{?}, which 
completes the proof. D 

Recall from Remark 2.4.3 that the stable completions Mi,1 constructed in Re- 
mark 2.4.2 satisfy the hypotheses in Theorem 4.4.1. 

There is some flexibility in choosing Mi,1 in Theorem 4.4.1. A particularly 
convenient choice for bilinear trial functions d= 2 is the nodal hierarchical basis 
employed in the examples shown in Figure 4. 

The functions in (qJr)T := (fT 1Mr'1 form (uniformly) stable bases for certain 
complements of S(Dj) in S(Dj+1), but they do not yet form a biorthogonal basis 
over all levels, which is needed for the Riesz basis property. 

However, we are now ready to construct stable completions corresponding to 
biorthogonal wavelets on F. The main ingredients are the explicit initial stable 
completions Mr;1 constructed in Theorem 4.4.1. 
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Theorem 4.4.2. For Mi', Gj' from Theorem 441 let 

(4.4.14) := (I - Mj 

Then the inverse of Mr, = (MXr, MXr,1) is given by 

Moreover, the collections 

(4.4.15) qr' = (Mr;1)T(Dj+,, IrF= Gx j; 4j+j 

form continuous biorthogonal systems 

(4.4.16) ' I- j, bj K = j ) =O 

with respect to the scalar product (4.1.2). The collections 

qr =(Do U tiV iv := (bo U tiv 
jENo jCNo 

are biorthogonal bases for L2(F): 

(4.4.17) (tr r = E . 

Proof. The proof is an immediate consequence of the biorthogonality (4.2.6), Propo- 
sition 4.3.1, Theorem 4.4.1 and Corollary 3.1 in [5]. D 

Note that the construction (4.4.14) is analogous to the construction of the aux- 
iliary univariate stable completions Mjj obtained in Remark 2.4.2, which, in turn, 
can be used for the initial stable completions Mr;1 on the manifold used above. 

0.8F 

-0.4 '- '- . 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

FIGURE 4. Primal wavelets 32_j1 and {r2' 1 d d 2 at 

the interface { 1} 
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Efficiency. Obviously the sparseness of the matrices Mj ) G, Mr; and Mr; 
implies the sparseness of the matrices 

'Gr (Mj 

Thus corresponding multiscale transformations remain efficient. By this we mean 
that the application of the transformation Tj'that takes the array c of single scale 
coefficients of any Vj = cT(J into its wavelet coefficients 

J-1 
VJ = 

T 
Cjoj + E dj Txj, 

jo io i=jo 

as well as the application of its inverse T51, can be carried out at the expense of 
0(#Dj) operations. 

Note that (4.4.14) reproduces in the interior of each patch the lifted tensor prod- 
uct biorthogonal wavelets on the cube. For any mesh topology, (4.4.14) produces 
automatically continuous functions across patch interfaces. In practice, one there- 
fore does not have to assemble the global matrices Mir. In fact, away from patch 
boundaries the filters are always the same. One only has to compute locally the 
entries of M' for j = jo and finitely many cases depending on the topology (or, 
better, valency of vertices) of the decomposition of F into the patches Fi. Note that 
the proof of Theorem 4.4.1 indicates how to reduce the evaluation of the matrix 
products in (4.4.14) to products of tensor product matrices, see (4.4.12). Due to the 
perfect symmetry properties and the locality of all ingredients it suffices to deter- 
mine once and for all templates of filter sets referring to different patch topologies 
around a vertex, as opposed to realizing (4.4.14) for each concrete possibly complex 
manifold F. 

The above construction is illustrated by several figures displaying typical tem- 
plates of composite wavelets for the piecewise linear or piecewise multilinear case 
d= 2. Any higher order examples can be produced in the same fashion. However, 
the second order accuracy of the trial functions in conjunction with fairly good 
locality of the basis functions makes this case practically attractive. Note also that 
in this case one can take d = f = 2, d = ? in (2.1.5), (2.1.7), (2.1.8), so that the 
univariate trial spaces S(ej) consist of all piecewise linear continuous functions on 
[0,1] with knots in {2-ik: k = O,... , 2i}. Thus, instead of going through the 
construction of the auxiliary initial stable completions Mj,l from Remark 2.4.2, 
one can directly identify a suitable M,1 induced by the hierarchical complement 
basis which consists of the hat functions corresponding to the new knots on the 
next higher level. 

