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PROVING THAT A GENUS 2 CURVE 
HAS COMPLEX MULTIPLICATION 

PAUL VAN WAMELEN 

ABSTRACT. Recently examples of genus 2 curves defined over the rationals 
were found which, conjecturally, should have complex multiplication. We prove 
this conjecture. This involves computing an explicit representation of a ratio- 
nal map defining complex multiplication. 

1. INTRODUCTION 

In [5] 18 non-trivial genus 2 curves defined over the rationals are given, and it 
is conjectured that these curves have complex multiplication. In this paper we will 
prove this conjecture. The idea is to compute a CM-morphism explicitly. This 
will be achieved by computing such a morphism numerically to high precision and 
then guessing exact values for the coefficients of this morphism. It can then be 
checked that these exact functions do define complex multiplication. The mor- 
phism is computed numerically by going through the analytic representation of the 
Jacobian of the curve we compute the necessary integrals to go from the abelian 
variety to the torus, multiply by the matrix giving the complex representation of 
the morphism, and then use theta functions to go back to the abelian variety. 

2. DEFINITIONS 

Recall that any genus two curve is hyperelliptic. Let C be the genus 2 hyper- 
elliptic curve represented by 

5 

y2 = (X- a-)f(x), 
i=l1 

where the ai are distinct points in C. We assume that the curve is defined over 
so f(X) C Q[X]. 

If we regard C as a Riemann surface, the ai are the branch points of the double 
cover of P by C. Let {Ai, A2, B1, B2} form a symplectic basis for the homology of 
C. Let A1 be a clockwise path around a1 and a2, A2 a clockwise path around a3 and 
a4, B1 around a2, a3,a4 and a5 and B2 around a4 and a5. The only intersections 
of these paths are A2 intersecting Bi, i = 1, 2, in one point and with intersection 
multiplicity one. 
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Let 1 = dx/y and 2 = xdx/y. Then {01, 0} forms a basis for the holomorphic 
1-forms on C. We define the period matrix P by 

p ( fBi1 fB29 1 fAl951 fA2)1 1 

LfB 02 fB2 02 fAl 02 JA2 02 

Let w1 and w2 be the two 2 x 2 matrices such'that P= (wl,w2). 
If we define T to be the matrix w-1wl, then T is in J2, the Siegel upper half-space. 
Let A be the free abelian group in 02 generated by the columns of P. Then A 

is a lattice in 02 and the Jacobian J of C is given by C2/A. 
The Jacobian also has the structure of an abelian variety. Let o be an endomor- 

phism of this abelian variety. We will assume that C has complex multiplication 
by the full ring of integers of a cyclic quartic CM-field, so we fix an isomorphism 
between End(J) X Q and a cyclic quartic CM-field K. We will denote the real 
subfield of index 2 by K+. Let a be the algebraic integer in K corresponding to oc 
under this isomorphism. We will assume that 5z is not in the real subfield K+. 

If we think of J as C2/A, then oz induces a linear map from C2 to itself. We 
denote the 2 x 2 matrix giving this map by o-. As -i represents an endomorphismn 
of C2/A, there exists a 4 x 4 rational integer matrix M such that 

(1) oP- = PM. 

The minimum polynomial of M will now be an irreducible polynomial of degree 4 
(defining the CM-field). 

Recall that the Jacobian is the unique abelian variety birationally equivalent to 
the symmetric product of the curve with itself. For the rest of this paper we will 
denote by P1 + P2 the image of P + oo under the map induced on C(2) by ae, where 
P = (x,y), Pi- (x,y-), i = 1,2. 

Note that xl + x2 and x1x2 can be considered as meromorphic functions on the 
curve. As these functions do not depend on the y-coordinate of P, we see that 
x1 + x2 and X1X2 are rational functions in x. As oz is defined over K, we see that 
the coefficients of x1 + x2 and X1X2 as functions of x are in K. 

