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SPEEDING FERMAT'S FACTORING METHOD 

JAMES MCKJEE 

ABSTRACT. A factoring method is presented which, heuristically, splits com- 
posite n in O(nl/4+E) steps. There are two ideas: an integer approximation to 

+\(q/p) provides an Q(nl/2+E) algorithm in which n is represented as the differ- 
ence of two rational squares; observing that if a prime m divides a square, then 
m2 divides that square, a heuristic speed-up to Q(nl/4+E) steps is achieved. 
The method is well-suited for use with small computers: the storage required 
is negligible, and one never needs to work with numbers larger than n itself. 

1. INTRODUCTION 

Let n be an odd, composite integer. The aim is to find a non-trivial factorisation 
of n. Let 

(1) b Fv'l 
where Fx] denotes the smallest integer greater than or equal to x. Define 

(2) Q(x, y) = (x + by)2 - ny2. 

To factor n, we seek integers x, y and z such that 

(3) Q(x, Y) = z2 

A solution to (3) gives (x + by)2 z2 (mod n). We then compute 

gcd(x + by - z, n) 

in the hope that this will be a non-trivial factor of n (i.e., a factor other than 1 or 
n). 

Taking y = 1 and x > 0 gives Fermat's factoring method. Allowing y greater 
than 1 gives some improvement, and can be viewed as writing n as the difference of 
two rational squares, then clearing denominators. The SQUFOF method, of Shanks 
(for a good exposition, see ?8.7 of [1]) looks for solutions to (3) with both x and y 
very large, but z very small (z z O(n1/4)). Of course, one can reduce x and y mod 
n to keep them below n, but SQUFOF does still better: it never computes x and y 
at all, and mostly works with numbers of size 0(</n). A theoretical disadvantage 
of SQUFOF is that the existence of a suitable solution to (3) (i.e., one which splits 
n) is not guaranteed. In practice, however, the method works very well for smallish 
numbers. It is used for subsidiary factorisations in certain other factoring methods, 
such as the quadratic sieve. 

In this paper, another factoring method based on finding solutions to (3) is 
presented. In contrast to SQUFOF, the solutions that we seek have x and y small, 
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and consequently z must be rather larger. Moreover, we can guarantee the existence 
of a solution which splits n: the only problem is finding it. A heuristic method 
is given, which is expected to factor n in O(nl/4+?) steps. As with SQUFOF, 
the computations require much less accuracy than mod n arithmetic: we expect 
to need O(n1/4) reductions of n modulo numbers of size 0(\/n), and nearly all 
other computations require working to an aecuracy of at most half the bits of 
n. Depending on implementational details, the method could be a candidate for 
replacing SQUFOF, or for being used as well as SQUFOF, in some applications. 

The next section gives the key Lemma, which guarantees the existence of a 
suitable solution to (3). This iminediately gives a factoring algorithm, certain to 
factor n in O(nl/2+?) operations, requiring only O(n1/4) trial divisions. Here, and 
throughout this paper, 6 denotes a positive real number, as small as we please, with 
the implied constant in the O(.) depending on 6. In fact, the nT factors will never 
be worse than some power of log n. Section 3 gives a practical method for searching 
for a suitable solution to (3), which is not guaranteed to work (suitable solutions 
exist, but the method may not find one), but heuristically will factor n in O(nl/4+E) 

operations. After an example of the basic method, and some remarks about imple- 
menting it on small computers, Section 6 considers some variants. Section 7 gives 
an interpretation of the method in terms of special changes of polynomial in the 
quadratic sieve, before some timings for a selection of random numbers. The paper 
concludes with a brief discussion of other applications of the idea used to speed the 
search for solutions to (3). 

The original initention had been to produce a true algorithm (i.e., one guaranteed 
to work), and the lemma of the next section provides one, albeit of no practical 
value. It was a happy chance that a heuristic method for speeding the search for 
the known solution to (3) proved to be efficient for factoring smallish numbers, and 
well-suited for use with small computers. 

