
MATHEMATICS OF COMPUTATION 
Volume 68, Number 228, Pages 1717-1728 
S 0025-5718(99)01139-4 
Article electronically published on May 24, 1999 

RELATIVE CLASS NUMBER 
OF IMAGINARY ABELIAN FIELDS 

OF PRIME CONDUCTOR BELOW 10000 

M. A. SHOKROLLAHI 

ABSTRACT. In this paper we compute the relative class number of all imagi- 
nary Abelian fields of prime conductor below 10000. Our approach is based 
on a novel multiple evaluation technique, and, assuming the ERH, it has a 
running time of O(p2 log2 (p) log log(p)), where p is the conductor of the field. 

1. INTRODUCTION 

In this paper we compute the relative class number of cyclotomic fields of prime 
conductor and their imaginary subfields for all primes below 10000. Motivated by 
his results on divisibility properties of class numbers of cyclotomic fields, Kummer 
[14] was the first to carry out computations of relative class numbers of cyclotomic 
fields of prime conductor, for primes below 163. It took more than 100 years to 
extend these computations: Schrutka von Rechtenstamm [35] computed relative 
class numbers of cyclotomic fields only, for all conductors below 256. In 1970, 
Newman [22], who was apparently unaware of Schrutka's tables, recomputed those 
values for primes below 200. Newman's method was based on a determinantal 
description of the relative class number due to Carlitz and Olson [6]. Eight years 
later, Lehmer and Masley [16] extended the results to all primes below 521. They 
employed two methods: one was similar to Newman's, and the other was based on 
a certain factorization of the relative class number. The second approach yielded 
a partial factorization of the class number, and had an asymptotic running time of 
0(p5+E), where p is the conductor of the cyclotomic field. Fung et al. [11] combined 
that method with new algorithmic techniques to design an O(p2 log4(p))-algorithm. 
They extended previous computations to all primes below 3000. Finally, Jha [13] 
gave an algorithm based on the classical class number formula, but did not perform 
any computations. According to the author, his algorithm has a running time of 
O(p2 log(p)). However, Jha's running time analysis contains an error. We will 
discuss this in Section 4. 

Following a completely different line of thought, Louboutin [19] described an 
elegant method for computing the relative class numbers of imaginary Abelian 
fields and used it to compute relative class numbers of Abelian fields of small degree 
and large conductor. His method is based on computing good approximations of 
generalized Bernoulli numbers and then using class number formulas. Conjecturally, 
the running time of his algorithm is 0(nf0 5+E), where n is the degree of the field 
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and f is its conductor. Provided that the running time is correct, this algorithm 
is, to the best of our knowledge, the fastest known method for computing relative 
class numbers of Abelian fields. 

Our algorithm combines the advantages of those of Fung et al. and Jha, and im- 
proves upon them, as it will compute class numbers of all the irnaginary subfields of 
the cyclotomic field with basically no additiornal cost. To the best of our knowledge, 
the only published tables of relative class numbers of all imaginary Abelian fields 
of prime conductor are those of Hasse [12] for primes below 100, in part those of 
Schrutka of Rechtenstamm, and those of Yoshino and Hirabayashi [37], who extend 
Hasse's results to all primes below 200. 

Like the approaches of Lehmer and Masley or Fung et al., we also obtain a 
partial factorization of the class number in a very natural way. Furthermore, 
assuming the ERH, the running timne of our algorithm is, like Jha's algorithm, 
0(p2 log2 (p) log log(p)). This makes our algorithm the fastest known of its kind. 

We will first start by showing that the generalized Bernoulli numnbers are values 
of a certain polynomial at (p - l)st roots of unity. This result is essentially due to 
Kummer. The very heart of our approach is a novel algorithm for evaluating this 
polynomial modulo a prime q at (p - l)st roots of unity. Our algorithm is based on 
the multiple evaluation algorithm of Borodin and Moenck [3], [5]. However, we are 
able to use prime divisors of (p - 1) to considerably accelerate the computations. 
The very same method has been successfully used to compute all irregular primes 
below 8 million [32], [31], [4]. 