3. CHOOSING AN ELEMENT OF K TO BE USED AS cz 

We plan to compute xl + x2 and X1X2 explicitly for some algebraic integer & in 
K\K+. To minimize our work we would like to pick an oz that will minimize the 
degree of the rational functions x1 + x2 and XlX2. An upper bound for the degree 
of these functions can be found in the following way. We will find an upper bound 
for the degrees of these functions as functions on C, then because x has degree 2 as 
a function on C we just divide by 2 to get the degrees of these functions as rational 
functions of x. Let Xi and X2 be the x-coordinate functions in C x C, then recall 
that both of the functions on J corresponding to X1 + X2 and X1X2 have polar 
divisor 20 (where 0 denotes the theta divisor). The image of the embedding of C 
into J that maps P to the divisor class P - oo is exactly the theta divisor 0. The 
degrees of x1 + x2 and XcX2 are given by the number of poles of these functions, 
and this is therefore equal to the number of points at which the functions X1 + X2 
and X1X2 are infinite on the divisor ae(0). An upper bound for this number is the 
intersection multiplicity of o(E) and 20 (it's only an upper bound, because some 
of the intersection points might also be intersection points with the zero divisor of 
X1 + X2 or X1X2). This intersection numnber is given by [3, Theorem 17.3]. Using 
the well-known fact that (02) = 2, we get that an upper bound for the degrees of 
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the rational functions x1 + x2 and x1x2 as functions of x are given by trK+/Q(IYcY), 
where the bar denotes complex conjugation. 

For each curve we used Pari's polred function to find a "small" polynomial (with 
integer coefficients) to define the CM-field. Let z be a root of this polynomial. It 
turned out that if we then compute trK+/1Q(cw) for oz = qo + qlzl + q2Z2 + q3Z3 

with { 1, zl, z2, z3} an integral basis and the qSi's small integers, the minimum was 
attained by oz = z for each of our CM-fields. 

4. COMPUTING AN APPROXIMATION TO -a 

If we suspect that a curve has CM by a certain CM-field, we can use Algorithm 
1 in [5] to write down a complex torus with CM by the given field. Let the period 
matrix of this torus be P'. For this torus, denote the matrix corresponding to 
complex multiplication by oz by io'. It is given by the image of oe under the diagonal 
embedding of K using the type. For o-i' we can write down the corresponding M' 
such that -of'P' = P'M'; we can also compute T' C J2 corresponding to P' . We 
can compute approximations to the period matrix and T of our curve by doing 
the integrals involved numerically. Now Tf and T should be related by a symplectic 
matrix; that is, there should exist a symplectic matrix S = (a d ) C Sp4 (Z) such that 
(aT+ b) (CT +d)-1 = T'. We can go about finding this matrix in two ways. The first 
is to move both these T'S into a fundamental domain by symplectic matrices. This 
can be done for the fundamental domain given in [2, Theorem 1] in a way similar to 
the well-known method for moving an element of the complex upper half-plane into 
the usual fundamental domain. The other method is to use the observation that 
the equation relating T and Tf can be rewritten as (aT + b) = T (CT + d) and each of 
the 4 equations corresponding to the four entries of these matrices then gives us an 
integral linear dependency between certain entries of T, entries of T', and certain 
products of two such entries. We can try to find these linear dependencies by using 
an algorithm for finding integral linear dependencies between the elements of a set 
of complex numbers. These algorithms are usually based on the LLL algorithm; see 
for instance [1, Algorithm 2.7.4]. The coefficients will then lead to the symplectic 
matrix S we are looking for. 

Once we have S it is a simple matter to find o- and M, we get 

(wlct + w2dt')w'-w(wct + wc 2 dt2)-' 

M= StMSt-l. 

