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REDUCTION OF ELLIPTIC CURVES 
OVER CERTAIN REAL QUADRATIC NUMBER FIELDS 

MASANARI KIDA 

ABSTRACT. The main result of this paper is that an elliptic curve having good 
reduction everywhere over a real quadratic field has a 2-rational point under 
certain hypotheses (primarily on class numbers of related fields). It extends 
the earlier case in which no ramification at 2 is allowed. Small fields satisfying 
the hypotheses are then found, and in four cases the non-existence of such 
elliptic curves can be shown, while in three others all such curves have been 
classified. 

INTRODUCTION 

From a modular point of view, it is obvious that there is no elliptic curve having 
good reduction at every finite place over the field ?Q of the rational numbers. 

In our previous paper [4], we obtained a similar non-existence theorem for some 
quadratic fields in which 2 does not ramify. For example, we proved the non- 
existence of such elliptic curves over Q( 17) and Q(V21). 

In this paper, we shall show a similar result in the case of quadratic fields ad- 
mitting ramification at 2. To be precise, one of our consequences is: 

Theorem. There is no elliptic curve having good reduction everywhere over the 
following real quadratic fields: 

Q (v/2)) (Q(v/-), Q (V4-) (Q(9-). 

In all subsequent sections, we use the following terminology for the sake of 
brevity. An elliptic curve defined over a number field F is said to have good re- 
duction if it has good reduction at every finite prime of the ring of integers of F. 
When we refer to the reduction at a specific prime, we always say that the curve 
has good reduction at the prime. 

This paper consists of two sections. In the first section, we study a property of 
rational 2-torsion points on such elliptic curves, and in the second section, we give 
a proof of the above theorem. 

1. POINTS OF ORDER 2 

In this section, we shall prove the following theorem, which is a refinement of a 
result due to Bertolini and Canuto ([1], Proposition 1) for quadratic fields. 
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Theorem 1. Let k = m(V) be a real quadratic field, with m a square-free integer 
that is not congruent to 1 modulo 4. We denote by E a fundamental unit of k and 
by p the prime ideal of k lying above 2. 

Suppose that the real quadratic field k satisfies the following assumptions: 

1. The class number of k is prime to 6. 
2. The prime ideal p is principal. Let ir be a, generator of p. 
3. The class numbers of the following fields are all prime to 3: 

k(v-1), k(f), k( -&), k( cr), k(V-ir), k( r), k( -i). 

4. If the prime ideal p is inert in the genus field k of k, then the ray class number 
of k modulo p is prime to 3. 

Then every elliptic curve defined over k having good reduction outside 2 has a k- 
rational point of order 2. 

Proof. Let E be an elliptic curve defined over the field k that has good reduction 
outside 2, and E2 the kernel of the rnultiplication-by-2 map in an algebraic closure 
of k. We set L = k(E2). 

Suppose that E has no k-rational point of order 2. Then there is an intermediate 
field K between L and k such that the extension L/K is a cyclic extension of degree 
3. Now it follows from the reduction property of E that L/k is unramified outside 
2. Thus, in particular, K/k is an unramified extension outside 2 whose extension 
degree is at most 2. 

On the basis of the above observation, we can impose a restriction on the can- 
didates for K by an elementary argument of the ramification theory of Kummer 
extensions. Write K = k( a) with oa E k. Because K/k is unramified outside 2, we 
have ozO = pea2, where 0 is the ring of integers in k and the ideal a is prime to p 
and e = 0 or 1. Since p is principal and the class number of k is prime to 2, this im- 
plies that c is also principal. Hence we may assume a = ?Eel le2 (el, e2 = 0 or 1). 
Consequently, K is k itself or one of the fields listed in the third condition. 

Now we claim that the prime ideal p cannot remain prime in K provided that K 
is a quadratic extension of k. Suppose to the contrary that it remains prime. Then 
K is unramified over k outside the archimedian places. Since the class number of 
k is prime to 2, K is the genus field k of k. This yields that L is a cubic extension 
of the genus field unramified outside p. This contradicts the fourth assumption. 

Therefore we may assume that the inertia index of p in K/k is 1. Betause the 
class number of K is prime to 3, any prime ideal of K lying above p ramifies in the 
extension L/K and the ramification is total and tame. Consequently, we have an 
injection of the Galois group of L/K into the multiplicative group of the residue 
field 0/p. This is impossible. This completes the proof of Theorem 1. D 

Remark. In our previous paper [4], we used Serre's results in [7] to find the candi- 
dates for the intermediate field K. This is why we could not handle the fields with 
ramification at 2. However, we should note that Serre's result enabled us to reduce 
the number of the candidates. 