2. THE KEY LEMMA 

The following lemma shows that, after trial division up to 2n1/4, a naive search 
for solutions to (3) can be organised so as to be certain to factor n in O(nl/2+?) 

operations. We suppose, then, that n = pq with 2n1/4 < p < q. Here we may (but 
do not need to) suppose that p is prime, but we cannot assume that q is prime. 
Note that, setting y = 1 in (3), to give Fermat's method, one might need,to take x 
of order n3/4 to find a solution to (3). 

Lemma. Suppose that n = pq with 2n1/4 < p < q. Then with Q(x, y) defined by 
(1) and (2), there exists a solution to (3) with gcd(x + by - z, n) a non-trivial factor 
of n and 

(i) 2 < y < n1/4, y even; 

(ii) lxly < 2n1/2; 

(iii) 0 < z < 2n/2. 

In particular, (ii) implies that such x, y and z can be found in O(nl/2?z) operations. 

Proof. Let r LV(q/p)i, the largest integer not greater than y(q/p). Then 1 < 
r < n1/4/2. Set y = 2r (so that (i) holds), x = r2p + q - by, z = q - r2p. Then 
Q(x,y) = z2, so that x, y and z give a solution to (3). 
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To prove (iii), note that \'(q/p) - 1 < r < \'(q/p), so that 

0 < z = q-r2p < q-q + 2\/n-p < 2\/n, 

which is (iii). 
To prove (ii), write b \/n + 6, with 0 < 6 < 1. Then 

(x + by)2 x2 + 2xy( \n + 6) +'Y2n + 25y2V\/n + 52y2 
2 2 

-yn+z 
If x > 0, then this gives 

< z 
2 

using (iii). If x < 0, then we write r = V(q/p) - q, with 21 > 0, and note that 
X = rZ2p + 2q6 - 2Vn5/p, so that lxl < 2Vn/p < n1/4, giving Ix y < In < 2IVn. 
Thus (ii) holds whether or not x > 0. 

Finally, (i), (ii) and (iii) imply that 

Ix + by ? zl < 2n' /2/y + (n1/2 + l)y + 2n /2 

< n3/4 + 2n1/2 + 3n 1/4 

< n, 

at least for n > 31, but the condition that n = pq with 2n1/4 < p < q implies 
that n = 30 or n > 35, and for n = 30 we have b = 6, x --1, y = 2, z = 1, so 
that Ix + by ? zl < n here too. If x + by = z, then (2) and (3) imply that y = 0, 
contradicting (i). 

Thus gcd(x + by - z, n) is a non-trivial factor of n. DG 

It is interesting to compare this with R.S. Lehman's factoring rnethod, [2]. He 
also speeds up Fermat's method, by seeking a solution to an = x2 _ z2 with 1 < 
a < n1/3, where n = pq with n1/3 < p < q. His algorithm is rigorous, and runs in 
0(nl/3+?) steps. One can prove the existence of a suitable solution to an = X2 _Z2 

by considering good rational approximations to q/p. For our method, we demand 
only that 2n1/4 < p < q, and then obtain a suitable solution to y2n = x2 _ z2 by 
considering a good integer approximation to q/p, but without a further heuristic 

speed-up we obtain only an O(nl/2+?) algorithm. 

3. THE METHOD 

After the Lemma of the previous section, we have a factoring algorithm which 
runs in O(nl/2+?) steps. We now describe a practical method for speeding the 
search for solutions to (3), to give a factoring method which runs in O(nl/4+E) 

steps, subject to a heuristic argument. 
Suppose that we have a solution to (3) satisfying (i), (ii) and (iii) of the Lemma, 

where we may suppose that x, y and z have no common prime factor. Suppose 
further that m divides z. Then Q(x, y) 0 (mod mi2). Let x( --xy-' (mod mi2), 

where y-1 is the inverse of y (mod m2). Then Q(xo, 1) -0 (mod m2). We have 
x = xoy - Am2 for some A, so that 

(4) xO A x 

m2 y m2y 
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If x > 0 and 

(5) m2 > 2xy, 

then (4) implies that 

~ 0 A 1 
?< 2y <2y2 

y~~~~~~~~~~~ 
so that A/y is a convergent in the continued fraction expansion of xo/m2. 