5. FROM THE ANALYTIC TO THE ALGEBRAIC JACOBIAN 

For a point v C C2/A we can find its representation as an element of C(2) by 
using theta functions. For column vectors c', c" c IR29, z c Cg and T C rg the 
classical multi-variable theta function is given by 

0[C't; c" ](z, T) = exp(7ri(m + c')tT(m + c') + 27ri(m + c')t(z + c")). 
mczg 

By choosing k = 1 and V = {1, 2, 3} in Theorem IIIa.7.6 of [4] we get 

(x1 - al)(X2 - a,) 

) 0[1,0; 1, 1/2](O, T)0[1, 1/2; 1, 1/2](Z,T) 2 

= ([1/2,0; 1, 1/2](0,T)0[1/2, 1/2;1,1/2](Z,T)/ 
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with the same V and k = 2 we get 

(x1 - a2) (X2- a2 ) 

(0 [1, 0; 3/2, 1/2] (0, T)0[1, 1/2; 3/2, 1/2] (Z, T)> 

=(a,l- a2)(a2- a3 
K0[1/2, 0; 1, 1/2] (0, T)0[1/2, 1/2; 1, 1/2](Z, T)J 

where the theta functions are evaluated at T = w - 1 and z = w-lv. From these 
two equations we can now solve for x1 and x2. 

6. COMPUTING X1 + X2 AND X1X2 NUMERICALLY 

Now suppose we have a genus two curve defined over the rationals and are given 
an approximation (to high precision) of -a as a 2 x 2 matrix. Then for a given point 
(x, y) on the curve C we can compute approximations for x1 and x2 as follows. The 
embedding of C in the (analytic) Jacobian is given by the vector of integrals 

(f dx 

We compute this numerically. To do so we use the value of y to give a choice for the 
sign of the square root, and then analytically continue this value along a path out 
to infinity. We now compute z = w-1(dv) and, using the method in the previous 
paragraph, compute x1 and x2. 

7. THE COMPLEX REPRESENTATION OF a 

The endomorphism a also induces an endomorphism of the holomorphic 1-forms 
on J, F(J, QJ). As F(J, QJ) , F(C, Qb), we see that oz induces a map from holo- 
morphic 1-forms on C to holomorphic 1-forms on C. It can be shown that this map 
is given by 

dx dxl dx2 c]11 + o12x 
-I, + - dx, 

(2) Y Yi Y2 Y 
xdx x1dxl x2dx2 cZ21 +c22X 

+ dx. 
Y Yi Y2 y 

If we use this map as a change of variable in the integrals defining P, we see that 
we recover the expression (1). Indeed, 

(a I cr12 

Zc21 OZ22 

We can get the columns of M by finding the images of each of A1, A2, B1 and B2 
under the maps P -* PI and P - P2 and computing the linear combination of the 
basis elements homologous to the sum of these two images. 

8. GUESSING THE EXACT VALUES OF X1 + X2 AND X1X2 

If we compute x1 and x2 at enough points x and to sufficient precision, we 
can solve a linear system in order to find approximations for the coefficients of 
the rational functions xl + x2 and x1x2. If we have these coefficients to sufficient 
precision, we might be able -to use an LLL type algorithm in order to recognize 
these approximate coefficients as exact elements of the CM\4-field. 
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In fact the following observation implies that we can get away with only having 
to recognize rational numbers. 

The morphism ae is defined over K. As the holomorphic 1-forms are defined over 
Q and as the matrix -a comes from the map induced on the holomorphic 1-forms 
of C by the morphism ae, we see that the matrix o- has entries in K. As the curve 
is defined over Q, we see that if ca is an element of the Galois group of K over Q 
then cr(oz) is another endomorphism of the Jacobian, and that the corresponding 
matrix is just the matrix o-i with ca applied to each of its entries. So if we know 
the coefficients of oz as exact elements of K, we can write down the 4 conjugates of 
oi and with the same procedure as in the previous paragraph we can compute the 
conjugates of the coefficients of the rational functions x1 + x2 and xlx2. 

Now let 11, , 2, 3} be a Q-basis for K, vi, i = 1,2,3,4, the elements of the 
Galois group, and let = q1 + q24 + q3 2 + q4 3, for rational numbers qj, be a 
variable element of K. Then we can write each of ql, q2, q3 and q4 as a rational 
linear combinations of the 16 expressions c,i(/) i, i = 1, 2, 3, 4, j = 0, 1, 2, 3. So if 
we have approximations for all the conjugates of an element 3 of K (and (), we can 
compute approximations to the rational coefficients qi. Now we guess exact values 
for these by using, say, continued fractions. 

