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ON THE SATO-TATE CONJECTURE 
FOR QM-CURVES OF GENUS TWO 

KI-ICHIRO HASHIMOTO AND HIROSHI TSUNOGAI 

ABSTRACT. An abelian surface A is called a QM-abelian surface if its endo- 
morphism ring includes an order of an indefinite quaternion algebra, and a 
curve C of genus two is called a QM-curve if its jacobian variety is a QM- 
abelian surface. We give a computational result about the distribution of the 
arguments of the eigenvalues of the Frobenius endomorphisms of QM-abelian 
surfaces modulo good primes, which supports an analogue of the Sato-Tate 
Conjecture for such abelian surfaces. We also make some remarks on the field 
of definition of QM-curves and their endomorphisms. 

0. INTRODUCTION 

In this article we report a computational result about the distribution of the 
arguments of zeroes of congruence (-functions of two-dimensional abelian varieties 
with quaternionic multiplication (QM) modulo good primes. Our result supports 
an analogue of the Sato-Tate Conjecture for such abelian surfaces. 

An abelian surface A is called a QM-abelian surface if it has quaternionic multi- 
plication, that is, there exists an order ( of an indefinite quaternion algebra B over 
Q and an embedding t: 0 -> EndA. A curve C of genus two is called a QM-curve 
if its Jacobian variety is a QM-abelian surface. 

In [HM] N. Murabayashi and one of the authors obtained algebraic families of 
QM-curves explicitly when the discriminants of B are 6 and 10. In the case of 
discriminant 6, the following equations give a family of QM-curves: 

(0.1) S6(t s): y2 = X(X4 + (A - B)X3 + QX2 + (A + B)X + 1), 

s 1+3t2 
A=2t' 1-3t2' 

(1 - 2t2 + 9t4)(1 - 28t2 + 166t4 - 252t6 + 81t8) 

4t2(1 - 3t2)2(l - t2)(1 - 9t2) 

(0.2) SB,6 g(t, s) = s2 + 3 14t2 + 27t4 = 0. 

(This is slightly modified from the form in [HM]. We have obtained another family 
which has different arithmetic properties. See ?4.) By specializing (t, s) to points 
(to, S) E SB6 (Q), we can obtain a lot of examples of QM-curves defined over 
number fields. 

For many examples of QM-curves, we calculated the congruence (-functions of 
their reductions modulo p and studied the distribution of the argument of the roots 

Received by the editor August 22, 1995 and, in revised form, January 22, 1998. 
1991 Mathematics Subject Classification. Primary lIG40; Secondary IIG15, 14H10, 14K15. 
Key words and phrases. Quaternionic multiplication, L-functions. 

( 1999 American Mathematical Society 
1649 



1650 KI-ICHIRO HASHIMOTO AND HIROSHI TSUNOGAI 

a), / of the characteristic polynomial of the Frobenius endomorphisms. For a curve 
C of genus two defined over a number field k, the congruence (-function of C mod 
p for a good prime p of k can be written in the form 

( ) ( ) (1-~~~I -u)(1- qu) 

where - denotes the complex conjugate, the absolute values of a, ,3 are q, and 
q = Np, the absolute norm of p. In our case of QM-curves, if all endomorphisms of 
JacC are defined over k, we have a = /3. Put a = e-0 with Op E [0, 7r]. On 
the distribution of {Op } there is a conjecture which is an analogue of the Sato-Tate 
Conjecture for elliptic curves. Let us explain it. 

The original Sato- Tate Conjecture is as follows. Let E be an elliptic curve defined 
over a number field k. For a good prime p of k, the congruence (-function of E 
mod p is in the form 

(0.4) Z(u) (1 - qe -u)(1 - qeu 

where Op E [0, 7r]. M. Sato conjectured that if E has no complex multiplication the 
arguments { ?Op } would be distributed in proportion to sin2 0. Also J. Tate arrived 
at this conjecture; see [T]. 

H. Yoshida [Yol] generalized the above conjecture for higher-dimensional abelian 
varieties A. He conjectured that the distribution of the arguments is characterized 
by the image of the Galois group under the l-adic representation (more precisely, 
the Mumford-Tate group) of A. By Faltings' theorem [F], or earlier work of Ohta 
[0], for a QM-abelian surface A defined over a number field k, the image of the 
l-adic representation associated to A is a subgroup of GSp(4, Z1) isomorphic to an 
open subgroup of GL(2, Z1) if 1 does not divide the discriminant of B over Q. This 
suggests the following conjecture for the case of QM-abelian surfaces: 

Conjecture 0.5. Let A be a QM-abelian surface defined over a number field k. 
Assume also that all endomorphisms of A are defined over k. For a good prime p 
of k, let ?OP be the arguments of the eigenvalues of the Frobenius endomorphisms 
of A mod p. Then {?Op} would be distributed in proportion to sin2 0. 

