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ABSTRACT. We introduce the concept of a refinable set relative to a family of 
contractive mappings on a metric space, and demonstrate how such sets are 
useful to recursively construct interpolants which have a multiscale structure. 
The notion of a refinable set parallels that of a refinable function, which is 
the basis of wavelet construction. The interpolation points we recursively 
generate from a refinable set by a set-theoretic multiresolution are analogous 
to multiresolution for functions used in wavelet construction. We then use 
this recursive structure for the points to construct multiscale interpolants. 
Several concrete examples of refinable sets which can be used for generating 
interpolatory wavelets are included. 

1. INTRODUCTION 

In the recent papers [MX1] and [MX2] we showed how the notion of invariant 
sets as described in [H] can be used to construct orthonormal multiwavelet bases on 
such sets. These wavelets are discontinuous, but nonetheless they have important 
applications to the numerical solution of integral equations as demonstrated in 
[CMX] and [MXZ]. See [BCR, D, DPS1, DPS2] for more information about wavelet 
and multiscale methods for operator equations. For constructions of wavelets and 
prewavelets, the reader is referred to [CW, CDD, Da, DJP, DL, M] and references 
cited therein. 

In the present paper we shall explore similar recursive structure for multiscale 
function representation and approximation by focusing on the analogous situa- 
tion for interpolation on an invariant set. Thus we seek a mechanism to generate 
sequences of points which have a multiscale structure that can then be used to 
efficiently generate interpolating functions. Even in this case it is the theory of 
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invariant sets [H] that provides us with an appropriate setting to study this issue 
and leads us to the notion of a finite subset of a metric space which is refinable 
relative to a finite collection of contractive mappings on the metric space. A set 
is called refinable if it is included in its image under a given family of contractive 
mappings. The sequence of sets which are generated recursively from a refinable 
set by a set-theoretic multiresolution are analogous to multiresolution of functions 
used in wavelet construction. Such a set multiresolution will lead us to what we 
call set wavelets. 

This paper is organized as follows. In Section 2 we develop a notion of refinable 
set, give a complete characterization of refinable sets in a general metric space 
setting, and illustrate the general characterization with several examples of practical 
importance. We also show in Section 3 how refinable sets lead to a multiresolution 
structure relative to set inclusion which is analogous to multiresolution associated 
with refinable functions. This set-theoretic multiresolution structure leads us to 
what we call set wavelets, which are generated by a successive application of the 
contractive mappings to an initial set wavelet. The collection of set wavelets leads 
us, in particular, in Section 4 to the construction of Lagrange interpolation that 
has the desired multiscale structure. 

2. REFINABLE SETS 

This section is devoted to a study of refinable sets relative to a family of con- 
tractive mappings. A complete characterization of refinable sets will be presented 
and illustrated by several examples of practical importance. 

Following [H], we let (X, d) be a complete metric space and 1 : E EC 
E:a {O, 1, . . . , - 1} be a family of contractive mappings on X, where A is a 
positive integer. For any subset A of X and x E X, we define the distance from x 
to A and the diameter of A, respectively, by 

dist(x, A) = inf{d(x, y): y E A} and diam(A) = sup{d(x, y): x, y E A}, 

and we introduce the subset of X given by 

@(A) U q56(A). 
EC-EA, 

The condition of contractivity on the family of mappings ID ensures the existence 
of a ay E (0,1) such that for all subsets A of X 

(2.1) diam(q56(A)) < aydiam(A), E c El-L. 

According to [H], there exists a compact subset K of X such that 

(2.2) 1(K) = K, 

and K is the unique closed and bounded subset of X which satisfies equation (2.2). 
The set K is called the invariant set relative to the family of contractive mappings 

4. 

Let us recall the construction of the invariant set K given a family of contractive 
mappings 1. For every k E N {1,2,...} and ek := (O,)i,... CEk-1) E Ek 

where Ek EpL x ... x EL, k times, we define the contractive mapping 9ek At ? 
oE 0OE ... o OEk-1 where o denotes the composition of functions on X, and we 
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let 1k {95ek ek E Ek}; in particular, I, = 4. We let Xek be the unique fixed 
point of the mapping 0ek, that is, 

(2.3) oek(Xek) = Xek, 

and set 

(2.4) {k Xek ek A E }- 

We define Ey to be the set of infinite vectors e = (o, El,...), e Ep, 
i E N0 {0,1, ..}. With every such vector e E E' and k E N we let 

ek (E,ci,.. ,Ek) e k atswas s Xek ek = (CO1, C...Ck- 1) E Ep. It was shown in [H] that the limit of Xeas k >X 
exists, and we shall denote this element of the metric space X by Xe. In other 
words, we have that 

(2.5) lim Xek = Xe. 
k-- oo 

The invariant set K is given by either one of the formulas 

(2.6) K = {xe: e E E7} 

or 

(2.7) K= USk 
kE-N 

The following concept is indispensable to the construction of set wavelets. 

Definition 2.1. A subset V of X is said to be refinable relative to the mappings 
ID if V C (V). 

Observe that the union of any collection of refinable sets is likewise refinable. 
Moreover, if V is a refinable subset of X, then 4Dk(V) is also a refinable subset of 
X for all k E N. One of our main objectives is to identify refinable sets of finite 
cardinality. Before we present a characterization of these sets we look at some 
examples on the real line which will be helpful to illuminate the general result. 

For the metric space IR and an integer , > 1, we consider the mappings 

(2.8) 1b6c(t) = t+ 
tEIX, E E,l. 

A-t 
The invariant set for this family of mappings is the unit interval [0, 1].4 Our first 
example of a refinable set relative to the family of mappings T := 4 ' E E,,} 
given in (2.8) comes next. 

Proposition 2.2. The set Uo:{Sk j E Ek?+1} is refinable relative to the map- 
pings T. 

Proof. For every j E Ek+1 we write the integer Aj uniquely in the form At = kc?t, 
where -1 E Ek and e E N0. Since Atj < Atk, we conclude that e E E,. Moreover, 
we have that , b, (i), and so Uo is refinable. D 

In some applications, the exclusion of the endpoints 0, and 1 from a refinable set 
is desirable. As an example of this case we present the following fact. 