9. PROVING THAT X1 + X2 AND X1X2 ARE CORRECT 

So we have now guessed an exact value for x1 + x2 and xIx2 . To prove that they 
are correct we will check whether they give the correct action on the holomorphic 
1-forms. From the exact expressions found we can solve a quadratic equation to get 
exact expressions for x1 and x2 (where the order does not matter). We substitute 
these into dxi / f(x) + dx2/ f(x2) and xidxi / f(x + x2dX2/ f(x2), and 
check whether they simplify to give 

dxl + dX2 _ z11 + ?E12Xd 

\1f (Xi) lf (X2) lf (x) 
xldxl x2dx2 _ O21 + oZ22x + = dx, 

f(Xi) f(l)f(x) 

as in (2). The simplification involves nothing harder than computing greatest com- 
mon divisors of polynomials over number fields. The KANT/KASH package does 
this very well. On the other hand, this package does not (yet) handle square roots 
of polynomials (as occur in the expressions for x1 and x2) symbolically, so we have 
to do some work "by hand". The hardest part of the simplification is to simplify 
the square root of f (xi); this involves finding a square root of the form a d1 +b\d2 
for an expression of the form c + dvd1 d2, (where only d1d2 is known, not d, and d2 
separately), where the variables are all polynomials over the CM-field. This can be 
done in the following way. We first find the square root, call it g, of the polynomial 

(c + d dd2)(c - d dd2) = C2-d2d1d2 

(by computing the gcd of the polynomial and its formal derivative); then we see that 
g equals (av d + bd2)(a d - b d2) = a2d - b2d2, and, of course, d = 2ab and 
c= a2d1 + b2d2. Assuming that c and d are relatively prime and d1d2 square-free, 
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we then get 

2a = gcd(g + c, d), 

di=g 
+ c 

b d2a2' 
b 

d 
2a' 

d1d2 
d2= 

10. NOTES ON THE IMPLEMENTATION 

Most of the work was done in Mathematica (version 2.2), although a special 
purpose integration program was written in C, using the Pari library (version 1.39), 
which could be called from Mathematica. Gausian quadrature with 150 points and 
adapted for the specific functions to be integrated was used. This allowed integrals 
to even 300 or more decimal places to be done in reasonable time. 

Once the integrals around the elements of a basis for the homology of the curve 
are computed, it is relatively easy to compute the period matrix (corresponding 
to a symplectic basis) for different orderings of the branch points. In this way the 
imaginary part of T can be maximized. This is important for the computation 
of theta functions. The larger the imaginary part, the faster the series defining 
the theta function converges (in particular, the minimum of the real parts of the 
eigenvalues of the imaginary part of T needs to be maximized). To compute Tf and 
ai' (see Section 4) we used the package Pari/gp (see [5]). To find the symplectic 
matrix relating T and T' we implemented method one, as described in Section 4, 
in Mathematica. This still involved some guesswork, as the T'S tend to lie on the 
boundary of the fundamental domain. 

Computation of theta function values was also implemented in C, using the Pari 
library, and made callable from Mathematica. For some of the curves (for which 
the imaginary part of T is not particularly big) this was the most time-consuming 
part of the calculation. 

Using Section 3, we can predict for how many points P we need to compute 
x1 and x2 in order to be able to solve for the coefficients of xl + x2 and xlx2. 
We picked the points P in a rectangle a bit bigger than the smallest rectangle 
that would contain all the branch points (except infinity) moved up to above the 
branch point with maximal imaginary part. Solving the linear system for finding 
the coefficients proved to be problematic, as a lot of precision was lost. This turned 
out to be Mathematica 2.2's fault, as Mathematica 3.0 does this without significant 
loss of precision. 

The linear combinations needed to find the coefficients of an algebraic integer 
once the conjugates are known was found using Pari (see Section 8). To guess the 
exact rationals we simply used Mathematica's Rationalize. 

As already mentioned, the 1-forms were simplified using KANT/KASH version 
1.7. 