Y. Yamamoto reported in [Ya] a result of computation which fits with the gener- 
arized conjecture for abelian surfaces A with EndA - Z. 

Yoshida [Yo2] proved an analogue of these conjectures for the cases of elliptic 
curves and QM-abelian surfaces over a function field over a finite field. 

If C is a QM-curve, then A = JacC is a QM-abelian surface, and the eigenvalues 
of FRobenius endomorphisms of A mod p coincide with the zeroes of the congruence 
(-function of C mod p. Hence we can examine the conjecture by calculating the 
congruence (-function of C mod p. We calculated them for more than twenty 
curves C and for primes p with Np < 220, and obtained results which support the 
conjecture. 

We carried out these calculations on a PC with UBASIC and on a UNIX Work 
Station with GNU C. We thank volunteer helpers in the computer room of our 
department and the staff of the Centre for Informatics, Waseda University. Espe- 
cially we would like to express our sincere gratitude to Kazumaro Aoki for useful 
suggestions for improving the algorithm. 
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1. CONGRUENCE (-FUNCTIONS 

First we recall some basic facts about congruence (-functions. For a curve C 
over Fq, let Nm denote the number of Fq m -rational points on C. The congruence 
(-function of C is defined to be 

(1.1) Z(C/Fq; u) exp )Nm u) 

Let C be a complete, non-singular curve of genus two. Then, by the Weil conjecture, 
we have 

(1.2) Z(C/Fq;u) (1 -u)(1-qu)' 

where P(u) E Z[u] is of degree 4, and P(u) = (1- au)(1 - tiu)(1 - /3u)(1 - fu) 
with Icel 1,a 1 = q. Putting ce + oe = a and ,3 + B =b, we can write 

(1.3) P(u) = (1-aat + qu 2)(1-bu+ qu2) 

with a, b e R and lal, lbl < 2q. By (1.1) and (1.3), a and b are evaluated from 

a + b = 1 + q - Nl, 

(1.4) ~~~~ab = -q -(1 + q)N1l + 2I(N2 + N 2). 2 
Let J = JacC be the Jacobian variety of C over Fq, 1 a prime different from the 
characteristic of Fq, and pl the l-adic representation 

(1.5) pi: Gal(Fq/Fq) > GSp(4, Z1). 

Then, for a FRobenius element o-, the characteristic polynomial of pi (a) does not 
depend on 1 and coincides with P(u). 

Let C be a QM-curve over a number field k, J = JacC its Jacobian variety, and 
o an order of an indefinite quaternion algebra B over Q identified with EndJ. Take 
a good prime p of k and let p be its residue characteristic and Np = q. For a prime 
number 1 different from p, we denote the associated completion of (9 (resp. B) by 
01 (resp. Bl). Then we have EndT1J ?z, Q, M4(Q1). Let k' be an extension of 
k over which all endomorphisms of J are defined. It is known [R, P] that k' can be 
chosen as a (2,... , 2)-extention of k. First, consider the l-adic representation p, of 
Gal(Q/k') attached to J: 

(1.6) p1: Gal(Q/k') > GSp(4, Z1) C M4 (Qi) 

Denote by EndGal(k/k)TlJ the centralizer of Impl in EndT1J. Then, by Faltings 

[F], EndGal(k/k)TlJ ?Zi Ql - Endk'J 0 Ql = Bl. Hence Impl is contained in the 
centralizer of Bl in M4 (Q1), which is isomorphic to the opposite algebra Bo of Bl. 
For a prime qv of k' above p, let o-T be the FRobenius element. Since P, (cfT) belongs 
to Bo, it satisfies a quadratic relation of the form 

(1.7) 1- cTX + (N93)X2 = 0. 

Now consider P, on Gal(Q/k). Let f = f(q3/p) be the inertia degree of qv in 
k'/k. Then f = 1 or 2, and Pl(ap) satisfies 

(1.8) 1 - cqXf + (qX2)f = 0 
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since op =(. On the other hand, since pl(op) belongs to M4(Ql), it satisfies a 
quartic relation. We can distinguish between the cases f = 1 and 2 by the values 
N1 and N2. If f = 1, then the characteristic polynomial of pi (op) is 

(1 - cTX + qX2)2 = (1 - apX + qX2)2 

with ap = C3. By (1.4), we have I 

(1.9) (l+q-N-)2 N 2(1+4q+q2-N2), ap, (I+q-Nj. 