2. NON-EXISTENCE THEOREM 

The aim of this section is to find some examples of quadratic fields over which 
there is no elliptic curve having good reduction. 

We begin by searching for fields that satisfy the hypotheses in Theorem 1. 
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2.1. Notation. We hereafter make use of the following notation. Let k = m(V/i) 
be a real quadratic field, where m is a square-free integer, and 0 the ring of integers 
of k. Let E denote the fundamental unit that is larger than one and N the norm 
map from k to Q, unless otherwise specified. 

By the second assumption in Theorem 1, there is a generator, say ir, of the prime 
ideal p of 0 lying above 2. Further, we define.rational integers a, r by the formula 
7r' = (-1)fw. Here the symbol ' stands for the conjugate. Multiplying ir by a 
unit if necessary, we can take (a, r) = (1, 1) or (0,1). 

We denote the fields in the third assumption in Theorem 1 as follows: 

K1 k( ), K2= k(V), K3 k(/-&), 

K4 = k (Ni), Ks = k (v'-7), K6 = k H) K7 = k ( 

2.2. The first assumption. In the range 1 < m < 100, the following 21 rn's 
(m 0 1 (mod 4)) satisfy the first assumption: 

m = 2,3,6,7,11,14,19,22,23,31,38,43,46,47,59,62,67,71,83,86,94. 

In fact, all of the corresponding quadratic fields Q( /m) have class number one. 

2.3. The case m = 2. We first consider the case m = 2, which is exceptional. It 
is easy to see that 

7= , E= I + 2, C= ', T= 0 NE =-1. 

Thus we obtain the following isomorphisms among the fields in the third condition: 

K2 rV K3, K4 rv K5, K6 - K7 

Hence we have to compute the class numbers of the fields 

K1 = ?2(, /I), K2 = ?2( V2 K4= =?2(X), K6 2 + ( ) 

As a result, the class numbers of these fields are all one. (Throughout this paper, we 
use PARI-GP, version 1.39.03, to compute class groups and units of number fields). 
Since NE =-1, there is no non-trivial genus field. Therefore Q(X2) satisfies all 
the hypotheses in the theorem. 

2.4. Class numbers of K1, K2, K3. As for the other quadratic fields, we notice 
that NE = 1, because their discriminants are of the form 2' . p, where p is a prime 
number congruent to 3 modulo 4 and f is 2 or 3. 

To reduce the amount of computation, we first study the class numbers of the 
fields K1, K2, K3. Since these fields are biquadratic (Galois) extensions over Q, the 
divisibility of the class numbers follows immediately from the following lemmas. 

The first lemma is easy to prove. 

Lemma 1. Let t be the trace from k to Q of the unit E. Then we have 

K2 = k(we) cnplthe next lm) 

K3 = k(v1'-`) = ?(V=t + /= -t ~). 

For biquadratic extensions, we can apply the next lemma. 
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Lemma 2 (Masley [6], Lemma 11). Let L/K be an abelian extension with Galois 
group of type (2, 2), and p an odd prime. Let hK and hL denote the class numbers 
of K and L, respectively. If p is prime to hK and p divides hL, then the class 
number of one of the three intermediate fields of L/K is divisible by p. 

Accordingly, to verify the third condition for K1, K2, K3, we have only to com- 
pute the class numbers of the following five quadratic fields: 

Q(), Q( V?/(t ?+2)), Q( ?(t-2) 

The result of the computation is shown in Table 1. In the table the bold-faced 
numbers are those that do not satisfy the assumption. 

2.5. Class numbers of K4,... , K7. Now let us proceed to the assumption on the 
fields K4,... , K7. There are isomorphisms among these fields (note that N(E) = 1), 

{K4 K7 and K5 K6 if (a, T) = (1, 1), 

K4 K6 and K5 K7 if (a, T) = (O, 1). 

Hence it is enough to compute the class numbers of K4 and K5. Table 2 shows 
the result of the computation. In the table, we set w = m/. Again the bold-faced 
numbers are those that fail to satisfy the assumption. 