Figure 4 shows the wavelets produced by (4.4.14), (4.4.15) across the interface 
bewteen two adjacent intervals. They have cancellation properties of order d = 2, 
see Section 4.7 below. Figures 5 and 6 display a stationary interior wavelet as well as 
wavelets across an interface and near a corner. They have fourth order cancellation 
properties, d = 4. As for matrix compression, they are therefore suitable for the 
single layer potential operator. Recall that asymptotically optimal compression 
requires the cancellation order to be higher than the order of accuracy of the trial 
spaces, see (1.1.7). A typical situation that cannot be avoided when dealing, for 
instance, with closed surfaces is addressed in Figure 7, which shows a wavelet 
with second order cancellation properties near a singular vertex where only three 
quadrilateral patches meet. 
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FIGURE 5. Wavelets inside Fi and across F1 0 F2, d =2, d =4 

zo2b z 

FIGURE 6. Wavelets at the corner F1 0 F2 0 F3, d =2, d =4 

FIGURE 7. Wavelet near a singular vertex where only 3 edges meet 
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4.5. Function spaces on F. We return now to the setting described in Section 
4.1 and assume that the manifold F is of the form (4.1.3) with smooth regular 
parametrizations ,i, = 1, . . . , N. For each i = 1, ... , N, and m C N, define 

Ilwlf ,III (Dcf o /si, Daf o /si / 
II <rm 

Remark- 4.5.1. One has for s > 0 

HS(L) =f ? ri f E H8(Fj)}, 

with 

(4.5.1) | f |Im,i lf LHu11(ri), f Hm(Fi), m = 0, 1, 2 ... 

and 

(4.5.2) lif H(F) I iIIHs(), f E Hs (Fi), i = 1, ... , N. 

Proof. (4.5.1) follows from the smoothness and regularity of the parametrizations 
ri. The rest of the assertion is confirmed by interpolation arguments. E] 

Moreover, setting 11 K.12 
- (, )r, where (., )r denotes the canonical inner 

L2 (Fl)I 

product on F, one clearly has that 

(4 5 3) || 
2 

|o: -*)r |.IL() 
More generally, for s > 0 define 

N 

(4-5-4) 112f 2Hs(E)v 
i=1 

as well as the corresponding dual norms 

-S sup (f,g), 
111g11ls=1 

and for s > 0 let H, denote the closure of all globally continuous, piecewise C??- 
functions on F with respect to the norm 111 III, while H s is the dual of H, with 
respect to the scalar product (., .). 

Depending on the global regularity of the manifold F, there may be a limited 
range for which HS(F) is well-defined. In the following we will assuine that this is 
the case for s < sr. We will use the following observation. 

Remark 4.5.2. HS(F) is a closed subspace of Hs for 0 < s < sr, i.e., 

(4.5.5) IIIvIIs -v JIVIIHs(r)) v E Hs(r), 0 < s < sr. 

Moreover, 

(4.5.6) HS(F) Hs for s E (-1/2, min{3/2, sr}); 

that is, in this range both spaces agree as sets and have equivalent norms. 

Proof. It is clear that for s > 0 we have v 
Hs(I) < v s, v E Hs(F). Conversely, 

by extension, Iv I Hs (r) < v H VIIs (rF) for i 1,... , N. Moreover, globally continuous 
piecewise smooth functions belong to HS(F) for s < min{sr, 3/2}. Thus H, C 
HS(F) in that range, which confirms the upper limit in (4.5.6). The lower limit is 
caused by the fact that Hs and HS(F) are defined with respect to different inner 
products. F 
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4.6. Stability and norm equivalences. Again, the key to the stability properties 
of the wavelet bases constructed above are appropriate direct and inverse estimates. 
Due to the stability of the %j and the %j, Lemma 2.1 in [14] ensures the following 
fact. 

Remark 4.6.1. The mappings 

(4.6.1) Qjf (f, %)4?3, Q*f := (PDi)@i 

are uniformly L2(F)-bounded projectors onto the spaces S(%j),S(%j) c c(F), 
respectively, so that 

Ilf -QfIIL(r) < inf Ilf -v3 IL2(r), 

lf - Q*f 1IL2(F) < i lnf - V L2(F). 