If f = 2, then the characteristic polynomial of pi(o'p) is 

1 _ CTX2 + q2X4 =(1 - aX + qX2)(1 + apX + qX2) 

with a2 =-c + 2q. By (1.4), we have 

a2 ?14~ 2 _N2). (1.10) N1 = I+ q, a 2_( + 4q + q 

Now one of the remarkable properties for our family S6 given in (0.1) is that for 
any curve C(to,s0) obtained by specializing at (t, s) with t E Q, which is defined 
over a quadratic field k = Q(s) = Q(\/-3 + 14t2 - 27t4), (numerically) we always 
have f = 1. This shows that, very probably, all endomorphisms of JacC are defined 
over k, because if almost all primes of a number fields k are decomposed completely 
in an extention k'/k then k' = k. Based on this assumption, for many primes, we 
calculated only N1 to obtain results in reasonable time. 

2. DENSITY FUNCTIONS 

Let E= {0i}Oj?1 be a sequence in the unit circle T = R/27rZ. A real valued 
distribution 4) = (D(0) on T is called the density function of 0) if it has the following 
property: 

For any open interval U of T and any natural number m, let 

(2.1) n(U,m) = #{j E N Oj E U, j < }. 

Then 

(2.2) lim n (U,m)= ( /,(9) d6 
mo?+0 mu 

where dO denotes the measure on T induced from the Lebesgue measure on R. 
The next lemma is basic (see, e.g. [Yo2]). 

Lemma 2.3. For a sequence 0= {0j} '-1 on T, assume that the limit 

m 

ck:= lim 1 e -1k 
m->oo 2qrm 

j=l 

exists for all k E Z. Then the series 
00 

( (0) := E cke kO 
c=-ot 

converges in the sense of distri'butions and is the densi'ty function of E). 
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Let E be an elliptic curve defined over a number field k. For a good prime p of k, 
let ?O0 be the arguments of zeroes of the congruence (-function for E mod p (see 
(0.4)). Since we should consider the distribution of a sequence of pairs = {?OP }p, 
we define the density function of 0) as a distribution satisfying 

(2.4) lim #{plOp 
c 

U,Np < x} 0)dO x-*oo #{plNp < x 'It~ 

for any open interval U C [0, 7r]. The original Sato-Tate Conjecture asserts that, if 
E has no complex multiplication, then 4D(O) = 7r-1 sin2 0. 

Let C be a QM-curve defined over a number field k. We assume that all endomor- 
phisms of JacC are defined over k. Then, for a good prime p of k, the congruence 
(-function of C mod p has the form 

(2.5) Z(u) = (1 - e 109Pu)2(1- _Fte 2-1Qu)2 (I1-u)( - qu) 

where q = Np is the absolute norm of p. Similarly to the case of an elliptic curve, 
we consider the density function of the pairs 0) = { ?0, }P. A generalization of the 
Sato-Tate Conjecture by H. Yoshida asserts that the density function (D of 0) would 
be 

(2.6) J?(O) 7-1 sin 2 0. 

We checked this conjecture for many QM-curves of discriminant 6 by calculating 
the Fourier coefficients of (D(O) approximately. Similarly to Lemma 2.3, we have 
the following lemma. 

Lemma 2.7. For 0) = {1?0}p, assume that the limit 

Ck lim pIm,N< Z kO 

ck xo #{1, good prNme,Nc < x cos P 

exists for all positive integers k. Then the series 

N(0) : + -ckcoskO 
k=1 

converges in the sense of distributions and is the density function of 0). 

If the conjecture is true, then the Fourier coefficients Ck of 1) must be 

1 
(2.8) C2 =- 2 Ck = 0 (k 5# 2). 

We calculated approximate values of Ck's as 

(2.9) Ck #{p good prime,Np < x cos kOP 

for sufficiently large x. 

Remark 2.10. In the definition of the Fourier coefficients Ck, we can restrict our- 
selves to primes degree one. But we calculated the arguments ?Otp also for primes 
p of absolute degree more than one (in fact, of degree two because we examined 
QM-curves defined over (imaginary) quadratic fields) to make sure that there was 
no qualitative difference. 
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3. RESULTS 

Consider the family of QM-curves given by 

(3.1) S6(t s): y2 X(X4 + (A - B)X3 + QX2 + (A + B)X + 1), 

s B 1+ 3t2 

2t' - 1-3t2,' 

Q (1 - 2t2 + 9t4)(1 - 28t2 + 166t4 - 252t6 + 81t8) 

4t2(1 - 3t2)2(I - t2)(I - 9t2) 

(3.2) SB6 :g(t, s) = s2 + 3 - 14t2 + 27t4 = 0. 