The multiple evaluation algorithm will be applied to several primes q. Chinese 
reinaindering techniques will then ultimnately yield the desired class numbers. 

We close the paper with a description of our implementations, and provide several 
tables. 

2. PRELIMINARIES ON CYCLOTOMIC FIELDS 

In this section we review some basic and well-known facts about cyclotomic fields 
of prime conductor. 

Let p be an odd prime, and let (p denote a primitive pth root of unity over Q. 
The field Q((p) is called the cyclotomic field of conductor p. It is a, Galois extension 
of Q, and its Galois group G is canonically isomorphic to (Z/pZ) x, the isomorphism 
given by c > (ac: ( -> (c) for gcd(c,p) = 1. 

Let X be a Dirichlet character of (Z/pZ) x. The generalized Bernoulli numrbers 

X/ are defined by 

1 P- 

Bijl =-2 - B1, - EZx(a)a for X # 1. 

Let K be an imaginary subfield of Q((p), and K+ its maximal real subfield. The 
relative class number of K, denoted by h- (K), is the quotient h/h+, where h and 
h+ are the class number of K and K+, respectively. It is well known [36, Theorem 
4.17, Corollary 4.13] that 

h(K)- = Qw j(-2 Bl,x)) 
x 

where X runs over all odd characters of the Galois group of K/?Q, w is the number 
of roots of unity in K, and Q = [E: WE+]. Here E and E+ are the group of units 
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of K and K+ respectively, and W is the group of roots of unity in K. The following 
proposition is due to Latimer [15, Theorem 1] (see also [12, Satz 23]). The proof 
we present here is due to H. W. Lenstra [17]. 

Proposition 2.1. For any imaginary subfield of Q((p) we have Q = 1. 

Proof. Let H be the Galois group of K/Q, a a generator of H, and u a unit of K. 
Let n be the degree of K over Q denoted by a bar complex conjugation in K. It 
suffices to prove that U/u = 712 for a root of unity ?q, as then u/Y1 is a real unit. Let 
v uua u 

n2_ 
/1 - Then u/u = vU/v, and vv is the norm of u, which is equal 

to 1. Hence, v is a root of unity. H acts trivially on the group of roots of unity 
modulo squares, so vU/v is the square of a root of unity. D 

Note that the above proof carries over to any cyclic CM-field. 
Applying the proposition, we obtain 

(2.1) h(K) f 2H(-Bi,x), if K 2 

2 2Hx( Bi,x), if K#Q 0((p). 

In the following, we denote the relative class number of Q((p), by h- (p) or h- if p is 
clear from the context. As an imaginary subfield K of Q((p) is uniquely determined 
by the odd number e = [Q((p): K], we denote h-(K) by he (p), or h- if p is clear 
from the context. 

For a prime I and an element s e F1 we denote by RI (s) the least nonnegative 
residue of s modulo 1. For a fixed primitive root g modulo p we define the integer 
polynomial 

p-2 

(2.2) 7(x) E Rp(g-j)xj 
j=0 

The following proposition is essentially due to Kummer [14]. 

Proposition 2.2. Let ( be a primitive (p- 1)st root of unity over Q. Furthermore, 
let T be the generator of the group of Dirichlet characters of (Z/pZ)> given by 
T(g)= (. Then for i # 0 (mod p - 1) we have 

q((')= pB,,,-i. 

Proof. The proof is a simple manipulation of the formula for Bl,-i, and is therefore 
omitted. O 

We immediately obtain the following result. 