11. THE RESULTS 

For all 18 curves in [5] we were able to find the functions x1 + x2 and x1x2 and 
simplify (2) to find o-. Unfortunately, for most of the curves these functions are very 
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big. For instance, for the last curve one of the coefficients of an algebraic number 
which is a coefficient in a polynomial of degree 22 is given by 

38282929498951663741169195176146944951347140746929340680140786034125007 
1000432039015677358171226479013293691116564501672983169555664062500 

For this curve the simplification of the 1-forms'took more than three days of com- 
puter time (and gave the relatively simple 

/ -19z _ 121 z2 1l z3 -6820 z 1210 z2 110 z3 
663 663 663 11271 11271 11271 

0E = 

-62 z liz2 z3 97z 22z2 2z 3 

65 65 65 221 221 221 

where z is a root of 117- 42z + 8z2 _ z3 + Z4). This kind of data is proba- 
bly only useful in electronic form, so we will only give the data for a few of the 
curves here. The data for the other curves can be found on the LSU homepage 
(http://math.lsu.edu). 

For each curve we give the following items. The curve, in the form y2 f 
(x), 

where f(x) is a polynomial of degree 5. All the curves in [5] have a rational point 
with y = 0 and were therefore easy to change into this form. To make it easier to 
identify the curve we next give the Igusa invariants. The roots ai of f(x) follow. 
Here it is the order of the roots that is most important. For this particular order 
of the roots and the symplectic basis chosen as described above we get a T with 
a large imaginary part. Next we give a polynomial defining the CM-field and a 
numerical approximation to a root z of this polynomial. Recall that in all cases we 
used & = z. We use rational linear combinations of powers of z to give elements of 
the CM-field. Then we list r (corresponding to the specific choices we have made) 
and the -a and M we get from the simplification of the 1-forms. Finally we give the 
polynomials s1, s2 and d such that 

(3) Xl+X2= d' (3)~~~~~~~~d 
S2 

(4) X1X2 d d' 

Note that our computations do not prove that the r we give is correct. They 
also do not prove that a given curve has complex multiplication by the full ring 
of integers of the CM-field. It should be possible to verify this as follows. Our 
computation does prove that & = z is in the endomorphism ring. There are only a 
finite number of orders in the CM-field containing &. As in [5], we should be able 
to compute exact values for the finite number of Tr E 2 corresponding to the finite 
number of abelian varieties that have CM by each of these orders. We can assume 
these r lie in the fundamental domain given by [2, Theorem 1]. This shows that if 
we compute r of our curve with sufficient error bounds on the integrals involved, 
we will know its value exactly and we will also know the CM order. 

The curves below are numbered in the order they appear in [5] (with curve 0 
being y2 = X5-1). 

11.1. Curve 1. The curve is 

y2= -1 +3+6X2 - 2X3 - 3x4 + X5. 
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Igusa invariants: 

il = 27315 

i2 = 253115) 

-3 243931. 

Roots: 

a1 -1, 

a2 -0.8477590650225735123 ... 

a3 0.23463313526982045654 ... 

a4 1.7653668647301795435 ... 

a5 - 2.8477590650225735123... 

The CM-field is defined by the polynomial p 2 + 4 z2 + z4. Let z be the root of 
p closest to -0.7653668647301795435i. Then 

( 3 3 + 3) 

- 3z - z3 _z _ z _ 
= z3 -3 z z3 

2~ 
The ~ ~ ~ -Z fucin 21 + X2 an/1aegvnb 

_ -Z O 

s1 =4+z2+ (-2-z2)x, 

2 + Z2 + (-4 - Z2) X + x2z 

dm=1. 

11.2. Curve 2. The curve is 

2 l6x_3x2 ? 4x3-3x4?X5. 

52 13 

Igusa invariants: 

il = = 228,4-2)X+ 
2 

i2 = -2.5 

i = 3x +2143 41. 