We denote by C(to,so) the curve obtained by specializing (t, s) to a point (to, so) 
on g(t, s) = 0. We can find that C(t,s) = C(-t,s,) and that C(t,s) and C(t,s,) are 
generically isomorphic over Q(V-1) by 

(3.3) C(t,s) - (t,-s)I 

(XI Y) <"(- 
X 1 

I/X-3y). 

We checked the following curves and primes: 

(3.4) t cZ, 2 <t <30 (# =29) 

Np < 220 (primes of degree one). 

Since t belongs to Q, C(t,s) is defined over an imaginary quadratic field k 
Q(s) = Q( /-3 + 14t2- 27t4). Moreover, C(t,s) and C(t,-,) are conjugate over Q. 
If a rational prime p decomposes as p = pp' in k, then 

(3.5) C(t,s) mod p' C(t, s) mod p (over Fp) 
- C(t,s) mod p (over Fp( -1)), 

where Fp( -1) means Fp if p 1 mod 4 or Fp2 if p _ 3 mod 4. Hence we have 
op, = Op if p l I mod 4 or 0,= 7r-Op if p _ 3 mod 4. This means that we may 
consider only one prime above p for a splitting prime p. 

For each curve C = C(t,s), we first computed the numbers of Fp- and Fp2- 

rational points of C mod p for first thirty splitting primes p of k, to check the 
assumption that all endomorphisms of JacC are defined over k, and obtained data 
which shows the assumption is true. Under this assumption, the congruence (- 
function of C mod p is determined only by the number N1 of Fp-rational points. 
We computed N1 of C mod p for splitting primes p of k with Np < 220 (more than 
40000 primes), and calculated the approximate values of the Fourier coefficients 
Ck (k < 20) of the density function by (2.9). For all curves we checked, all the 
approximate values of Ck satisfy 

1 
(3.6) c2 + - < 0.007, lckl < 0.011 (k > 0,1k k 52). 2 

In fact, out of 551 values of ICk (k > 0, k $ 2), only 49 values are bigger than 0.005. 
For c2, out of 29 values of Jc2 + 1 , only 2 values are bigger than 0.005. We also 
carried out the same computations for the other primes p = (p) of k with Np < 220 

(p < 210), and found no qualititive difference from splitting primes. 
We shall give precise data for t = 2 in the following. In the examples, Table A 

gives the approximate values of the Fourier coefficients of the density function and 
Table B gives the frequency distribution of the arguments and the comparison with 
sin2 0. 
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Example 1. 

c(2,379) y2 

( 4 ( 379 13 X3 _979961X2 + 3( 379 13 X+ 
x(X+( 4+11 + / X1 

4 11 ~203280 4 1 

We carried out our calculations for 40823 splitting primes (see Tables LA, i1., 
Figure 1.C at the end of this paper). 

We also calculated some other examples which seem interesting to us in a sense. 
The following example has relatively small coefficients. 

Example 2. 

C(e2 T ) y2 =X (X+( ?7)X3?3281X2? ( -19 7) X+ 1). 

We carried out our calculations for 40947 splitting primes (see Tables 2.A, 2.B, 
Figure 2.C at the end of this paper). 

The following example is the case when JacC is isogenous to a product E x E 
of an elliptic curve E with complex multiplication. 

Example 3 ([HM] Example 1.5). 

C(V ) :2 =X (X4 + 24X3 + 11X2 + 24X + i). 
3 3 ~~~~~~~~3 

Via the following morphism X of degree two, JacC splits into E x E: 

(3.7) b: C(rr3 4A//-)- E: y2 (x + 2) (X2 + 2\/Fx + 
5 

(X,Y) I ) (x,y)=(X+ 1 Y(X + 1)) 

where E is an elliptic curve with complex multiplication by Z [A-/6], whose invariant 
is j(V--6) = 123(1399 + 988X2). 

We carried out our calculations for 41003 splitting primes (see Tables 3.A, 3.B, 
Figure 3.C at the end of this paper). 

Remark 3.8. In this case the Hasse-Weil L-function of C coincides with a square of 
that of E. For the primes inert in Q(v?, -_6)/Q(v) (density 2), the arguments 
of zeroes of the characteristic polynomials of the FRobenius elements are all 2, and .2' 

for the primes splitting in Q(V2, -A6)/Q(v') they are distributed uniformly on 
T by the property of gr6l3encharacter. Hence the k-th Fourier coefficients of the 

density function 4(0) must be (-1)2 for even k and zero for odd k. The above data 
fits with this fact very well. 