To quantify the approximation properties of the spaces S(Dj), S(bj) we resort 
to the projectors PP from (3.2.1), and define the mapping PF by 

(4.6.3) 

Pyrf Jr,,:= (PP (f ? o<) /-.-l = (f o /-i, A'y) ny 6' o r,- i = 1, . .. , N. 

Analogously, we can define Ff (see Lemma 3.2.2). 

Lemma 4.6.1. The Pf, Pf are projectors from c(F) onto S(Dj), S(Jbj), respec- 
tively. Moreover, one has for n/2 < d, d 

(4.6.4) lf -P f IL2(F) < 2jdl If lld, f C Hd, 

and 

(4.6.5) lf -P ff L2(I1) < 2- i lf lHd(r), f C Hd(F), 

provided that n/2 < d < Sr. Moreover, completely analogous estimates hold when 
Pr, d are replaced by Ff, d. 

Proof. Since by Lemma 3.2.1, for ( as above in (4.2.3), r = r((), 

(4.6.6) (f ? Iil,A,k1)r =** (f ?KIr,Akr),) 

and likewise for A'k, we can define the collection of functionals A"' by identifying 
those functionals in the local collections defined by (f, Aj,i)i (f o iii, A-n)m which 
correspond to the same points in &Lj,i. We note then that 

(4.6.7) Prf = (f Aj) j) 

which implies that Pr maps C(F) onto S(%D). Defining Aj' analogously with a 
proper normalization matching (4.2.5), the analogous claim for FP" follows as well. 

Since 

I Iif Pilflo I 0i = Ilf ? -, s- Pp (f ? K,i) I IL2(:) 

the error bounds follow again by Lemmata 3.2.1 and 3.2.2 and Remarks 4.5.1 and 
4.5.2. D 

Combining Lemma 4.6.1 with Remark 4.6.1 and standard interpolation argu- 
ments yields 
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Corollary 4.6.1. One has the following error bounds: 

(4.6.8) Qlf-QjfI L2(F) < 2S i f |jsfld, f E H8, 0 < s < d. 

Moreover, when n/2 < d, Sr, one has 

(4.6.9) 

lf - Qjf 11L,() < 2'i Ilf IIHs(F)) y E H8(F), 0 < s < min {d, sr,} 

Again, completely analogous estimates hold when Qj, d are replaced by Q> d. 

We are now prepared to establish the following norm equivalences. 

Theorem 4.6.1. The bases T, iVrI constructed in Theorem 4.4.2 are Riesz bases 
for L2(F). Moreover, setting for simplicity Tr'1 := ?jX, 41:F and 
vrO - := jo -1,~ one has 

(4.6.10) 

/ oO \ ~~~~~~1/2 
(VZ| E ES 2 

KsI (f<br ) 12 sE (-,d- 1/2), 
\i=jo-1 (Cvr 

where e is defined in (3.2.10). In terms of Sobolev norms one has 

(4.6.11) 

00 0 ~~~~~1/2 

lwfherHe () E E 2 22s IK(f) r) 12 1/, s E (-1/2,min{3/2,sr}), 
i=iO-1 (5Cvr / 

where it Zs understood that H8(F) = (H-8(F))* for s < 0. 

Proof. FRom Lemma 3.2.3 and (4.5.2) one infers that 

lllvjllls < 2isvllvjlllo) vj E Vj, 

where 
d d-1/2 =y,Vj = S((Dj)) 

s<l a Vj=-s ((j)- 
On account of Corollary 4.6.1 the claim follows from Remark 4.5.2 combined with 
the results in [10]. D 

4.7. Cancellation property. By construction, those wavelets in Tr which are 
supported in a single patch Fi have vanishing moments of order d. Here we exploit 
the fact that the univariate ingredients allow us to choose d, in principle, as large as 
we wish. This is no longer true for those wavelets whose supports intersect several 
patches, since their restriction to each individual patch is generally no longer a 
wavelet. However, we will point out next that these wavelets still exhibit cancella- 
tion properties which give rise to the same type of estimates needed for the analysis 
of matrix compression. 