Proposition 2.3. The set Uo { 43 j-1 E Ek} is refinable relative to the 
mappings 4' if and only if At and k + 1 are relatively prime. 
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Proof. Suppose that ,u and k + 1 have a common multiple m > 1, that is, Atm 
and k + 1 mi2 for some integers i1 and i2, and Uo is refinable relative to the 
mappings 4. Then we have that i2 - 1 E Ek and ij1 e EE. Moreover, ?ke1(O) 

1 - ? 
-2 This equation implies that Wbe (0) E Uo- Since Uo is refinable, there exist A k?1ipisi ic i xs 

oe EA, and u E Uo such that bfb (0) = feO(u). It follows from the equation above 
that ? = u + co. Thus, either 1 = E0 and u =,0, or E0 + I1 = j and u = 1. In either 
case we conclude that either 0 or 1 is in Uo. But this is a contradiction, since Uo 
contains neither 0 nor 1. Hence, the integers At and k + 1 must be relatively prime. 

Conversely, suppose At and k + 1 are relatively prime. For every j - 1 E Ek 

there exist integers e and i such that jAt = (k + 1)E + X, where i - 1 E Ek+1. Since 

jAt < (k + I)At, it follows that e E EA,. Moreover, because At and k + 1 are relatively 
prime, it must also be the case that L- 1 E Ek. Furthermore, since k+l = f ( 

we conclude that Uo is refinable. D 

Our third special construction of refinable sets Uo in [0,1] relative to the map- 
pings 4' is formed from cyclic At-adic expansions. To describe this construction we 
introduce two additional mappings. The first mapping wr El , [0,1] is defined 
by 

7r (e): i-1 e (CO,I) )2)--... E`, 

and also we write it as ir(e) = .EOE1I2 . This mapping takes an infinite vector 
e E E' and associates to it a number in [0,1] whose At-adic expansion is read off 
from the components of e. The mapping wr is not invertible. Referring back to 
the definition (2.8), we conclude for any e E EA, and e E E' that fb(lr(e)) 
.EE0E1 We also make use of the "shift" map v: EM -* Eo1. Specifically, for an 
e = (CO,E17,2,.) e E ," we set 5(e) := (E1,E2,...) E E,,. Thus the mapping a 

discards the first component of e while the mapping lb, restores the corresponding 
digit, that is, 

(2.9) fe (fr o 5(e)) =r(e). 

For any k E N and ek = (CO), ...Ck-l) E E k we let .EOEl ... Ek- denote the 
number wr(e) where e = (Ec, )l...) E EX1 and Ei+k = Ei, i E N0. Note that for 
such an infinite vector e we have that ak(e) = e, where Uk = o... o a is, the k-fold 
composition of a, and also the number COCI ... Ck-l iS the unique fixed point of the 
mapping OEbek. Thus, in our previous notation applied to the family of mappings 4' 
we have that xek = .oEE '' Ek-l. 

Proposition 2.4. Choose k E N and ek = (CO, E .... Ek-l) E E k such that at 
least two components of ek are different. Let e := (Eo, El.... ) E E' with Ei+k = Ci, 

i E N0. Then the set Uo(wr(e)) := {wr o u?(e): f E Ek} is refinable relative to the 
mappings 4' and has cardinality < k. Moreover, if k is the smallest positive integer 
such that Ei+k = (i, i E No then Uo(w(e)) has cardinality k. 

Proof. If .E . 
Ck-I = .E1 E 1 for E , E ei EA, i E Ek, then Ec =E, i E Ek. 

Hence, it follows that all the elements of Uo(wr(e)) are distinct. Also, by using 
(2.9), for any f E Ek we have wr o u?(e) = 0b,(wr o u?+l(e)). Note that trivially 

iFr o u+1(e) E Uo(wr(e)) for f E EklI and wr O uk(e) = ir(e) E Uo(fr(e)), and thus 
Uo(ir(e)) is indeed refinable. D 
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Various useful examples can be generated from this proposition. We mention 
the following possibilities for ,t = 2: 

U0(.01 ={j}, U0(.001) { }, Uo(.OO11) { , , }. 

We now present a characterization of refinable sets relative to a given family of 
contractive mappings 1 on any metric space (X, d). To state this result, we let 
er, = (Er, Er+l?... , E-1) for r E E+?I and use xere to denote the fixed point of 
the composition mapping 95ere) where 9er e :=+ o ? Er?1 o .. o q,-_ when r E Ef 
and q5er is the identity mapping when r = 

Theorem 2.5. Let D := {q : e E E[,} be a family of contractive mappings on a 
complete metric space X and let Vo C X be a nonempty set of cardinality k E N. 
Then Vo is refinable relative to 1 if and only if Vo has the property that for every 
v E Vo there exist integers X, m E Ek+1 with f < m and E e EE,,, i E Em, such that 
v =5eo, (Xee m) and the points 

(2.10) 
Vr := 9ere(XeJm) E V0, T eE Ef, Ve+r q= 5ef+r,,l%(Xef,,n) E Vo, r E Em-e. 

Moreover, in this case, we have that Vi := Ji(Vo) C K, i E N, and also 

(2.11) Vo C J?e(fm-). 

Proof. Assume that Vo is refinable and v E Vo. Let vo = v. By the refinability of 
Vo, there exist points vj+1 E Vo, and Ej e E ,, for j E Ek, such that v. = O,j(vj +), 
j E Ek. Therefore we have that vr = 5ers(vs)) r E E, s E Ek+l. Since the 
cardinality of Vo is k, there exist two integers ?, m E Ek+1 with f < m for which 
Ve = Vm. Hence, in particular, we conclude that vf vm = Xeem. It follows that 

Vr = e5ere(Ve) = 5er,e(XeeJm), r E Et, 

and 

Vf+r = 9ee+r,m (vm) = 9ee+r,m (Xee,m), r c Eme. 