Proposition 2.3. Let p be an odd prime, and let q 74 p be a prime such that q _ 1 
mod p. Let e be an odd divisor of p-1, let t (p- 1)/(2e), and let a be a primitive 
((p - 1)/e)th root of unity in Fq. Then 

he- _ w (-1 ) fJr,q(a2i+l) mod q, 

where w = 2p if e - 1, and w = 2 otherwise. 
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Proof. Let T be as in Proposition 2.2 and let H be the subgroup of Q((p) of order 
(p - 1)/e. Then Tu Te is a generator of the character group of H. By (2.1) we 
have 

he = W _ -2Bj A_(2i+1))- 

Proposition 2.2 shows that the right-hand side of the above equation is equal to 

W t 2p 1(b2i+1)) 

where b is a primitive 2tth root of unity over Q. Taking everything modulo q implies 
the result. D 

The proposition shows that the main problem for computing he mod q is that of 
computing the product of the values of q at the points a22?l. It can be solved by 
computing all the values of q at these points, and multiplying the results modulo 
q. This motivates the discussion in the next section. 

3. VALUES OF POLYNOMIALS ON COSETS OF SUBGROUPS OF Fq 

In this section we will design an algorithm to solve the following problem. 

Problem 3.1. Given a factor d of q - 1 such that (q - 1)/d is even, a polynomial 
f over Fq of degree less than d, and a coset C of the cyclic subgroup of Fq< of order 
d, find f(c) for all c E C. 

Let us first see how the solution of this problem can be employed to compute 
the h- mod q. There are several choices for the parameters involved. We will 
only describe the most economical ones: we choose d := (p - 1)/2, f := q(x) 
mod(x(P-1)/2 + 1), and C as the coset of the subgroup of index two in the group 
of (p - l)st roots of unity of Fq. (Note that this forces f and q to have the same 
values on C.) 

3.1. Basic version of the algorithm. Let f(x) = Ei<d fiXi, and let u be a 
generator of the subgroup of order d of Fq<. Further, let a be a representative of 
the coset C, i.e., C = {oauiIO < j < d}. In a first step we multiply the'fi with oz& 
to obtain g(x) =Li<d fiacxx =: Ei<dgix2. We thus need to compute the values 
of g on {ui 0O < j < d}. The standard procedure to solve this problem is to employ 
a technique known as Bluestein's trick [21: as (p - 1)/d is even, there exists v E Fq 
such that v2 = u. Since g(uj) - g(v2j), we obtain for all 0 < j < d 

g(ui) = Egivi2+i2-(i-i)2 - vj2 Z(givi2)v(j-i)2 
i i 2 

2 d 
Let hi := g-vi and vi := v- . If d is odd, then vd= -1; hence the above 
is a negacyclic convolution of the vectors (hi) and (vi). If d is even, this is a 
cyclic convolution of these vectors. In any event, one can obtain vi2 g(uj) by 
multiplying the polynomials h(x) := >1 h-xi and v(x) := > vixi, and performing 
a wrap-around (with negative or positive sign, according to whether d is even or 
odd). We have thus reduced the problem to that of multiplying two polynomials of 
degree less than d over Fq. We now use Sch6nhage's technique as presented in [28] 
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to reduce this problem to that of multiplying integers. Let m ilog(dq2)]. (Here 
and in the following, log denotes log2.) Further, let 

d-I d-I 2d-2 

E hi2i).EVi2mi)=E i ri. 

As , hiv- < 2m for all i, we obtain c- = hlvj. Hence 

2d-2 

h((x)x) v E (ci mod q)xi. 
Z=0 

The running time of this algorithm is clearly dominated by the time needed to mul- 
tiply two integers of bit-length din, which, using the Sch6nhage-Strassen algorithm 
[30], is O (dm log(dm) log log(dm)). 

3.2. Second version of the algorithm. A major improvement can be gained 
by employing an idea related to the multiple evaluation algorithm of Borodin 
and Moenck [3], [5, Chapter 3]. Let d = q ... qt. We first show how to 
recursively compute fj = f mod (xqt - (uja)qt) for j = 0,1,... , d/qt - 1: start 
with f0,0 f mod (xd - aRd). Suppose that we have already computed fi,j := f 
mod (xdi -(Ujia)di), where d= q. qt. From this we compute for 1 with 
1 K j + d/di+1 and 1 j mod d/di the qj polynomials fi+,,l = fi,j mod (xdi+, 

(Ulcy)di+l). The computation of fi+l,, from fi,j can be done efficiently, as we are 
computing modulo binomials. At the end of the computation we obtain the set of 
fj, which is equal to the set of ft,i. Once the fj have been computed, we use the 
basic version of our algorithm to find its values on the coset of size qt consisting of 
all those elements x of F' such that Xqt = (aUj)qt. Patching all the information 
for various j together, we obtain a solution to Problem 3.1. 