To explain the argument that works in all cases, for any projectors Q, Q' acting 
on functions defined on F denote by Q 0 Q' the projector defined by the action 
of Q and Q' on the first respectively second group of variables of v: F x F -+ R, 
leaving the other variables fixed. One readily checks now that the Boolean sum 
Q e Q' I ? Q + Q' 0 I - Q 0 Q' is a projector satisfying 

(4.7.1) I-Q D Q' = (I-Q) & (I-Q'). 
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Specifically, for A, E e Vr, IA I J, I = 1 and (tbr' 0 tbr)(x, y) =br(x) btr(y), one 
has 

(4.7.2) (Qj e Q1)(brb 0 br) 0. 

Moreover, since Q*Pf = Pf one has I -Q* = (I - Q*)(I - Pf), which, in turn, 
yields A 

(4.7.3) I-Q* e Q*(IQ* D Q*)(I - Pr' D PFr). 

Now consider the inner product 

((v,w)):= E ((vW))i,i' 
l<i,i'<N 

where ((v, w)),ix f f v(ii;(x), i; (y))dxdy. Of course, Q* D Ql is the adjoint of 
E1 m 

Qj e Ql with respect to ((,.)). Thus, by (4.7.2) and (4.7.3), one has 

((v, (D)) ((-j Ql*)(I - Pjr' P, r , 8 n) 

< KKl(I-Q* D Qe*)(I-Pe D P/')v ?L2 (/X 

(4.7.4) < (I - Pf e 

where Q : supp0'4 and, due to the compact supports of the elements in T, p 

(see (2.3.8)), the Q2 are somewhat larger domains such that diamQx/diamQx 

stay uniformly bounded. Now let a C Qx x Q2, be any subset which is contained 

in a single patch product Fi x Fi,, say. Since the functionals in Ar' defining the 

projectors Pf (see (4.6.7)) whose supports intersect a are supported either on the 

patch boundary or inside the patch, the same type of arguments as used in the 

proof of Lemma 3.2.1 combined with (4.7.1) yield 

(4.7.5) 

|(IP- P)v L2() < 2j+2)21(+2) max |ax3v 0L0(&), 

where again & c Fi x Fi,, a C &, is a somewhat larger domain whose diameter stays 

asymptotically proportional to that of Q\ x Q11. Thus, when A has the form (1.1.4), 

note that (Aor',V ) - ((K, r so that, when QA n QH = 0, combining (4.7.5) 
for K = v with the Calder6n-Zygmund estimates (1.1.5) yields 

2 (j+l ) (d+n/2) 
( '\ ,)o dist (Q,\ Q,)n+2J+2t' 

which is the main foundation of compression estimates commonly derived directly 

from vanishing moment properties; see [16, 17, 23, 25]. Note, however, that here 

the modified inner product (., ) from (4.1.2) is used. 

4.8. Boundary conditions. When F is a domain with boundary and A is a 

second order elliptic operator, one has to specify boundary conditions. We will 

briefly indicate now how to incorporate in the multiresolution spaces (homoge- 

neous zero order) Dirichlet boundary conditions on some part arD which is always 

assumed to be a union of patch boundaries. To clarify ideas, assume that for 

some Fi the face /i-({O} x [0, l]n-1) C aFD. Clearly, multiresolution spaces con- 

tained in Ho{fo}x[o l]n-l (D), the closure in H1 of the C? functions vanishing on 
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{O} x [0, 11n-I, are obtained by replacing the first component 3j in the tensor prod- 
uct generator bases by the sets eQ obtained by discarding the function 0j,-d, see 
(2.2.8). 

Now there are several possibilities to construct suitable biorthogonal generator 
bases. The first one, suggested by the preceding development, is to discard also 
the corresponding 'first' function in Ej. Clearly OQ and 3Q are still biorthogonal. 
By Proposition 2.2.2 and the nature of the refinement relations derived in [14], 
the resulting spaces are still refinable and satisfy the right boundary conditions on 
the face of D-. The refinement matrices M0 MO for e0, OQ are obtained from 

Mj,oI Mj,o by discarding the first row and column. 
As for the construction of corresponding wavelets, one should note that the 

auxiliary stable completions Mj,1 constructed in Remark 2.4.2 already correspond 
to complement basis functions which vanish at the end points of the interval. Thus, 
one only has to replace the respective factors Mj,o in M1;D (and hence in Mr;D) 
while keeping M_ ;,, and (4.4.14) produces wavelets with appropriate boundary 
conditions. A simple univariate example again for d d 2 is shown in Figure 
8. In agreement with Remark 2.4.1, at least one wavelet does not vanish at the 
boundary in the unconstrained case displayed in Figure 9. It is now dbvious how 
to implant these ingredients into the general construction in order to realize, for 
instance, also mixed boundary conditions. 