These remarks establish the necessity, and also the fact that vo E 1e(Fm-e) C K. 
Conversely, let Vo be a set of the points with the property and let v be a typical 

element of Vo. Then we have that either v = qeo0f(xef--) with ? > 0, or v = Xeom 
with f = 0. In the first case, since v = Eo(Oei e(Xeem)) and Oei, (Xee,.<) E Vo, we 
have that v E 4(Vo). In the second case, since Xeo,m is the unique fixed pdint of the 
mapping Oeom, we write v = 

(e1i, (Xeo )). By our hypothesis, oei,m (Xeo,m) E 
Vo, and thus in this case we also have that v E 1(Vo). Therefore, in either case, 
v E 4(VO), and so Vo is refinable. These comments complete the proof of the 
theorem. D 

We next derive two consequences of this observation. To present the first we 
go back to the definition (2.5) of the point xe, in the metric space X, where e = 
(Eo,) , ...) E ", and observe that when the vector e is s-periodic, that is, its 
coordinates have the property that s is the smallest positive integer such that 

Ei? = s,) i E N0, we have that xe = xes, where e, = (ECO, El, ... , -l). Conversely, 
given any ee E', we can extend it as an s-periodic vector e E E' and conclude 
that xe = Xe. 

Let us observe that the powers of the shift operator a acts on s-periodic vectors 
in E' as a cyclic permutation of vectors in E'. Also, the s-periodic orbits of a, 
that is, vectors e E E' such that us(e) = e, are exactly the s-periodic vectors 
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in EM. With this viewpoint in mind we can draw the following conclusion from 
Theorem 2.5. 

Theorem 2.6. A finite set Vo in a metric space X is refinable relative to the 
mappings ID if and only if for every v E Vo there exists an e E E, such that v x, 
and Xjk(e) E Vo for all k E N. 

Proof. For convenience, we define the notation 7r*(COC1C2 ...) (E0, El, E2,* *) E 
E' for ie E,. The proof requires a formula from [H, p.727] which in our notation 
takes the form 

0,E(Xe) = XrT*(0,(lr(e)))) E Ep, e E 

where lb, are the concrete mappings defined by (2.8). Using this formula, the 
number ir(e) associated with the vector e in Theorem 2.5 is identified to be 

7r(e) =.EoE ... et-1c... em-1. 

An immediate corollary of this result characterizes refinable sets on IR relative 
to the mappings (2.8). 

Theorem 2.7. Let Uo be a subset of R1 having cardinality k. Then Uo is refin- 
able relative to the mappings (2.8) if and only if for every point u E Uo there 
exist integers t,m E Ek+1 with f < m, and E e E EX, i E Em, such that u 
.EO ... * em-l and for any cyclic permutation r7e, ... , m-i of Ee,... , Ei 

and r E Ef the point Er ... * 1. I 71 Zs in Uo. 

It is the vectors e E E' which are pre-orbits of a, that is, for some k E No the 
vector ak (e) is periodic, which characterize refinable sets. Thus there is an obvious 
way to build from refinable sets Uo relative to the mappings (2.8) on IR refinable 
sets relative to any finite contractive mappings on a metric space. For example, 
let Uo be a finite subset of cardinality k in the interval [0, 1]. We require for each 
number u in this set that there is an e E E' such that u = ir(e) and, for every 
j E N0, ir(u(e)) E Uo. In other words, Uo is refinable relative to the mappings 
(2.8). We define a set Vo in X, associated with Uo, by the formula 

Vo {= Xe ir(e) E Uo}, 

where Xe E X is defined by the limit (2.5). This set is a refinable subset of X 
relative to the contractive mappings 1. We may use this association to construct 
examples of practical importance in the finite element method and boundary inte- 
gral equations. 

Example. Let A c 1R2 be the triangle with vertices at yo = (0, 0), Yi = (1, 0) and 
Y2 = (0, 1). Set y3 = (1, 1) and consider four contractive affine mappings 

2~~~~~~~~~~~~~~ (2.12) O(be() := 
2(YE 

+ (-1),r(E)X)) c E E4, x ERIt2 

where T(E) = O,e E E3 and T(3) = 1. The invariant subset of 1R2 relative to these 
mappings is the triangle A and the following sets are refinable: 
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Also, we record for any e (Eo,) E, ... ., k-1) E Ek and x E IR2 that 

95ek(X) =2k [(-1) X + Zl(-)Ti2k3Yi1gj] 

where Tj := Teo (ce), j E Ek?1. From this equation it follows that 
k-1 

Xek = 2k + ( l)Tk+l Z( 1)T y6j 

These formulas can be used to generate the above sets. 

3. SET WAVELETS 

In this section, we shall generate a sequence W :={Wn n E No} of finite sets 
of a metric space X which have a wavelet-like mnultiresolution structure. We call an 
element of W) a set wavelet, and we shall demonstrate in subsequent sections that 
set wavelets are crucial for the construction of interpolating wavelets on certain 
compact subsets Of IRd. 

The generation of set wavelets begins with an initial finite subset Vo: {Vj: j E 
Em} of distinct points in X. We use this subset and the finite set of contractive 
mappings e to define a sequence of subsets of X given by 

(3.1) Vi := (?-i), i E N. 

Assume that a compact set K in X is th-ke unie invariant set relative to the 
mappings o. When Vo C K, it follows that Vi C K for each i eqN. Furthermore, 
using the set of contractive mappings tck :oek ek E Er } introduced in the last 
section, for every subset A of X we define the set 

bk(A) := U Xek (A), 
ek EEk 

and so, in particular, t1(A) = X(A). Therefore, the definition (3.1) implies that 
Vi = b(V0), i E N. 

The next lemma is useful to us. 

Lemma 3.1. Let n be a finite family of contractive mappings on X. Assume that 
K C X is the invariant set relative to the mappings ek . If Vo is a nonempty finite 
subset of X, then 

KC(A U Vi)(A) KkUEk 

iEo 

where ? is generated by the mappings iA by (3.1). 

Proof. Let x E K and 8 > O. Since K is a compact set in X, we choose an 
integer n3> such that fin diam(K U Vo) <8, where a is the contraction parameter 
appearing in equation (2.1). According to the defining property (2.2) of the set 
K, there exists an en E Cn such that ma p pie(K) C Ie7l(KUVo). Since Vo is a 
nonempty set of X, there exists a y e nen(Vo) C q5e(K U Vo). Moreover, by the 
contractivity of the family m given by (2.1), we have that 

d(x, y) ? diamq es (K U diai(K U VO) < whediam(K t no) <. 