TABLE 1. Class numbers of the quadratic fields associated with 
K1, K2 and K3 

Class numbers 

[ml t =Tr() r Q( -in) [Q(Vt+2) Q( -t+2) Q( t-2) Q( \/t-) 
3 4 1 1 1 1 2 
6 10 2 1 1 1 1 
7 16 1 1 4 1 1 
11 20 1 1 1 1 2 
14 30 4 1 1 1 1 
19 340 1 1 1 1 6 
22 394 2 1 1 1 1 
23 48 3 1 4 1 1 
31 3040 3 1 8 1 1 
38 74 6 1 1 1 1 
43 6964 1 1 1 1 10 
46 48670 4 1 3 1 1 
47 96 5 1 8 1 1 
59 1060 3 1 1 1 6 
62 126 8 1 3 1 1 
67 97684 1 1 1 1 14 
71 6960 7 1 4 3 1 
83 164 3 1 1 1 10 
86 20810 10 1 1 1 1 
94 4286590 8 1 5 1 1 
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2.6. The ray class number of genus fields. We now examine the last hypothe- 
sis. Let us write the discriminant of the quadratic field as 2e . p (p 3 (mod 4)) as 
before. It is easily shown that the ideal p of k is inert in the genus field k if and only 
if p _ 3 (mod 8). Hence we have to check the hypothesis for m = 3, 6, 11, 22, 43, 86. 
Since the genus field k is nothing but k( -1) or k(/-cE) according as ? = 2 or 3, 
the class number of k is prime to 3 as we have checked in the above. Thus it readily 
follows from the ray class number formula that its ray class number modulo p is 
prime to 3 if and only if there exists a unit u of Ok such that u # 1 (mod pO), 
where Ok is the ring of integers of k. For m = 3 and 6, the third root of unity in 
Ok gives u. For the other fields, since they do not contain the group of third roots 
of unity, it is enough to see whether the fundamental unit v of k works as u. Now 
we calculate v and the prime decomposition of v-1 in Ok. 

We get Table 3, in which we use the following notation: 

V/_-_1+ -p if f=2, 
x=g-2+ -p if =3; 

q3q, = prime ideals of Ok lying above a rational prime q and q3q q. 

Thus we have q32 P Ok 
Unfortunately, none of these four fields satisfies the fourth condition in Theo- 

rem 1. 

2.7. Non-existence theorem. Summing up the preceding computations and ap- 
plying Theorem 1 to the special case of elliptic curves having good reduction, we 
obtain the following. 

Proposition 1. Let m be one of 2, 3, 6, 7, 14, 47, 94 and k Q( in). Every elliptic 
curve defined over k having good reduction has a k-rational point of order 2. 

Now we need the following result due to Comalada. It is worth noting that, while 
our theorem is field-theoretic, his result is proved by solving certain Diophantine 
equations explicitly. 

TABLE 2. Class numbers of K4 and K5 

Class numbers 

Lt 7r | f7)IK4 | K5 | 
3 1 -w 2+w I((ul) 1 K5 
6 -2+w 5+2w (1, 1) 1 1 
7 -3+w 8+3w (0,1) 2 1 

1 1 -3+w 10+3w (1,1) 1 1 
14 -4+w 15+4w (0,1) 2 1 

22 14 - 3w 197 + 42w (1,1) 1 1 

43 59 - 9w 3482 + 531w (1,1) 1 1 

47 7-w 48+7w (0,1) 1 4 

67 221 - 27w 48842 + 5967w (1,1 ) 1 3 

86 102 - llw 10405 + 1122w (1, 1) 1 1 

94 1464 - 151w 2143295 + 221064w (0, 1) 1 8 
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Proposition 2 (Comalada [2]). Let m be a positive square-free rational integer less 
than 100, and k = m(V/i) a real quadratic field. There exists an elliptic curve 
defined over k having good reduction that has a k-rational point of order 2 if and 
only if m is one of 6, 7, 14, 22, 38, 41, 65, 77, 86. 

Combining these two propositions, we have our non-existence theorem immedi- 
ately. 

Theorem 2. There is no elliptic curve having good reduction over the following 
fields: 

Q(vf)) Q(0)) Q(V4)) Q(V9). 

As a byproduct, we have also shown 

Corollary. Over the fields Q(V'6), Q(X'7), Q( 14), every elliptic curve having 
good reduction has a rational point of order 2. Therefore all the elliptic curves 
having good reduction over these fields are listed in Comalada's table in [2]. 

For the sake of completeness we reproduce Comalada's table for these three fields 
with some additional information. 