However, again, if one aims at realizing norm equivalences for a range of Sobolev 
indices s including -1/2 this approach is not adequate. In fact, the dual of HJoPD 

should have no boundary constraints on &1D. Hence the dual multiresolution 
should have no boundary constraints there, since they should give rise to norm 
equivalences for s > 1/2 for the unconstrained Sobolev spaces, which is impossible 
with boundary constrained multiresolution spaces. The problem can also directly 
be seen by noting that the right hand side data (f, s/) refer to an expansion with 
respect to the dual basis jW. When the basis functions in rjW also have zero 
boundary conditions this representation is at most accurate of order 1/2. 

A conceptually better alternative is to replace the reduced sets e0 in the above 
approach by other biorthogonal bases without zero boundary conditions constructed 
in [18]. A direct substitution of these ingredients in the above construction would 

1.2o0 8< 

0.2 - . . . . . . . . . . . . . . . 

FIGURE 8. rimal and ual waveles at the bundary in o ([O, 1] 
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still work and yield bases with the desired boundary conditions on the primal side 
while avoiding the above mentioned principal deficiencies. 

APPENDIX 

Proof of Proposition 2.2.2. By biorthogonality (2.1.2) of the interior functions, 
(2.2.8) follows from (2.2.4). Since by (2.2.3) 

(A. 1 ) ~~(@X,jI OX,j ) [O, 1] = CX (@jX OjX) [0, 1] 1CTx 

the independence of Cx, Cx of j is a consequence of the above remarks on the 
matrices Tx. 

Furthermore, by symmetry (see (2.1.9)) 

(A.2) TR = TL 

Thus CR = CT, CR CL, which confirms (2.2.2), and it suffices to determine 

CL, CL- 
To this end, consider the singular value decomposition TL = UTEV, where 

U, V are orthogonal matrices and E is a diagonal matrix containing the singular 
values vi of TL ordered according to size, vi > ui+i. By (2.2.1), all singular values 
are strictly greater than zero. One easily checks that for any invertible matrix R 
the matrices 

(A.3) CL RE-1/2U CL R TE-1/2V 

satisfy 

(A.4) CLTLCL 

which, on account of (A.1), means that the corresponding sets 0x,jjOx,j are 
biorthogonal (see (2.2.4)). Thus it remains to choose R so that the boundary 
conditions (2.2.8) hold. Let OL (0) denote the vector whose entries are the elements 
of OL evaluated at zero. By construction one has 

(A.5) efL(0) = OL(0) = 2- / e, 
where (e1)i = 61,i is the first coordinate vector. By the definition (2.2.3) and (A.5), 
one has to find a constant b such that 

eL,j(0) = CL (o) - 2j/2RE-1/2U1 = 

-0.4 -0 

0 0.FIU 0 . P and dua wet in H ([01) at the boundary 

FIGURE 9. Primal and dual wavelets in H'([O, 1]) at the boundary 
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and 

(L,j(0) = CL3j (0) = 23/2R TZ/2Vl - b2j/2el 

where U1, V1 is the first column of U, V, respectively. Thus the desired boundary 
conditions are equivalent to 

(A.6) RE- el 

and 

(A.7) -1/2VI = bRTe l. 

Now we make the ansatz 
(a(V I)TZ-1/2 

UTEI/2 
) 

where a is some constant and Uo is the submatrix of U obtained by discarding the 
first column. Since U is an orthogonal matrix, it is clear that 

(A.8) RE-1/2U1 = aTe1. 