This inequality proves the result. A 
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Proposition 3.2. Let Vo be a nonempty refinable set of X relative to a finite family 
of contractive mappings 1, and let {Vi i E No} be the collection of sets generated 
by the definition (3. 1). Then 

K= U Vi 
iE-No~ 

Proof. This result follows directly from Lemma 3.1 and Theorem 2.5. D 

This proposition provides another way to construct the unique invariant set K 
relative to a finite family of contractive mappings 4P. In other words, we start with 
a refinable set Vo and then form Vi, i E N, recursively by (3.1). 

We say that a sequence of sets {A: i E No} is nested (resp., strictly nested) 
provided that A.-1 C A., i E N, (resp., Ai1 c Ac, i E N). The next lemma shows 
the importance of the notion of the refinable set. 

Lemma 3.3. Let K be the invariant set in X relative to a finite family of contrac- 
tive mappings ID. Suppose that K is not a finite set and Vo is a nonempty finite 
subset of X. Then the collection of sets {Vi: i E No} defined by (3.1) is strictly 
nested if and only if the set Vo is refinable relative to 1. 

Proof. Suppose that Vo is refinable relative to 4P. Then, it follows by induction on 
i E N that Vi-I C Vi. 

It remains to prove this inclusion is strict for all i E N. Assume to the contrary 
that Vi-I = Vi for some i E N. By the definition of Vi, we conclude that Vi-, = Vj 
for all j > i, and thus 

U V3 ?i-l. 
jEcNo 

This conclusion contradicts Proposition 3.2 and the fact that K does not have finite 
cardinality. D 

When the sequence of sets {Vi: i E No} is strictly nested, we let Wi := Vi Vi- v 

i E N, that is, Vi = Vi,- U' Wz_1, i E N, where we use the notation A U' B to 
denote A U B when A n B =5. By Lemma 3.3, if the set Vo is refinable relative to 
4, we have that Wi 74 0, i E N. Similarly, we shall use the notation 

-1) ? (A) = U '(A)) 
cC E1i- 

when q5(A) n q56;(A) 0, c,c' E ,E, e E '. The sets Wi, i E N, give us the 
decomposition 

(3.2) V(v= (O)Uw9. 

The next theorem shows that when the set Wo is specified, the sets Wi, i E N, can 
be recursively constructed and the set K has a decomposition in terms of these sets. 
This result provides a multiresolution decomposition for the invariant set K. For 
this reason, we call the sets Wi, i E N, set wavelets, the set Wo the initial set wavelet 
and the decomposition of K in terms of Wi, i E N, the set wavelet decomposition 
of K. 
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Theorem 3.4. Let K be the invariant set in X relative to a finite family of con- 
tractive mappings 4. Suppose that each of the contractive mappings q,, c E E,F,, in 
4 has a continuous inverse on X and they have the property that 

(3.3) q5 (int K) n Oq, (int K) = 0, c, c' EE,1,cec ' . 

Let Vo be refinable with respect to 4, and let WJO C int K. Then 

(3.4) Wi = 4I(Wi-1), i E N) 

and the compact set K has the set wavelet decomposition 

(3.5) K=Vo0U (U 'Wn) 
7-co 

Proof. Our hypotheses on the contractive mappings qe, c C E ,,, guarantee that they 
are topological mappings. Hence, for any subsets A and B of X and any c E E,, 
we have 

(3.6) int q5 (A) = 6(int A) 

and 

(3.7) q5 (A) no q5(B) = q(A n B). 

Let us first establish that when Wo C int K, the sets Wi, i E N, defined by the 
recursion (3.4) are all in int K. We prove this fact by induction on i E N. To this 
end, we suppose that Wi-1 C int K, i E N. Then, the invariance property (2.2) of 
K and (3.6) imply that 

(Wi -1) C N(int K) = int 4(K) = int K. 

Therefore, we have advanced the induction hypothesis and proved that Wi C int K 
for all i E N. Using the fact that Wi C int K, for any i E N, ,c' c E,1, c - c' we 
conclude from our hypothesis (3.3) that q, w (Wi-1) n q, e(Wi- ) = 0, which justifies 
the "I" in formula (3.4). It follows from (3.1), (3.4) and Wo = V1 \ Vo that 
Wi C- Vi+1 i E N0. 

Next, we wish to confirm that 

(3.8) V?+1 \ Vi = Wi) i E N0. 

Again, we rely upon induction on i and assume that 

(3.9) Vi \Vii = Wi-1 

Therefore, we obtain that 

Vi U Wi = /(Vi-1) u N(Wi-1) U (o'S(Vi-1) u o'S(Wi-1)) U O'S(Vi) = Vi+?, 
EC Ep ECE EH 

which implies that Vj+j \ Vi C Wi. To confirm that equality holds we observe that 

(3.10) 

vi n wi = N(vi-l) n N(w-ij) = U U (ME(vi-1)) n (?e'(Wi-1)). 

ECE E/.c'E1 

For c 7- ' we can use (3.6) and hypothesis (3.3) to show that q5 (K) nq,/ (int K) - 0. 
To see this, we assume to the contrary that there exists x C ?, (K) n ,/ (int K). 
Then there exist y E K and y' E int K such that x = q (y) = 0e (y'). Condition 
(3.3) insures that y C K \ int K. Hence, by equation (3.6), it follows from the 
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first equality that x E K \ int K and from the second equality that x E int K, a 
contradiction. Consequently, we have that 

(3.11) (kc(Vi-i)) n (?e'(wiV-1)) 0 

When e-' we use (3.7) to obtain that (3.11) still holds. Hence equation (3.10) 
implies that vin wi= 0. This establishes (3.8), advances the induction hypothesis, 
and proves the result. D 