The algorithm gives rise to a factor tree for d, similar to the tree obtained 
from the multiple evaluation algorithm of Borodin and Moenck. (Compare also 
[5, Chapter 3.3].) A simple induction shows that computing the polynomials fij 
uses 0((qi + . + qt-1)d) operations in Fq. As described above, the evaluation at 
the leaves of the tree, i.e., evaluation of the fj at the corresponding cosets, uses 
O(dm log(qtm) log log(qtm)) bit-operations, where m = rlog(qtq2)] . (Note that we 
have d/qt cosets.) Appropriate choice of the divisors q,.... , qt may thus lead to 
significant improvements in the running time. 

3.3. Speedy version of the algorithm. Further savings can be achieved by 
noting that whenever we apply the solution of Problem 3.1 to compute the values 
of f in a certain coset of the subgroup of order qt of F', we are actually computing 
the polynomial product of h(x) and v(x). The main point is now that v is fixed 
for all the cosets. So we are actually dealing with the problem of multiplying one 
integer with several other integers. This problem can be solved efficiently with 
the following strategy: we use the Sch6nhage-Strassen algorithm for multiplying 
integers. In a first step we generate v and its Fourier transform, and store it. Then, 
for each h encountered, we compute its transform, multiply it with the transform of 
v, and transform the product back. This reduces the number of Fourier transforms 
per polynomial multiplication from three to two. 

Another improvement can be gained using an idea of D. Reischert [26]. If p 
is not a Fermat prime, then the largest prime factor qt of p - 1 is odd; hence 
we have to perform a negacyclic convolution of h(x) and v(x). Translated into 
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integer multiplication, this means that we are performing multiplication modulo 
2' + 1 for some m. If m is such that 32m = 2kl < (2k - 1)22k, then one can 
perform the Sch6nhage-Strassen multiplication algorithm to compute this integer 
product. (See [29, p. 32].) The advantage over the method which multiplies h 
and v as integers and reduces the product mod Xqt + 1 is that the length of the 
numbers to be multiplied is smaller. (We do pot need zero-padding in this version.) 
However, since 32m might contain a small power of 2 (usually 26), the new method 
may be slower than the old one for some values of m. In our implementation the 
new method computes the smallest 1' such that qt(p - 1)2/2 < 2321' and performs a 
Sch6nhage-Strassen multiplication modulo 2321' + 1, while the old method computes 
the smallest 1 such that qt (p-1)2 /2 < 21 and performs multiplication modulo 2' + 1, 
where m= F21qt/32]. The final decision whether to use the old or the new method 
was made according to whether Fl/32]qt was larger than F21qt/32] or not. 

3.4. Implementations. We have implemented all three versions. The lion's share 
of the implementations has been done in TP-code. TP, which is an invention of 
A. Sch6nhage, simulates a multitape Turing machine. It is a software implemen- 
tation of a Turing Processor, which can be programmed via TPAL, the Turing 
Processor Assembly Language. Currently, there exists a substantial collection of 
algorithms written in TPAL, including the classical routines for computing with 
integers and many of the asymptotically fast algorithms for this domain. These 
clean and efficient implementations made TP the natural choice to implement our 
algorithm in. For more information on this software and how to obtain it via ftp, 
the reader is referred to the TP-book [29]. 

4. COMPUTING THE RELATIVE CLASS NUMBER 

In this section we develop an algorithm for computing he (p) for all odd divisors 
of p - 1. Our algorithm is very similar to the one suggested by Jha [13]. However, 
we improve upon his results in the following ways: 

(1) We compute not only the relative class number of Q((p), but also the relative 
class numbers of all imaginary subfields thereof. 