In our table (Table 4), all the isomorphism classes of elliptic curves having good 
reduction over the three fields Q(V64), Q(VX), Q(1/4) are listed. Each isomor- 
phism class contains a curve having a Weierstrass equation of the form 

2 3 2 y = 
x + a2X + a4X, 

on which the point (0, 0) is of order 2. 
For each curve, the data given in the table are a new code name, Comalada's 

code Ei, a2, a4, the j-invariant, the complex multiplication data (see below), the 
torsion subgroup T of the Mordell-Weil group, and the isogenies of prime degree. 

Some explanations for the data may be in order. 
If the new code given to a curve is of the form mX, the curve is defined over 

Q?(/im) and its conjugate curve is the curve mX. 
The coefficients a2, a4 and the j-invariant are given by expressions containing the 

fundamental unit E and its Galois conjugate E. They are taken from Comalada's 
table, except for the curve 7D. This is because the isomorphism between E14 
(= 7D) and the conjugate curve of E13 (= 7D) is not noticed in Comalada's table. 
For the values of E, refer to Table 2. 

TABLE 3. Fundamental units of the genus fields 

[m Fundamental unit v Factorization of v - | 

11 20 4 5 225 

2x3 7x ~ ~ ~ 1 
22 2 + 7 929393911 

9 9 
25x3 9X2+ 193x 139 i 2X1741 

4 8 4 04 + 9X 293171 84 4 21 2 

86 ~20x3 529x 
86_ 41 41 __32_311__3_1_343 
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All of the curves in Table 4 have complex multiplication. For this reason, we 
also added the discriminant d of the quadratic order of complex multiplication. 

The isogenies are given in the manner of Cremona's book [3]. For example, the 
entry 2: A, 3: B for the curve 6A indicates that 6A is 2-isogenous to 6A and 
3-isogenous to 6B. The new code is given so that the isogeny relations among the 
curves are easily recognizable. For instance, the curve 6A has isogenies 2: A, 3: B, 
which is obtained by taking the overline of the isogenies of 6A. In general, finding 
isogenies over quadratic fields is not easy, but in our case the isogenies can be 
found by Kwon's theorem [5]. Connell's program apecs on Maple V also helped to 
compute the isogenies explicitly. 

We should note that there is only one isogeny class over each quadratic field. 
Hence, in particular, all of the curves are Q-curves. 

TABLE 4. Elliptic curves having good reduction over Q(V'6), Q(V?), Q( 14) 

a2 |a4 | j I| CM[ T [Isogenies 
6A E3 -14(e-1) 41 64(4e +1)3/e4 -72 C2 2: A, 3: B 
6A E4 -14(,-1) 4e 64(4E4 + 1)3/,4 -72 C2 2: A, 3: B 
6B E1 -2(e-1) 4e 203 -8 C6 3: A, 2: B, 3: C 
6B E2 -2(,-1) 4e 203 -8 C6 3: A, 2: B, 3: C 
6C E6 14(,- 1), 4I 64(4E4 + 1)3/E4 -72 C6 2: 0, 3: B 
6C E5 14(e - 1)E 4e 64(4E4 + i)3/e4 -72 C6 2: C, 3: B 
7A E9 2(1 + 2E2) 1 (256E2 + s)3 -112 C4 7: A, 2: B 
7A Elo 2(1 + 2,2) 1 (25672 + E)3 -112 C4 7: A, 2: B 
7B E7 -(1 + 2e2) 16e3 2553 -28 C2 X C2 2: A, 7: B,2: C,2: D 
7B E8 -(1 + 22) 1663 2553 -28 C2 x C2 2: A, 7: B, 2: C, 2:D 
7C E12 -2(1 + 22) 1 (256 2+e)3 -112 C2 7: C,2: B 
70 Ell -2(1 + 2e2) 1 (256e2 +)3 -112 C2 7: C, 2: B 
7D E14 -(8E-1) 16E2 -153 -7 C4 7: D,2: B 
7D E13 -(8&-1) 16E2 -153 -7 C4 7: D,2: B 
14A E15 -3(E- 1)/2 16E -153 -7 C2 7: A, 2: B 
14A E16 -3( - 1)/2 16e -153 -7 C2 7: A, 2: B 
14B E17 3(6-1) -E 2553 -28 C2 7: B,2: A 
14B E18 3(-1) -: 2553 -28 C2 7: B,2: A 
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