We end this section by considering the following converse question to the one we 
have considered so far. Given a finite set in a metric space, is it refinable relative 
to some finite set of contractive mappings? The motivation for this question comes 
from practical considerations. As is often the case in certain numerical problems 
associated with interpolation and approximation, we begin on an interval of the real 
line with prescribed points, for example, Gaussian points or the zeros of Chebyshev 
polynomials. We then want to find mappings to make these prescribed points 
refinable relative to them. We shall only address this question in the generality 
of the space Rd relative to the f?,-norm. It is easy to see that, given any subset 
Vo := {vi: i E Ek} of Rd, there is a family of contractive mappings on Rd such 
that Vo is refinable relative to them. For example, the mappings Oi (x) = (x + vi), 
i E Ek, x E Rd, will do, since clearly the fixed point of the mapping X is vi for 
i E Ek. However, almost surely the associated invariant set will have an empty 
interior, and therefore Theorem 3.4 will not apply. For instance, in the example 
of a triangle mentioned above, the general prescription applied to the vertices of 
the triangle will yield the Sierpin'ski gasket. This invariant set is a Cantor set and 
is formed by successively applying the maps (2.12) to the triangles; this throws 
away the middle triangle which is the image of the fourth map used in the example. 
To overcome this we must add to the above family of mappings another set of 
contractive mappings "which fill the holes". To describe this process we review 
some facts about parallelpipeds. 

A finite set I = ~{ti: i E E,+1J with to < ti < ... < tn-1 < tn is called a 
partition of the interval I := [to, tn] and divides it into subintervals 1i := [ti, ti+l], 
i E En, where the points in I n (to, tn) appear as endpoints of two adjacent subin- 
tervals. For every finite set Uo of points in (0, 1) there exists a partition I such that 
the points of Uo lie in the interior of the corresponding subintervals. The lengths 
of these subintervals can be chosen as small as desired. 

Likewise, for any two vectors x := (xi: i E Ed), y (yi: i E Ed) in Rd, where 
xi < yi, i E Ed, which we denote by x -< y (also x i- y when xi < yi, i E Ed), we can 
partition the set ?iGEd [xi, Y2] called a parallelpiped and denoted by (x, y)-into 
(sub) parallelpipeds formed from the partition 

(3.12) Id : i := {(t3 j E Ed): ti EXi) i E Ed}, 
iCEd 

where each 1i is a partition of the interval [xi, yi], i E Ed- If {Ii,j j Eni} is 

the set of subintervals associated with the partition ?i, then a typical parallelpiped 
associated with the partition Id corresponds to a lattice point i = (iJ : j E Ed), 

where i. E Enj ) j E Ed, and it is defined by 

(3.13) 1i = (8) iiEd 
jcEd 
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Given any finite set Vo C Rd contained in the interior of a parallelpiped P, we 
can partition it as above so that the interior of the subparallelpipeds contains the 
vectors of VO. We can, if required, choose the volumes of these subparallelpipeds 
to be as small as desired. 

The set of all parallelpipeds is closed under translation, as the simple rule 

(x,y) +z {w+z: w E (x,y5} = (x+z,y+z), 

valid for any x, y, z E Rd with x -< y, demonstrates. To any x, y E Rd we associate 
an affine mapping A on Rd defined by the formula 

(3.14) At:=Xt+y, tCRd, 

where X diag(xo,xi,.... ,Xd 1). Such an affine map takes a parallelpiped bijec- 
tively to a parallelpiped (as long as the vector x has no zero components). Con- 
versely, given any two parallelpipeds P and P', there exists an affine mapping of 
the form (3.14) which takes P bijectively to P'. Moreover, if there exists a z E Rd 
such that P' + z C int P, then A is a contraction relative to the t??-norrn on Rd 
given by 

||(xi: c E d)fl| := max{|x.l i E Ed}- 

For any two parallelpipeds P = (x, y) and P' (x', y') with P' C P we can 
partition their set-theoretic difference into parallelpipeds in the following way. For 
each i E Ed we partition the interval [xi,yi] into three subintervals by using the 
partition 12i: {x= x,xy,y',yj}. The associated partition jd decomposes P into 
subparallelpipeds such that one and only one of themn corresponds to P' itself. In 
other words, if {Pi: i E EN}, N = 3d, are the subparallelpipeds which partition P 
and PN-l = P', then we have that 

P\PI U Pi. 
iCEN_1 

We can now state the theorem. 

Theorem 3.5. Let rn be a positive integer and Vo a finite subset of cardinality m 
in the metric space (Rd, . 1) There exists a finite set of contractive mappings ' 

of the form (3.14) such that VO is refinable relative to ?1@ and the invariant set for 
4 is a parallelpiped. 

Proof. First we put the set Vo into the interior of a parallelpiped P, which we 
partition as described above into subparallelpipeds so that the vectors in Vo are in 
the union of the interior of these subparallelpipeds. Specifically, we suppose that 

Voz{vi: i C Em}, ' P U Pi, 
GCEA,I 

with m < M, vi E int Pi, i E Em, and Vo n int Pi 0, i E EM \ Em. 
For each i C Em we choose a vector zi := (zi,o,zi,1,... ,Zi,d-l)T E (0,I)d with 

sufficiently small components zij so that the affine mapping 

(3.15) Ait = Z2(t - vi) + v., t eE Rd 

where Zi diag(zi,o, zi,1, ... , Z1,d-1), has the property that the parallelpiped Q2i 
AiP is contained in Pi. Since Aivi = vi, i E Em, the set Vo is refinable relative to 
any set of mappings which includes those in (3.15). We wish to append to these 
m mappings another collection of bijective contractive affine mappings of the type 
(3.14) so that the extended family has P as an invariant set. 
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To this end, for each i E Em we partition the difference set Pi \ Q2 into paral- 
lelpipeds in the manner described above: 

Pi \ Qi U P'i,3 
jCEN_1 

where N = 3d. Thus, we have succeeded in decomposing P into subparallelpipeds 
so that exactly m of them are the subparallelpipeds Qi, i E Em,. In other words, 
we have 

P UWi, 
iC Ek 

where m < k and Wi = Q., i E Em. Finally, for every i E Ek \ Em we choose a 
bijective contractive affine mapping A, such that AiP = Wi. This implies that 

P U AiP, 
iC Ek 

and therefore P is an invariant set relative to the bijective contractive mapping Ai, 
i e Ek. D 

In the remainder of this section we look at the above result for the real line and 
try to economize on the number of affine mappings needed to make a given set Vo 
refinable. 