Remark 3.9. By arguments similar to Example 1.6 in [HM], we can prove that, 
in Example 1, JacC are simple QM-abelian surfaces, i.e. they never split into a 
product of CM-elliptic curves. The qualitative difference between Example 1 and 
Example 3 is so clear that we can distinguish experimantally whether JacC is simple 
or not. 

4. SOME REMARKS ON THE DEFINING EQUATIONS 

Although we have carried out our computation mainly for the family of QM- 
curves defined by (3.1), we also have some defining equations of algebraic families 
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of QM-curves which have differenlt arithmetic properties. In this section we shall 
make some remarks on them. 

The original equation obtained in [HM](Theorem 1.3) is of the following form: 

(4.1) S6/(t,s): y2 = X(X4 - PX3 + QX2 - RX + 1) 

P = -2(s + t), I? = -2(s - t), 

Q (1 + 2t2)(11 - 28t2 + 8t4) 

3(1 - t2)(1 - 4t2) 

(4.2) SB: g(t, s) =4s 2t2 -s2 + t + 2 = 0. 

For a value t E Q, s belongs to the quadratic field k = Q( (2+t2)(1- 
and hence we get a QM-curve C = C(t,s) defined over k. First we carried out our 
computation for many fibers C(t,s) corresponding to the values t E Z and for many 
primes p splitting in k/Q. We then found numerically that the case f = 2 does 
occur (see (1.9), (1.10)), in which case we need both N1 and N2 to determinle the 
congruence (-function of C(t,s) mod p. Since this takes very much time when Np is 
large, this family S6/ is not suitable for our computation. Therefore it is important 
to observe the following phenomena, which has been checked for many t E Z and 
for many prime p. 

Numerical Fact 4.3. There exist a polynomial D(t) E Z[t] such that, for each 

value t E Z and for each prime p splitting in k/Q, f = 1 if and only if (D(t)) 1. 

In fact, one can take D(t) =-3(1 - 4t2). 

This suggests that all endomorphisms of JacC(t,[) are defined over Q(t, s, D(t)) 
- Q(t, /-3(1 - 4t2), /-3(2 + t2)) generically. This observation is very helpful to 
find the defining equation (3.1), in whose case all endomorphisms of JacC(t,,) are 
defined over the field Q(t, s) of definition of the curve C(t,s). In fact, we obtained 
(3.1) from (4.1) by putting 

(4.4) a- -VD (t) b- S 

1 -2t' 2t 
then subtituting a, b for t, s, respectively. 

Another remark is concerned with the descent of the base curve SB6. 

Lemma 4.5. The family S6 of QM-curves has an automorphism w of order two 
which preserves fibration and is defined over Q, described as 

w: t,,X,) )(_ , sX-_1 X-3Y) 

Put S6? = S6/(w) and SB SB6/(W). Then S6? is a family of QM-curves over 
So whose defining equation is B6' 

S? (T C) T2 ((2 - R){(2 - Q + 2A)4 - 4R3 

+2R(6 + Q)42+4R2 +R2(2-Q-2A)}, 

A=-, R=1+3T2, 
T 

_ (1 + T2)(1 - 4T2 + T4) 

T2(1-T2) 

S6: g (T, (T) =T2 + T2 + 3 = 0. 
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Proof. It is easy to see that w gives an automorphism of S6 of order two. To obtain 
the equation of the base curve So we put 

s 2t 
3t2 - 1' 3t2 - 1 

Then a and T are w-invariant and the mapping 1(t, s) F-> (uT, T) gives a 2: 1-morphism 
from SB6 with image a 2+T2 +3 = 0. In terms of a and T, the coefficients A, R, Q are 
w-inlvariant and described as above, where R B2 and B itself is not w-invarialit; 
BV = -B. Now set 

B(X-1) -8R2Y 
x X+1 (X+1)3 

Then ( and l are w-invariaint, and the mapping (X, Y) F-- > i,) is birational since 

x + B 
__= __ 

X=- -B' Y B( -B)3 

Substituting these for X, Y in the defining equation (3.1), we obtain the above 
equation defining So (T, u). C 

It is noticeable that the equation go (T, T) = 0 of the base space So coincides 
with the definling equation of the canonical model of the Shirnura curve for discrim- 
inant 6 described by A. Kurihara [K]. Our computation for this family suggests 
that the field of definition of all endomorphisms of JacC(T,U) is not Q(T, a) but 
Q (T, u, csR,). Hence S6?(T, u) is not suitable for our computation similarly to S6. 
For this reason we did not choose S6?(T, a) for our computation, although it seems 
to be very ilnteresting to study the arithmetic properties of this family. 