This suggests a means for searching for solutions to (3). We suppose, after 
trial division, that n has no prime factors below 2n1/4. FRom the Lemma, (5) will 
certainly hold if m > 2n1 4. We take several m larger than 2n1/4, hoping that m 
divides z, and for each m we proceed as follows: 

Step 1. Compute all solutions xo to the equation Q(xo, 1) 0_ (mod mi2). 

Step 2. For each xo found in Step 1, compute those convergents A/y in the contin- 
ued fraction expansion of xo/m2 for which A/y < xo/m2 and y < n'/4. Check if 
Q(xoy - Am2, y) is a square. If it is, then we can factor n and stop, else we keep 
trying. 

In Step 1 we need to compute a square-root of n (mod m2). If m is prime, then 
this is easy in practice, and for most prime m it is provably easy (polynomial time). 
The method will factor n when we take m to be the least prime factor of z greater 
than 2n1/4 (unless x < 0, which happens rarely, but we could easily modify the 
search to allow for this). Of course, such a prime factor may not exist, or it may 
be too large to be of use in practice. We need more solutions to (3) for there to be 
any hope of success. The following refinement of the Lemma gives us this hope. 

Refinement. With n as in the Lemma, and T any integer greater than 1, there 
exist at least T solutions to (3) with 

(i) 2 < y < n1/4 + 2(T- 1), y even; 

(ii) lxly < T4\/n; 

(iii) lzl < (T2 -1)/n. 

Moreover there exist at least T - 1 solutions to (3) satisfying all of the above if we 
restrict to x > 0. 

Proof. Let r be as in the proof of the Lemma. For 0 < t <T - 1, we get a solution 
to (3) given by x = (r + t)2p + q-by, y = 2(r + t), z = q-(r + t)2p. This gives (i) 
immediately. For t = 0, (ii) and (iii) follow from the Lemma, so we may suppose 
that t > 0. Then 

0 > z q - (r + t)2p > q - (\(q/p) + t)2p =-2t/n- t2p, 

giving 

lzl < 2tVn +t2p < t(t + 2)/n < (T2-1>)/n, 

which is (iii). For (ii), we follow the proof in the Lemma, noting that now x is 
always positive, giving 

0 < xy < z2/21n < (T2 _ 1)2 /n/2 < T4\/n. 

DG 
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If T is small compared to n, then again an easy estimate shows that all such 
solutions to (3) will split n. One could give a further refinement, using rational ap- 
proximations to V(q/p) (rather than integer approximations) to produce solutions 
to (3). 

The following crude heuristic argument now suggests that the method should 
run in O(n1/4+,) steps. Take T of order log n. 'The probability that any one value 
of z given by the Refinement should be prime to all primes m between T2n1/4 
and 2T2n1/4 is heuristically of order 1/logn, so we expect success with m <K 
n1/4 (log n)2. One does not need to restrict m to being prime, but it keeps the 
bookkeeping simple when taking square-roots mod n2. 

4. A WORKED EXAMPLE 

Consider n = 84009841. Here n1/4 96. Prime m for which the method 
successfully factors n are 

m = 73, 179, 229, 619, 641, 1031. 

Let us work through the method in detail for m = 73 and m 179. 
Here we have b = 9166, Q(x, y) = (x + by)2 - ny2 = x2 + 18332xy + 5715y2. 
For m = 73, we compute In ?1123 (mod 732), from which we find Q(xo, 1) 

0 (mod 732) for x0 E {369, 2615}. Q(369, 1) = 26282 = (36.73)2, which splits n: 

gcd(369 + 9166 - 2628, n) = 6907. 

The case m = 179 illustrates Step 2 of the method. We compute /n ?_ ?5517 
(mod 1792), from which we find Q(xo, 1) 0 (mod 1792) for xo E {17358, 28392}. 
Neither value of x0 makes Q(xo, 1) square. For x0 = 28392, the relevant continued 
fraction approximations to xo/m2 are 0/1, 7/8, 31/35, 70/79. We find that 35xo- 
449 (mod 1792), and Q(449,35) = 171842 = (96.179)2, which again splits n. 