(2) We use the prime factors of (p - 1) to speed up the calculations. 
(3) We give a new analysis of our algorithm, thereby correcting an error in Jha's 

running time estimates. 

The main difficulty is the fact that h- grows more than exponentially with p. 
In fact, Kummer conjectured in 1851 [14] that 

(4.1) h(p) - 2pr2) (P), 

i.e., limp,, h-(p)/G(p) = 1. No proof of this assertion is known. In fact, Fung et 
al. argue in [11] that this conjecture is probably false. However, in 1974 Lepist6 
[18] proved the bounds 

-2ln(p)- 4lInln(p)- 12.93 _46 2 ~~~~~~~~~ln(p) 

(4.2) < In ( hG(( )_< 5 ln ln(p) + 15.49 + 4.66 
which Iostathgrwhoh-irelyftn(p). 

which shows that the growth of h- is really fast. 
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First calculations of the relative class number were done by Kummer [14], who 
computed these numbers for all primes below 163. Later, Newman [22], Pajunen 
[25], and Lehmer and Masley [16] extended these calculations to all primes below 
512. (Pajunen only gave approximate values for the relative class number.) The 
running time of the most sophisticated of these algorithms was O(p5 log2 p) (see 
[111). 

Fung et al. [11] could considerably improve upon this running time, and extended 
the computation to all primes below 3000. Their method has an asymptotic running 
time of 0(p2 log4 p) and has the advantage that it computes a partial factorization 
of h-. 

Our algorithm is based on Proposition 2.3 and has an asymptotic running time 
of O(p2 log2 (p) log log(p)). It is the most general of the existing methods, as it also 
computes class numbers of imaginary subfields of Q((p), at basically no additional 
cost, and also computes a partial factorization of h-. 

4.1. The algorithm. Given the odd prime p, our algorithm starts by finding 
primes qi,... , q, such that qi= 1 mod (p - 1), and such that Ei ln(qi) is larger 
than the right-hand side of (4.2). For each such q we compute B1,x mod q for all 
the odd characters of the Galois group of Q((9)/Q using Proposition 2.2 and the 
method described in Section 3. Once the Bl,x have been computed, we use Propo- 
sition 2.3 to compute he mod q for various odd el (p - 1). Finally, we compute he 
using Chinese remaindering. A partial factorization of h- = hj can be obtained 
by taking the gcd of h- and the he for the different e involved. 

To assess the asymptotic running time of our algorithm we need to know how 
large the primes q are likely to become. For discussing this problem, we need 
explicit estimates for the error term in the prime number theorem for arithmetic 
progressions. Using any of the bounds in [23],[24], we see that assuming ERH, there 
is an explicit constant c such that for large enough p the number of primes between 
p5/2 and 2p5/2 which are congruent to 1 modulo (p - 1) is bounded below by 

p 5/2 C p 3/2 

(p(p-1) ln(p5) - 5 ln(p) 
In analyzing our algorithm we may thus assume that the primes ql..... , q are 
between p5/2 and 2p5/2, and hence s = 0(p). 

Let us now discuss the cost of the different steps of the algorithm. In the follow- 
ing, we say that the running time of a subroutine is negligible if it is 

o(p2 log2 (p) log log(p)). 

In the first step, we have to generate 7q(x). This involves finding a primitive root 
modulo p, and computing the different coefficients. Both these steps have clearly 
negligible cost. 

The next step consists of finding the appropriate primes q. We start with Fp5/2] 
and test in increments of p - 1 the resulting integers for primality. We will need 
at most roughly p3/2 primality tests oii integers of size O(log(p)) to obtain all the 
primes q we need. Assuming ERH, primes can be certified in poly-logarithmic time 
[21]. Hence, the cost of this step is negligible as well. 