5. SOME OTHER EXAMPLES 

While this paper was with the referee, some isolated examples of QM-curves 
defined over Q were found. We carried out our calculations for these curves and 
obtained results fitting with the colnjecture very well. 

Let C(i) (i = 1, 2,3) be hyperelliptic curves of genus two over Q definled by 

(5.1) C(1): y2 =X6 - 33x5 + 342x4 - 1040x3 - 912X2 + 720x - 96, 

(5.2) C(2) y2 =X6 - 47x5 - 390x4 - 92x3 + 2511x2 + 899x + 62, 

(5.3) C(3): y2 =X + 47x5 + 365x4 + 865x3 + 4009 + 38x - 4. 

These curves have the property that their Jacobian varieties JacC(j) are of GL2-type 
over Q with EndQJacC(i) = Q( 5). Moreover, we know the following: 

Theorem 5.4 (Hasegawa-Hashimoto-Momose [HHMI). The curves C(i) (i = 1,2, 
3) are QM-curves such that EndJacC(,) = EndkJacC(,) is an order of the irndefi- 
rite division quaternion algebra over Q of discriminant 10, where k = Q( -2), 
Q( -58), Q('-10), respectively. Furthermore, C(1) and C(2) are modular. 

We carried out our calculations for these curves C(i) and the primes p < 220 split- 
ting in k/Q, and obtained results which support the conjecture. The approximate 
value of the Fourier coefficients ck (k < 20) satisfy 

(5.5) c2 + 
I 

< 0.004, ck I < 0.009 (k > O, k # 2). 

We give precise data for C(1) in Table 4.A, 4.B, Figure 4.C. The number of the 
primes we calculated is 40972. 
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Table 1.A Table 1.B 
k Ck i range of 0 rel. frequency sin7(W) 
0 0.500000 0 0 < 0 < 0.0257r 0.000073 0.000000 
1 0.002503 1 0.0257r < 0 < 0.0757r 0.002682 0.002447 
2 -0.500186 2 0.0757r < 0 < 0.1257r 0.009615 0.009549 
3 -0.002054 3 0.1257r < 0 < 0.1757r 0.020858 0.020611 
4 -0.002779 4 0.1757r < 0 <t 0.2257r 0.034980 0.034549 
5 0.001513 5 0.2257r < 0 < 0.2757r 0.050584 0.050000 
6 0.000647 6 0.2757r < 0 < 0.3257r 0.065564 0.065451 
7 -0.002529 7 0.3257r < 0 < 0.3757r 0.079453 0.079389 
8 0.000754 8 0.3757r < 0 < 0.4257r 0.091652 0.090451 
9 -0.000483 9 0.4257r < 0 < 0.4757r 0.097286 0.097553 

10 0.002203 10 0.4757r < 0 < 0.5257r 0.099135 0.100000 
11 0.000223 11 0.5257r < 0 < 0.5757r 0.096575 0.097553 
12 -0.000862 12 0.5757r < 0 < 0.6257r 0.090207 0.090451 
13 0.000373 13 0.6257r < 0 < 0.6757r 0.078742 0.079389 
14 -0.001862 14 0.675ir < 0 < 0.7257r 0.065294 0.065451 
15 0.000216 15 0.7257r < 0 < 0.7757r 0.050927 0.050000 
16 -0.002844 16 0.7757r < 0 < 0.8257r 0.034662 0.034549 
17 -0.000214 17 0.8257r < 0 < 0.8757r 0.019781 0.020611 
18 0.006595 18 0.8757r < 0 < 0.9257r 0.009272 0.009549 
19 -0.003201 19 0.9257r < 0 < 0.9757r 0.002633 0.002447 
20 -0.002521 20 0.9757r < 0 < 7r 0.000024 0.000000 

Example 1 

0.1 ~~~~~~~~~~~~~~~~~~~~~sinA2(x)/10 

01. 0.08 

0.06 

0.04 

0 pi/4 pi/2 3pi/4 pi 

FIGURE 1. C 
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Table 2.A Table 2.B 
k Ck i range of 0 rel. frequency j F sin )7r) 
0 0.500000 0 0 < 0 < 0.025ir 0.000037 0.000000 
1 0.001908 1 0.025ir < 0 < 0.075ir 0.002613 0.002447 
2 -0.499384 2 0.075ir < 0 < 0.125ir 0.010453 0.009549 
3 -0.002081 3 0.125ir < 0 < 0.175ir 0.020136 0.020611 
4 -0.001489 4 0.175ir < 0 < 0.2257r 0.034801 0.034549 
5 0.001223 5 0.225ir < 0 < 0.275ir 0.050907 0.050000 
6 0.000531 6 0.275ir < 0 < 0.325ir 0.065621 0.065451 
7 -0.001741 7 0.325ir < 0 < 0.375ir 0.078553 0.079389 
8 0.001393 8 0.375ir < 0 < 0.425ir 0.092046 0.090451 
9 0.000938 9 0.425ir < 0 < 0.475ir 0.096368 0.097553 