Theorem 3.6. Let k be a positive integer and Vo := {Vo,v1,... ,Vk_l} a subset 
of distinct points in [0, 1] of cardinality k. Then, there exists a family of bijective 
contractive affine mappings {q5e c E E,,} of the type (3.14) for some 2 < ,u < 4 
when k = 1, 2 and 3 < /t < 2k - 1 when k > 3 such that Vo is refinable relative to 
these mappings. 

Proof. Since the mappings qo(t) := 2 and q1(t) = t+1 have the fixed points t = 0 
and t = 1, respectively, we conclude that when k = 1 and Vo consists of either 
O or 1 and when k = 2 and Vo consists of 0 and 1, these two mappings are the 
desired mappings. When Vo consists of one interior point vo, we need at least three 
mappings. For example, we choose 

bo(t) = 2 5 t, si(t) =I(t-vo) +vo and 02(t) j 2t+ ?2 
I 

for t E [0,1]. 2' 22 2 A 
When Vo consists of two interior points of (0, 1), we need four mappings constructed 
by following the spirit of the construction for the case k > 3 which is given below. 

When k > 3, regardless of the location of the points there exist 2k - 1 mappings 
that do the job. We next specifically construct these mappings. Without loss of 
generality, we assume that vo < v< < < Vk-l. We first choose a parameter oY 
such that 

0i V O-o V2-Vl } 

o < -7, < min I sl -vlJ 
and consider the mapping q1(t) := -y,(t - vl) + vl, t E [0,1]. Therefore, if we 
let a,1 := q1(O) and /1 := q1(1), then vo < a,1 < /1 < v2. Next, we let oyo := 
(a, - vo)/(l - vo) and introduce the mapping qo(t) := 'yo(t - vo) + vo, t E [0, 1]. 
Clearly, by letting aco := qo(O) and /0 := qo(l), we have 0 < aoo < So = al. 

The remaining steps in the construction proceed inductively on k. For this 
purpose, we assume that the affine mapping qj-2 has been constructed. We let 
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j -2 := qj-2(1) and define 

j-l (t) := -aj-l(t - vj_) + vj_y, t E [0, 1], j = 3,4, ... , k - 1, 
where the parameters -Yj-1 are chosen to satisfy the conditions 

O< -j31 < min {Vi1 i3i2 Vj-V j = } 

It is not difficult to verify that j-l ([0, 1]) C (/j-2, vj), or equivalently !j-2 < 
ctj - < /j-i < v., by letting ce-i := qj-1(O) and /j- 1 := -b_(l). Next, we let 

fkk-1 (t) =Yk-1(t - Vk-1) + Vk-1, t E [0, 1], where 0 < -yk-1 = Vkl-k2 and 
let atk-1 =5k-2(O) and /3k-1 := k-1(1). Then, we have that /3k-2 OCtk-1 < 

f3k-1 < 1. By the construction above, we find two sets of numbers {ca i E Ek} 
and {f i i Ek} that satisfy the condition 

0 < Olo < 00 = ce1 < 01 < ... < Ok-2 = Ck-1 < Ok-1 < 

and the union of the images of [0,1] under mappings {qj : j E Ek} iS 

k-1 

U:= U Kilj dI 
j=O 

Notice that the set U is not the whole interval [0,1]. There are at most k - 1 gaps 
which need to be covered. It is straightforward to construct these k - 1 additional 
mappings. 

The family of mappings of cardinality at most 2k - 1 that we have constructed 
above has [0,1] as an invariant set, and Vo is a refinable set relative to them. D 

When the points in a given set have special structure, the number of the map- 
pings may be reduced. 

4. LAGRANGE INTERPOLATING WAVELETS 

We describe in this section a construction of Lagrange interpolating wavelets 
using the set wavelets constructed previously. For this purpose, we let X := Rd 
and assume that 4 := c0e: e E,1} is a family of contractive mappings that 
satisfies the hypotheses of Theorem 3.4. We also assume that K C Rd is the 
invariant set relative to ?1@ with meas(K \ int K) = 0, where meas (A) denotes the 
Lebesgue measure of a set A c Rd. Let k be a positive integer and assutne that 

Vo := {vO,v1,... ,Vk-1} C intK 

is refinable relative to ?1. Note that in this construction of discontinuous wavelets, 
we restrict the choice of the points in the set Vo to interior points of K. 

As in [MX1, MX2], we choose a refinable curve f := (fo, f,.... ) fk_l)T K - Rk 
which satisfies a refinement equation 

(4.1) foi = Aif, ie E,1 

for some prescribed k x k matrices Ai, i E F,1. We remark that if there is g: K - Rk 
and a k x k nonsingular matrix B such that f = Bg, then g is also a refinable curve. 
We let 

Fo :span{fo, fl, ... , fk-1} 

and suppose that dim F0 = k. Furthermore, for any b (bo, bl,... , bk-l)T E Rk 

we require that there exists a unique element f E Fo such that f (vi) = bi, i E Ek. In 
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other words, there exist k elements in Fo, which we also denote by fo, f,,... , fk-1, 

such that fi(vj) = i,j, i, j E Ek. When this condition holds we say that {fi: i E 
Ek} interpolate on the set Vo and that fj interpolates at v;, j E Ek. Under this 
condition, any element f E F0 has a representation of the form 

f = f(v2)fj. 
iCEk 

A set Vo C Rd is called (Lagrange) admissible relative to (I, Fo) if it is refinable 
relative to ?1@ and there is a basis of functions fi, i E Ek, for Fo which interpolate on 
the set Vo. In this section we will always assume that Vo is (Lagrange) admissible. 
We record in the next proposition the simple fact of the Lagrange admissibility of 
any set of cardinality k for the special case when = 4' defined by (2.8), K = [0, 1] 
and IFO= IPk-1, the space of polynomials of degree < k - 1. 

Proposition 4.1. If Vo C [0, 1] is refinable relative to 4 and has cardinality k, 
then Vo is Lagrange admissible relative to (4', IPk- 1). 