Roots: 

a1 0.8028086394949853360... 

a2 0.4648957829735655525... - i . 0.6631980437060379643..., 

a3 0.6336998972789417795... + i0.0110841998504514601... 

a4 0.4648957829735655525... + i 0.6631980437060379643..., 

a5 0.6336998972789417795... - j0.0110841998504514601.... 
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The CM-field is given by the polynomial p = 3 + 4 z + 2 z2 _ z3 + z4. Let z be the 
root of p closest to -0.6513878188659973233 - 0.5224158034564077150i. Then 

1 5z + 4z2 _ 2z3 4 4z z2+z3 
T -9 

~~~~92 2 9 
9 

27+ 27 2 27 3 , 4 z + Z 35 4z? +16z2 _ 3 

9 + '27 + T7 + 27 27 t 81 + 81 81 

(-4- 8z + Z2 4Z3 6+4z-2z2 +2z33 

3 3-2z + z2 - z3 5 + 1-z 2z2 + 5z3) 
3 ~ 3, 

M~~(31~ -2 I1 '- 1 -2 -1 

M 
3 

- -1 3-20 

0 -1 -1 0 

The functions x1 + x2 and x1x2 are given by 

344 311 395 2 245 3 1481 529 83 2 53 3' S z z + ~ ( ) z-- 
507 1014 2028 2028 

- 

468 468 117 117 

(301 19 45 2 8 3 2 2345 173 161 2 85 3 3 
+ t-+ -z --z +-z )x + V- --z ++-z --z x 

52 1 52 3 4+-23 468 234) 
(68 1 1 z2 1 3 4 

+ ( + 13z+ z + z) x4 

341 253 77 2 55 3 1007 425 167 2 395 3\ 

1014 2028 1014 1014 676 1014 676 2028 

(31 19 102 41 3' 2 337 19 1 z2 7 3 3 
+12+39z 39z +156z)156 7z+ 12 39/ 

88 23 1 2 7 3 4 

117 468 234 117 x 

59 71 1 2 25 Z3 ?(55 17? 92 z--z+3z3 
234 468 9 468 \39 26 39 13/ 

469 51 115 2 9 3 2 37 20 5 2 7 3 3 4 
156 52~ 156 +26 ) T 1339T 13 39/ 

11.3. Curve 3. The curve is 

11 45x 15x3 5 

2 4 2 

Igusa invariants: 

- 2 = 3105575 

i2 2 . 3105573 

i3 2 375373193. 
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Roots: 

a1 -2, 

a2 -1.9630310126778095021..., 

a3 0.7269630351780198057..., 
a4 0.7867801131049879910... 

a5 2.4492878643048017054.... 

The CM-field is defined by the polynomial p = 20 + 10 z2 + z4. Let z be the root 
of p closest to -2.6899940478558293078i. Then 

M Ij 2 z3 3 z3 

?t 2 ?z + 2z + 

The functions x1 + x2 and x1x2 are given by 

55 _292 +( 187 +237 2) +\-2 2(1592 +(2 + \31)x 

+ (14 + 7z2) x4 + (_57 - 39z2) x5 + (4 + 2z2) x6 + (8 + 3z2) x7, 

s2= 19 z2f+ (_391+31 2"\x + (_535 _ 451 z2) \ 

+(i? 117 2) x3 +(-7LJ - 9z2) x4 + (-46- liz2) x5 + (1 2 + 2 )x 

+ (-2 - 1z2) x7 + (_ 4_ -z2) z8 

5 25 2?(45?13z2) +(_11_ 612)x2 

z _~z 

? (-8-_z2)X3?+ (2?+ $Z2) x4?+(8?+z2)x5?+x6. 

11.4. Curve 4. The curve is 

2 8 100x 380 x2 430 lOx4 2+ -4 11 - +x 

2 1218 1217 121 12151 
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Igusa invariants: 

2 310557195 

1112 

2 38557193 
2 - 

2 37557193 

118 

Roots: 

a1 -1.9184728707533167674... 

a2 0.15334488302615875118..., 
a3 - 2, 

a4 0.3727880704437805965..., 

a5 - 0.30143082637428651060.... 

The CM-field is defined by the polynomial p = 20 + 10 z2 + Z4. Let z be the root 
of p closest to -2.6899940478558293078i. Then 

1 z+ 7Z3 12 z2 
11 44 11 11 

1 1 11 2 

(3 z3 2 z3 

0 2 _ 3 1 

0 -2 2 0 

M= 3 0 0 -4 . 

M0 0 2 0 

The functions x1 + x2 and x1x2 are given by 

12128 7296 Z2 - 327072 134408 2\ 

si 1771561 1771561 1771561 1771561 

(3834192 863384 2\ 2 + 23775816 1804164 2" 3 
+ ~~~z x I + zix 