10 0.000051 10 0.475ir < 0 < 0.525ir 0.099836 0.100000 
11 0.002461 11 0.525ir < 0 < 0.575ir 0.097223 0.097553 
12 -0.006414 12 0.575ir < 0 < 0.625ir 0.089848 0.090451 
13 -0.007648 13 0.625ir < 0 < 0.675ir 0.078260 0.079389 
14 0.001614 14 0.675ir < 0 < 0.725ir 0.066208 0.065451 
15 0.003759 15 0.725ir < 0 < 0.775ir 0.049637 0.050000 
16 0.001708 16 0.775ir < 0 < 0.825ir 0.034972 0.034549 
17 0.001766 17 0.825ir < 0 < .875ir 0.019867 0.020611 
18 0.000495 18 0.875ir < 0 < 0.925ir 0.010111 0.009549 
19 -0.003832 19 0.925ir < < < .975ir 0.002393 0.002447 
20 0.003876 20 0.975ir < 0 < r 0.000110 0.000000 

Example 2 

0.1 ~~~~~~~~~~~~~~~~~~~~~~~~~sinA2(x)/l10--- 
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FIGURE 2. C 
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Table 3.A Table 3.B 
k Ck i range of 0 rel. frequency | sin7 7r) 
0 0.500000 0 0 < 0 < 0.025ir 0.011463 0.000000 
1 -0.000280 1 0.025ir < 0 < 0.075ir 0.024742 0.002447 
2 -0.501998 2 0.075ir < 0 < 0.125ir 0.025352 0.009549 
3 -0.000975 3 0.125ir < 0 < 0.1,75ir 0.025010 0.020611 
4 0.499924 4 0.175ir < 0 < 0.225ir 0.025279 0.034549 
5 -0.001571 5 0.225ir < 0 < 0.275ir 0.025047 0.050000 
6 -0.502599 6 0.275ir < 0 < 0.325ir 0.024620 0.065451 
7 -0.001873 7 0.325ir < 0 < 0.375ir 0.025364 0.079389 
8 0.499744 8 0.375ir < 0 < 0.425ir 0.024913 0.090451 
9 -0.002418 9 0.425ir < 0 < 0.475ir 0.025145 0.097553 

10 -0.501226 10 0.475ir < 0 < 0.525ir 0.526083 0.100000 
11 -0.001901 11 0.525ir < 0 < 0.575ir 0.025023 0.097553 
12 0.500802 12 0.575ir < 0 < 0.625ir 0.024693 0.090451 
13 -0.000221 13 0.625ir < 0 < 0.675ir 0.025340 0.079389 
14 -0.502897 14 0.675ir < 0 < 0.725ir 0.024888 0.065451 
15 -0.000873 15 0.725ir < 0 < 0.775ir 0.024779 0.050000 
16 0.500289 16 0.775ir < 0 < 0.825ir 0.025132 0.034549 
17 0.000625 17 0.825ir < 0 < 0.875ir 0.024986 0.020611 
18 -0.500966 18 0.875ir < 0 < 0.925ir 0.024498 0.009549 
19 -0.001550 19 0.925ir < 0 < 0.975ir 0.025108 0.002447 
20 0.497862 20 0.975ir < 0 < r 0.012536 0.000000 

Example 3 
sinA2(x)/10 
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0.2- 
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0 pi/4 pi/2 3pi/4 pi 

FIGURE 3. C 
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Table 4.A Table 4.B 
k Ck i range of 0 rel. frequency ' sin7 Fr) 
0 0.500000 0 0 < 0 < 0.025ir 0.000024 0.000000 
1 -0.005620 1 0.025ir < 0 < 0.075ir 0.002343 0.002447 
2 -0.503954 2 0.075ir < 0 < 0.125ir 0.009177 0.009549 
3 0.008570 3 0.125ir < 0 < 0.175ir 0.020599 0.020611 
4 -0.000414 4 0.175ir < 0 < 0.225ir 0.034170 0.034549 
5 -0.000747 5 0.225ir < 0 < 0.275ir 0.047813 0.050000 
6 0.005640 6 0.275ir < 0 < 0.325ir 0.064922 0.065451 
7 -0.007312 7 0.325ir < 0 < 0.375ir 0.078297 0.079389 
8 -0.002358 8 0.375ir < 0 < 0.425ir 0.090720 0.090451 
9 0.005689 9 0.425ir < 0 < 0.475ir 0.097554 0.097553 