Proof. It is a well known fact that the polynomial basis functions satisfy the re- 
finement equation (4.1) with Xi = fj for some matrices A.. Hence, this result 
follows immediately from the unique solvability of the univariate Lagrange interpo- 
lation. D 

In a manner similar to the construction of orthogonal wavelets in [MX1, MX2], 
we define linear operators 'T: L??(K) -* L??(K), e EF,, by 

(7-6X) (t) : = { ()e(t) tE eK, 0) ~~t e K) 

and set 

IFi+l = @ sF5i v i E NO . 
e RFG i N0 
cC E1i- 

This sequence of spaces is nested, i.e., Fi C Fi+,, i E N0, and dim F, = kp,u i E N0. 
We next construct a convenient basis for each of the spaces F2. For this purpose, 

we let Fo {fj: j E Ek}, where fj, j E Ek, interpolate the set Vo, and 

(4.2) 

Fi:= U "TeFi-_= {Te,o ? * ?Ts_1f3 Ek) Ej E El,) f E Ei , i (E N. 
eECE 

Since the functions fj, j E Ek, interpolate on the set Vo, we conclude that the 
elements in Fi interpolate on the set Vi. In other words, the functions in the set Fi 
satisfy the condition 

(4.3) 

(TIE 0 
* ... 0 ? ze1fj)GI)e3 ? * * * ? he, (Vj/)) =( o.c. .., j),(c. 

where we use the notation 

a,a/ ={, a m- a', a,a'E 0, iEN. 

For ease of notation, we let ei := (60,61,... , Ci-) and Tejfj T=6 o ... o T?i1 fj 
By (4.3), this function interpolates at qei (vj). Moreover, 

(4.4) Fi = spanFi, i E N0. 
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Now, for each n E N0, we decompose the space F,+1 as the direct sum of the 
space FE and its complement space G?, which consists of the elements in F,+ 
vanishing at all points in V7, that is, 

(4-5) Fn+1 = Fn ) G;n) n (E No. 

This decomposition is analogous to the orthorgonal (reps. biorthorgonal) decom- 
position in the construction of orthorgonal (resp. biorthorgonal) wavelets in [MX1] 
(resp. [MX2]), and can be viewed as an interpolatory decomposition in the sense 
to be described below. 

We first label the points in the set Vn according to the set wavelet decomposition 
for Vn given in Section 2. We assume that the initial set wavelet is given by 
Wo = {wj: j E Ek(p_1)}, and we let 

to0j := vj, j E Ek; tl,j := wj, jEk(-l); 

ti,j : 0, ... 0o Ei2we, j = (,ui-2co + . + /ICi-3 + Ci-2)k(p - 1) + ?, 

em E Ep,) m E Ei -1) f c Ek (,- 1)) i= 2, 3,...-, n. 
Then, we conclude that Vn {t=tjj j C EJ(j), i C En+1}, where 

J(i):{(p- i i > 1. 

The Lagrange interpolation problem for Fn relative to Vn is to find for a vector 
b := (bij j C Ej(j),i C En+1) an element f E Fn such that 

(4.6) f(ti,;) = bi,; j E Ej(j)) i E En+ 
The following fact is useful in this regard. 

Lemma 4.2. If Vo is (Lagrange) admissible relative to (I, F0), then for each nE 
N0 the set Vn is also (Lagrange) admissible relative to (i, Fn). 

Proof. This result follows immediately from (4.3). D 

Lemma 4.2 insures that each f E Fn+1 has the representation f = 1Pnf + gn, 
where 1Pnf is the Lagrange interpolant to f from Fn relative to Vn and gn = f -1,Pf 
is the error of the interpolation. Therefore, we have that 

(4-7) (Gn = Ign : gn = f -9n f f E Fn+11} 

The fact that the subspace decomposition (4.5) is a direct sum also follows from 
equation (4.7) and the unique solvability of the Lagrange interpolation problem 
(4.6). For this reason, the spaces Gn are called the interpolating wavelet spaces, 
and in particular, the space G0 is called the initial interpolating wavelet space. A 
direct computation yields the dimension of Gn, namely dim Gn = kn (JL - 1). Also, 
we have an interpolating wavelet decomposition for Fn+l: 

(4.8) Fn+l = I0 () (Go (3 .3 (Gn 

In the next theorem, we describe a recursive construction for the wavelet spaces 
Gn. To establish the theorem, we need the following lemma regarding the distribu- 
tivity of the linear operators ET, c E E,,, relative to a direct sum of two subspaces 
of L??(K). 

Lemma 4.3. Let BI, C C L??(K) be two subspaces and suppose that B (D C is their 
direct sum. Then for each cC EF,, we have that T6(B 3 C) = (TeB) 3 (T6eC). 



1584 ZHONGYING CHEN, CHARLES A. MICCHELLI, AND YUESHENG XU 

Proof. It is clear that Te(BI? C) = (T4 )+(T, C). Therefore, it remains to verify that 
the sum in the right hand side is a direct sum. To this end, we let x E (TBS) n (T6C) 
and observe that there exist f e I and g E C such that 

(4.9) x = Tf = Tg. 
By the definition of the operators TS, we have that x(t) = 0, for t E K \ ?b6(K). 
Now, for each t E q5(K), there exists T E K such that t= sb6(T), and thus, using 
equation (4.9), we observe that 

x(t) = f(q(57(t)) = f(T) E IB, x(t) = g(q57(t)) = g(T) E C. 
Since IB 3 C is a direct sum, we conclude that x(t) = 0 for t E ?b6(K). It follows 
that x = 0. D 

We also need the following fact for the proof of our theorem. 

Lemma 4.4. Let Y C L? (K). Then 

TYO n T,Y, = {O}, c,' E ,,, e #6. 

Proof. Let x E TeY n T6/Y. There exist Yi, Y2 E Y such that x = TYi = T,'Y2. By 
the definition of the operators T6, we conclude from the first equality that x(t) = 0 
for t E K \ q56(K), and from the second that x(t) 0 for t E K \ qEY(K). Since 
e 4 c', we have that meas(q56(K) n q5e (K)) = 0. This implies that x 0 O a.e. in K, 
and therefore establishes the result in this lemma. D 

We are now ready to prove the main result of this section. 