For each of the primes q we first reduce rT(x) modulo q. Next, we identify the 
group of (p - 1)st roots of unity in Fq. To do this, we need to find a primitive root 
modulo q, and raise it to the power (q - 1)/(p - 1). Using common randomized 
algorithms, the cost for finding the primitive root is majorized by that of finding 
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the factorization of (q - 1). Using fast factorization algorithms, this task can be 
achieved in subexponential time [7]. Employing any of the versions of the algo- 
rithm given in Section 3, we can compute Bl,x mod q for all the odd characters in 
time 0(pmlog(pm) log log(pmn)), where m = Flog(pq2)] = 0(log(p)), by evaluating 
77(x) on the corresponding coset. Next, we compute he mod q using Proposition 
2.3. Arranging the computation appropriately to avoid multiple calculation of the 
same numbers, this step uses 0(p) operations in Fq, i.e., 0(p log(p) log log(p)) bit- 
operations for each q. Hence, the running time of computations for each q equals 
0(p log2 (p) log log(p)). 

Computing he mod q for all primes q takes 0(p2 log2(p) loglog(p)) operations, 
since there are 0(p) primes. 

For each odd divisor e of (p - 1) we now have to perform a Chinese remaindering 
modulo 0(p) primes, each of size 0(log(p)). Using fast methods, this step can be 
performed in time proportional to the length of the result multiplied by logarithmic 
factors, i.e., in time 0(p log4(p)) [8]. As the number of divisors of p - 1 is o(p), the 
Chinese remaindering step is negligible. 

Once the he have been found, we compute the gcd of h- and the different 
he to obtain a partial factorization of h-. The numbers involved have bit-length 
O(plog(p)), and fast gcd-algorithms [27] show that the running time of this step is 
negligible too. 

In summary, assuming ERH, our algorithm runs in time 0(p2 log2 (p) log log(p)). 
It might seem that our algorithm is slower than Jha's [13]. This is due to an error 
in that paper. More precisely, the author claims on p. 1709 that "the DFT of 
the sequence of coefficients of Vb in Fq can be computed in O(plog(p)) elementary 
arithmetic operations." However, using the fastest known algorithms, the number 
of bit-operations for this task is O(p log2 (p) log log(p)). Hence, the running time of 
Jha's algorithm is the same as ours. 

4.2. Implementations and result checking. The main routines of our algo- 
rithm, namely the evaluation routines, Chinese remaindering routines, and gcd- 
routines, were implemented in TP. The I/O routines were handled by C-programs. 
The Chinese remaindering routine was written by G. Sauer and was kindly provided 
to us by D. Reischert. 

All the computations took approximately 1.5 CPU days on an ULTRASPARC 
with 167 MHz. 

We used various results to check our computations. 

(1) The evaluation routines were checked using the identity Et f(t) = rf(0), 

holding for all polynomials f over Fq of degree less than T, where t runs over 
a subgroup of order r of F'q 

(2) The second phase of checks consisted of comparing our results with known 
ones. In doing so we observed a mismatch between our results and Table VII 
in [11]. After contacting the authors, it turned out that Table VII contained 
errors, and that in all the mismatches our program had computed the correct 
data. We have recomputed that table with our program. The results are given 
in Table 2 of Section 5. Its first column corresponds to the first few primes, 
denoted by q; the second column gives the number of primes p between 100 
and 3000 such that h- (p) is divisible by q, and the third column gives the 
first three smallest such primes p. 
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(3) We checked divisibility properties of he by the prime p and cross-checked 
that with the results of the Bernoulli computations. Note that if (p, 2n) is an 
irregular pair, then p divides B1,2n-1 where w is the Teichmuiller character. 
Hence, p divides he, where e = (p-1)/gcd(p-1, 2n-1). 

(4) The last class of checks used the following observation: If e = (p - 1)/2 is 
odd, then he is the class number of Q(A/p). We checked these values against 
those computed independently by the classno() routine of PARI [1], and did 
not observe any mismatches. 

All these tests were quite helpful in catching bugs during the early development 
phase of the program. 