10 0.004150 10 0.475ir < 0 < 0.525ir 0.099116 0.100000 
11 -0.003570 11 0.525ir < 0 < 0.575ir 0.096676 0.097553 
12 -0.006671 12 0.575ir < 0 < 0.625ir 0.092258 0.090451 
13 0.002887 13 0.625ir < 0 < 0.675ir 0.081275 0.079389 
14 0.005516 14 0.675ir < 0 < 0.725ir 0.067290 0.065451 
15 -0.002321 15 0.725ir < 0 < 0.775ir 0.052353 0.050000 
16 -0.003407 16 0.775ir < 0 < 0.825ir 0.033242 0.034549 
17 -0.001983 17 0.825ir < 0 < 0.875ir 0.020209 0.020611 
18 0.003538 18 0.875ir < 0 < 0.925ir 0.008982 0.009549 
19 0.002949 19 0.925ir < 0 < 0.975ir 0.002831 0.002447 
20 -0.001526 20 0.975ir < 0 < r 0.000146 0.000000 

Example 4- 

0.1 ~~~~~~~~~~~~~~~~~~~~~~sinA 2(x)/10 
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FIGURE 4. C 



1662 KI-ICHIRO HASHIMOTO AND HIROSHI TSUNOGAI 

DEPARTMENT OF MATHEMATICS, WASEDA UNIVERSITY, 3-4-1, OKUBO, SHINJUKU-KU, TOKYO, 

169-8555, JAPAN 

E-mail address: khasimotQmn.waseda. ac. jp 

DEPARTMENT OF MATHEMATICS, SOPHIA UNIVERSITY, 7-1, KIOI-CHO, CHIYODA-KU, TOKYO, 

102-8554, JAPAN 

E-mail address: tsunoOmm. sophia. ac. jp 

REFERENCES 

[D] Deuring, M., Die Typen der Multiplicatorenringe der elliptischer Funktionenk6rper, 
Abh.Math.Sem. Hamburg 14 (1941), 197-272. MR 3:104f 

[F] Faltings, G., Endlichkeitssatze fur abelsche Varietaten fiber Zahlkorpern, Invent. Math. 
73 (1983), 349-366. MR 85g:11026a 

[HHM] Hasegawa, Y., Hashimoto, K., Momose, F., Modular conjecture for Q-curves and QM- 
curves, preprint, 1997. 

[HM] Hashimoto, K., Murabayashi, N., Shimura curves as intersection of Humbert surfaces and 
defining equations of QM-curves of genus two, Tohoku Math. J. 47 (1995), 271-296. MR 
96b: 14023 

[K] Kurihara, A., On some examples of equations defining Shimura curves and the Mumford 
uniformization, F. Fac. Sci. Univ. Tokyo, 25 (1979), 277-301. MR 80e:14010 

[M] Mumford, D., Abelian varieties, Oxford Univ. Press, London, 1970. MR 44:219 
[0] Ohta, M., On 1-adic representations of Galois groups obtained from certain two dimen- 

sional abelian varieties, J. Fac. Sci. Univ. Tokyo, 21 (1974), 299-308. MR 54:7389 
[P] Pyle, E., Abelian varieties over Q with large endmorphism algebras and thier simple 

components over Q, Doctor's thesis, Univ. of California at Berkeley, 1995. 
[R] Ribet, K., Fields of definition of abelian varieties with real multiplication, Contemp. Math. 

174 (1994), 107-118. MR 95i:11057 
[T] Tate, J., Algebraic Cycles and Poles of Zeta Functions, in "Arithmetical Algebraic Geom- 

etry", (F.G. Schilling, ed.), Harper and Row, New York, 1965, pp. 93-110. MR 37:1371 
[Ya] Yamamoto, Y., On Sato Conjecture for two-dimensional abelian varieties (in Japanese), 

Number Theory Symposium at Kinosaki (1979), 236-244. 
[Yol] Yoshida, H., Mumford-Tate groups and its application to abelian varieties (in Japanese), 

"Shimura varieties and algebraic geometry" Symposium at Kinosaki (1983), 106-131. 
[Yo2] Yoshida, H., On an Analogue of the Sato Conjecture, Invent. Math. 19 (1973), 261-277. 

MR 49:2746 