Theorem 4.5. Let Vo be Lagrange admissible relative to (I, F0), and let W, nE 
No, be the set wavelets generated by Vo. Then it follows that 

(4.10) 
(Go = spant{Tfj: e E,1, j E Ek, Tfj interpolates at q)e(vj) E Wo}, 

Gn =~ @ e(Gn-1 v n EE N, 

and G?, = span Gn, where 

Gn := Ten+fi en+1 e E?n+1 j E Ek, Te?+ifj interpolates at q5en+ (Vj) E Wn} 

for n E No. 

Proof. Let T6fj interpolate at q5(vj) E Wo. Then Tfj has the property 

(Cfi) (eC,) (V./ 0, 6, / E E,E, C' 4 , or j, j' E Ek, j'/z ji 

By the definition of the set wavelet, Wo = V, \ Vo, we conclude that for all v; E VO 
we have (T6fj)(vjl) = 0. Thus, by the definition of Go, we have that for each point 

q56(vj) E Wo, the basis function T6fj is in Go. Note that the cardinality of Wo is 
given by the formula card Wo = card V, - card Vo = k( - 1). It follows that the 
number of the basis functions for which 7Efj interpolate at q56(vj) in Wo is k(u - 1), 
the dimension of Go. Because these k(G - 1) functions are linearly independent, 
they constitute a basis for G0. 

We next prove equation (4.10) by induction on n. For this purpose, we assume 
that (4.10) holds for n < m and consider the case when n = m + 1. By the 
definitions of Fm?+ and Gm-i, we have 

FM+l = eDTFm = E TE('Fm- I ?Grn-i). 
ECE, cCEGE 
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Using Lemma 4.3 and then again the definition of Fm, we obtain 

FmM+ e [(TeJFm-1) 3 (eTGm-1)] 
ECEA/ 

(a) TIFM-l 
3 ( 

Fm 
'Te?m-1) 

ECEAt ECEAt EGE,t 

Let 
G =ED TeGmi-1 

ECE/I 

and assume that f E G. Then, there exist got ,g,.-1 C (Gm-, such that 

f= E gE9 

EcEAt 

For each v E Vm, there exist v' E Vm-1 and ' E E. such that v =b6'(v'). By the 
definition of the linear operators T6, E( E,1, and the fact that e (E Gm-i, (E E), 
a direct computation leads to the condition that for each v E Vm 

f (v) = E TgEoe9e(v)'()) = ge (?)o ?'s ?e(v )) = ge/V W) = O. 

ECE/I 

Hence, G C Gmm. On the other hand, it is easy to see that dim G = dim Gm, which 
implies that G = Gm. 

To prove the second part of the theorem, it suffices to establish the recursion 

Gn+1 .=U "Ts Gn 

The "I " on the right hand side of this equation is justified by Lemma 4.4. To 
establish its validity, we let 

G:= U TsEGn. 

Hence, the set G consists of the elements 7en?iTem?ifj, where Ten1+fj interpolates 
at qen+1(Vj) E Wn7, n+1 E El,. By Theorem 3.4, we have that 

{fen+2 (vj) = 5En1 o l?en+ 1 (V3 ) e6n+1 E El, SEn+?l (vi) E Wnl} 
C {q0en+2 (Vj) E Wn+11} 

Hence, Gn+1 C G. Since cardG = cardGn+l = cardWn+1, we conclude that 
G = Gn+l. D 

Theorem 4.6. 

L2(K) = cl (e'IFn) cl HFo eG(hn)1. 
neNo nNo 

Proof. Since the mappings e, c E EE,, are contractive, the condition of Theorem 
4.7 of [MX2I is satisfied. The finite dimensional spaces FFn appearing here are the 
same as those generated by the family of mutually orthogonal isometries in [MX2] 
if we begin with the same initial space Fo. Therefore, the first equality holds. An 
examination of the proof for Theorem 4.7 of [MX2] shows that the same proof 
proves the second equality. D 
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As a result of the decomposition obtained in Theorems 4.5 and 4.6, we present 
a multiscale algorithm for the Lagrange interpolation. To this end, we let gYj, 
j E Ek(,_1), be a basis for Go, so that 

gj(to, ) = 0, i E Ek, j E Ek (/-t1), g3(ti,3J) = 6j,j') j,j Ek(p_l) 

We label those functions according to points in V, in the following way. Let 

go,j fj, j E Ek, g,j := gj, j E Ek(p-l)? 

gi,j T o ... o * ig j= (,Li-260 + * + /Ei-3 + Ci-2)k(/ - 1) + X, 
so, - , Ei-2 E Ep). f E Ek(,p_l), i = 2,3,... , n. 

With this labeling, we see that gi,j(ti,,j,) = 6i,il6j,, j E Ej(i), j' C EJ(i,) i,i' E 

En+l with i' < i, and 

En = span{gi,j: j E Ej(i), i E En+11- 

Now we express the interpolation projection in terms of this basis. For each x E 

C(K), the interpolation projection 2Pnx of x is given by 

(4.11) Pnx = E E xi,jgi,j. 
iGEn+1 jGEJ(M) 

The coefficients xi,3 in (4.11) can be obtained from the recursive formula 

Xo,j = x(to,j), j E Ek, 

xixj = x(ti,j) - i,j/gilj/(tiA), j E Ej(i), i E En+? 
i'EEi j'EEJ(il) 

This recursive formula allows us to efficiently interpolate a given function by func- 
tions in Fn . When we increase the level from n to n + 1, we need not recompute the 
coefficients xij for 0 < i < n. We describe this important point with the formula 

n.?+lX =PnX + Q2nX, where Qn2x E GGn and 

Q2nX := 5 Xn+l,j9?n+l,j 

jCEJ(n+l) 

The coefficients xn+l,j are computed by the previous recursive formula using the 
coefficients obtained for the previous levels, that is, 

Xn+l ,j = X(tn+1,j) - 5 E Xi/ - / gij / (tn+III ,) 
i'GEn+1 j'GEj(i1) 

Finally, we remark that the idea used in constructing the Lagrange interpolating 
wavelets can be used to construct the Hermite interpolating wavelets. 
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