1771561 1771561 / + 1771561 1771561 

(7036336 201196 2 4 4 ( 90236 102716 2 5 I + z Ix + - 
161051 161051 / + 1331 14641 

(46000 85022 x + 6 116 61 2 7 +z2) x, + ~ + )~ ( + +(6- 1331 1331 11 121 / 
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/ O 1 1 

M=j-13 4 -3 -5 . 

4 -3 1 4 

The functions x, + x2 and x1x2 are given by 

26948305 44357013 3269481 2 17726257 3 

341446 682892 23548 341446 
( 322745683 23853006 6309108832 18565001 3\ 

+ 341446 170723 682892 48778 z 

(1356012089 315012797 439432730 2 391640583 3 2 

+ 341446 682892 170723 341446 z 

691613999 158119701 470358312 305968657 3 3 
+ t 82418 + 82418 + 11774 164836 ) 

120817119 15721866 229119992 10446323 3 4 

+t 11774 5887 5887 5887 / 
26142277 44105909 59425923 2 12278149 3 5 

3364 23548 23548 11774 / 

+ 87499117 2344311 _ 6494574z2 +45210193 x6 
+ 23548 3364 5887 11774 / 

124187 20534 2568152 2 74563 3 7 + ~~~~~+ I~ ~ ~ 
116 203 812 812 

8917 8069 22387 2 3273 3 + + ~z - ~ z+~zI 
58 406 406 203 / 

+ 7251 28177 +144 2 13273 3 9 

+ 
2842 2842 29 5684 

( 258 +225z 30 z2 + 40z3x10 
+ 203 203 203 203 / 

3761624 15879683 462391332 15358327 3 

170723 341446 682892 682892 
95165633 81018919 313621027 2 54510685 3 

K- 
z+ z x 341446 341446 682892 341446 

+ t772077995 +187607263 649316052 + 315620153 3 2 

V 682892 341446 48778 682892 / 

+ ( 1523647521 624972003 +752911063 2 486124879 3\ 3 
\t 682892 682892 341446 682892 

+ 4263015+ 7243216 55046885 2 +7519875k3x 4 

1682 5887 23548 11774 / 

( 21317263 975759 19453103 2 4027587 3 5 + 
11774 - 841 11774 11774 / 
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(9592091 16647161 459758122 25446853 X6 
+ 

11774 23548 5887 23548 
/ 

(1159990 6553987 2840205 2 239573 3 7 

+ 5887 23548 + 11774 11774 ) 
1187 8287 18689 2 + 2587Z3 8 
203 116 406 812 / 

( 3235 4569 1955 2 _ 265 3 9 
+ 406 406 406 406 

( 1746 1175 165Z2 110 Z3 X10 
+- _ + ~z - Iz+~~ 

1421 1421 812 1421 / 

d 937562 201085 3030915 2 342253 3 
24389 97556 97556 24389 

+ 134192477 37696245 70473043 z2 35938141 
z3 

+(- 341446 341446 341446 341446 
(128103501 25144155 13370845 2 53325313 3 2 + 82418 41209 23548 + 164836 ) 2 

( 19060694 1196437 5065170 2 6268697 3 3 
+ 5887 + 

841 5887 11774 , 

(23789566 20920979 4776332 2 12119511 3 4 
+ \ 5887 11774 5887 23548 / 

( 5471057 15483175 5977325 2 1770337 3 5 
+ 

1682 11774 11774 5887 / 
1429147 493705 173483z2 42283 3 6 

812 812 812 406 
( 130003 35745 11815 2 _ 7909 3X7 

203 203 203 406 / 
(60091 11961 7475Z2 1193 3 8 

+ 406 406 812 812 / 
( 3867 439 129 2? 2 3) 9 1 + z+ z -zj 

203 203 203 203/ 
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