Since 
T-' = VTE-IU 

we conclude that 
T :(TL) 1,1 

and note that, by (A.2), T =& 0. From the definition of R, (A.7) and (A.8) we infer 
that b = T-1 = det TL/det To as claimed. The asserted stability properties (2.2.7) 
are an immediate consequence of the biorthogonality and the local supports of the 
elements in ej, ej; see Lemma 2.1 in [14]. D 

Proof of Proposition 2.3.1. Let us denote by I- the permutation matrix whose 
only nonzero entries are on the antidiagonal and have the value 1. Thus for any 
matrix M one has M = I'MI, where I' is always assumed to have the right 
size without further specification. Since (IJ*)2 = I, one easily verifies that for any 
two matrices A, B of appropriate sizes 

(A.9) (A )T - (A )t, (AB)t = AtBt, (A-1)t (At)- 

Now let Nj,1, Nj,1 denote the submatrix of M'I1, MI V consisting of the first 2i- 
columns, respectively (recall that these matrices always have 2i columns). Let 

Hj,l := (Nj,lj1,j,j) fj,l := (STj,ljT,Njj,) 

and note that by (2.3.7), (2.3.2) and (A.9), 

MT oNj,l = 0, (M4,O)TN1 =(MNT,1 )t = 0. 

Applying the same reasoning to Mj,o, Hj,1 gives us 

(A. 10) M[0oHj,l = 0, Mo,1Hj,1 = 0. 

The matrices Hj,1, Hj,1 still have full rank. To see this, consider the collection 
-T := (3T+1j1 HjTH. 

and note that, by (A.10), 

Mj = M E0(ej+l, ej+l)[o,] = M0H3,1 = 0. 
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Thus it suffices to show that the elements of j are linearly independent. Since by 
construction Hj, = HI1, one has 

(Hj,1)k,2-l+r = (Hj,1)2i?+1j,(d)-k,2i-1+I-r r 1, ..). 2i 

Combining this with the symmetry relations in (2.1.9) and Remark 2.3.1, straight- 
forward calculations yield 

(A.1) (j,2j-1+k(=) =j,2i-1+1-k(l - x), k = 1,. .. 2-i 

Moreover, by definition, (j,k = lbj,k, k 1,... 2j-. Thus 

= j {Nj,kivj,k(l-) k 1,... ,2i 11. 

Now suppose that cT j = 0. Then 

(A. 12) (c 6.j 
v fj, k) [0,1 =I Ck 

for k = 1,... ,m, where m is the first column in Mj,1 (and hence in Hj,1), which 
corresponds to the stationary interior masks, so that lbj,m is fully supported in 

[0,1]. If j is large enough the support of lbj,m will not overlap any of the supports 
of the functions l/j,k(l - *), k = 1,... 2ji-, so that (A.12) indeed follows from 
biorthogonality and gives Ck = 0, for k = 1,... , m. Likewise, testing with the 
functions l/j,k(I - .) for k = 1,... ,m ensures that also Ck = 0 for k = 2i,... ,2i - 

m + 1. Therefore 

2i-m 

(A.13) c j = E Ck J,k = 0 
k=m+l 

is a linear combination of functions which are supported in (0, 1). Now note from the 
construction in [14] that for d odd the first column of N",1 has the same support as 
the 2ij1 + 1st column of M,1. Thus the functions in the above linear combination 
all have pairwise different supports. Therefore (A.13) implies that c 0, which 
confirms our claim. 

Now consider 

TIHj,I = ((Z 7T) (Ni,,Nj,1) 

I J~ TINI ) 

Since by (A.9) 

&T1 NIt ((sjI)T Nj, I 

the matrix Kj has the form 

Ki=(At i ) 

where 

Aj 0 Al~~ 
_ 

at 
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and the block a is independent of j. By the above remarks Kj must be invertible. 
Noting that 

AAi=( O O)v (I-A0A3)1=( (I-a-a)a1 0 ) 

one easily confirms that 

/ I O 0 0 

. 1 O 0 + a(I-a1 a)1-al -a(j-atla)- 0 1 
0 -(IJ-ata) -'at (I-ata)-> 0 

Thus both Kj and K-1 are banded with band width independent of j. Moreover, 
one easily checks from the definition of Kj and (A.9) that 

(A. 14) K> = Kj, (K-1) = K-1. 

Thus, defining 

(A.15) Mj Hj,1K-1, Mj, Hj,11 

we readily infer from (A.10) and (A.14) that (2.3.7) holds. Moreover, since by 
construction H = H1j, and W', = Hj,1, the assertion follows from (A.14) and 
(A.9). D 
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