5. RESULTS 

5.1. Parity of the class number. The parity of the relative class number h- (p) 
of the field Q((p) has attracted a lot of attention ever since Kummer's introduction 
of cyclotomic class numbers. We refer to [10] and [33] and the references therein for 
a discussion of the history of this problem. It has been conjectured [9] that h- (p) is 
odd whenever p and (p - 1)/2 are both primes. The conjecture seems to go back to 
Taussky's work [34]. This conjecture has been verified by Estes [10] in the case that 
2 is inert in the maximal real subfield of Q((p). Stevenhagen [33] gives a different 
proof of this result and provides a heuristic argument in favour of the conjecture, 
and strengthens these arguments by extensive calculations. Metsankyla [20] gives 
results analogous to Estes' for divisibility of h- (p) by primes other than 2, and also 
gives another proof of Estes' original result. 

Our numerical results prove that the above conjecture is true for all primes p 
between 2 and 10000. 

5.2. Tables. We basically performed the same statistics as Fung et al. [11], only 
omitting the computation of "high and low champions". Furthermore, we did not 
attempt to completely factor the relative class numbers we obtained. However, we 
did compute the growth of h-(p) and compared it against G(p) defined in (4.1). 
The results are summarized in Table 4, which contains the lowest and highest values 
of h- (p)/G(p) observed for primes p with 3 < p < 10000. 

TABLE 1. k = ord2(h-) 

k Number up to 10000 Smallest 3 such primes 
2 41 163 547 853 
3 39 29 113 197 
4 39 277 349 421 
5 9 373 683 1117 
6 27 239 337 397 
7 1 3557 
8 6 941 1009 1021 
9 1 5419 

10 2 311 4789 
13 2 7687 8191 
15 1 3067 
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We generated several different tables. The first one contains the relative class 
number of Q((p) and its imaginary subfields for all primes between 2 and 10000. 
The second table contains partial factorizations of the relative class numbers. The 
third table contains several statistics, like divisibility by small primes, irregularity of 
the prime in question, and the ratio h-/G(p). It was used to compile Tables 1 and 
3. The fourth table contains for each imaginary subfield of Q((p) and each prime 
q < 100 the exact power of q dividing the relative class numnber of that subfield. 
The fifth table contains the class numbers of imaginary quadratic subfields of Q((p) 
for primes p -3 mod 4. It is only used for checking purposes. 

All these tables are available (at least in 1997) from the URL 
http: //www. icsi. berkeley. edu/- amin/TAB . html. 

TABLE 2. Corrected version of Table VII in [11] 

q Number up to 3000 Smallest 3 such primes 
3 93 107 131 139 
5 109 101 103 127 
7 66 151' 211 223 

11 45 151 167 191 
13 64 127 157 191 
17 50 109 113 137 
19 33 199 311 359 
23 24 331 397 647 
29 25 421 463 491 

TABLE 3. Divisibility by small primes 

q Number up to 1000 Smallest 3 such primes 
3 97 23 31 59 
5 111 47 79 101 
7 67 71 151 211 

11 46 41 151 167 
13 64 127 157 191 
17 50 109 113 137 
19 33 199 311 359 
23 24 331 397 647 
29 25 421 463 491 

TABLE 4. Lowest and highest values of h-(p)/G(p) 

p h- (p)/G(p) p h- (p)/G(p) 
3331 0.642429 4391 1.507776 
7219 0.658084 6101 1.511405 
9049 0.667614 4349 1.518571 
8209 0.672045 9689 1.524372 
6379 0.673523 5231 1.556562 
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6. CONCLUDING REMARKS 

We have presented an algorithm with running time 0 (p2 log2 (p) log log(p)) for 
computing the relative class number of Q((p) and all its imaginary subfields. The 
only lower bound we know for this task is Q(plog(p)), which is the size of h-. 
Our algorithm, however, has running time 0(p2+E). Conjecturally, Louboutin's 
algorithm [19] has a running time of 0(pl-5+E), so the discrepancy between the 
lower and the upper bound is a factor of p. Unfortunately we do not know of 
any means to close this gap at the present time. We would like to pose this as 
an interesting challenge to the software engineering, computational number theory, 
and complexity theory communities. 
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