For this example, I considered all prime m > 3. The argument of the previous 
section requires m > 2n1/4, but one can be lucky with smaller m, as here with 
m = 73 andTn = 179. 

5. REMARKS ON IMPLEMENTATION 

As a practical remark, note that one does not need to perform arithmetic mod 
m2 to compute yxo (mod mi2): we are simply performing the (extended) Euclidean 
algorithm on xo and mi2. The values of yxo (mod m2) are given by the relevant 
remainders. 

The method is (relatively) easy to implement on small computers. Pollard in- 
forms me that he has programmed it to run on a tiny Psion computer (Psion Series 
3A, 256K). This has a 16-bit processor running at 7MHz. His program allows num- 
bers up to 17 digits (stored as 9 + 4 + 4 digits), and tests m between 3 and 32000. 
For computing a square root (mod m) one can use Shanks' method (Algorithm 
1.5.1 of [1]), extending this to a square root (mod mi2) at the expense of computing 
an inverse mod m. Then one performs Euclid's algorithm on xo and m2 to find 
relevant values of x and y. 

Since Q(x, y) will be divisible by m2, one does not need to work to great accuracy 
to test if Q(x, y) is a square: simply compute I(Q(x, y))/m (which will be of order 
n 1/4 when m is of order nl/4) in real arithmetic, to enough accuracy to guess 
whether it is an integer. It may be better first to test whether Q(x, y) is a square 
modulo a few small prime powers. Pollard reports that checking m up to 32000 
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takes about 12 minutes on his tiny machine ([6]). For 17-digit numbers, m rarely 
needs to be this large. 

For some timings on a more powerful computer, see the end of this paper. 
On a small machine, where one wishes to avoid multiple precision arithmetic, m 

will in effect be bounded above. The method may then fail, if the smallest successful 
m is too large. One could then try the meth9d on small multiples of n until these 
also become too large. 

The method is easy to parallelise. Different machines can run through m lying 
in different residue classes mod k, where the number of machines equals p(k) (the 
totient function). 

6. VARIANTS OF THE METHOD 

6.1. Interpolating the continued fraction approximations. If the continued 
fraction approximations to xo/m2 are po/qo, pi/ql, ... ,then we can write 

Pr+ IarPr + Pr-I, 

qr+l arqr + qr-1Iv 

for some ar. For 1 < A < ar, the fractions 

APr + Pr-1 
Aqr + qr-1 

give rational approximations to xo/m2 which are not as good as the continued 
fraction approximations, but might (if we are lucky) reveal solutions to (3). For 
example, with n = 84009841, as in the example above, we find that primes m for 
which this variant splits n are 

m - 73, 83, 179, 229, 233, 241, 569, 619, 641, 661, 823, 967, 1031, ... 

and we see that there are rather more of them. Of course, it now takes longer to 
test each m, and in practice this variant generally takes longer than the original 
method. 

With n as above and m = 83, we have x0 E {2738,6486}. For x0 = 2738, 
the continued fraction denominators that were tried for y in the original method 
were 1, 3 and 78. Here we interpolate between 3 and 78 in steps of,5, finding 
Q(269, 63) = 182602 = (220.83)2, which splits n. 

6.2. The greedy variant. Given m and x0 such that Q(xo, 1) -0 (mod mi2), we 
first test if Q(xo, 1) is a square. If it is, then we are done, else set 

r- FTm2/xo] 
2 X1 xor1-m 

Yi r 

and test if Q(x1, yl) is a square. If it is, then we are done, else set 

r2 = F?n2/xI], 

X2= xlr2-m2 

Y2 ylr2, 



SPEEDING FERMAT'S FACTORING METHOD 1735 

and so on. At the jth stage we have 

rj = Fm2/xj-l, 

Xi = xj_lr - M2, 

Yj = Yji-rj . 

We proceed until either Q(xj, yj) is a square, or yj exceeds a chosen bound (of 
order n1/4). 

With n as before, we find that primes m for which this variant splits n are 

m = 59, 73, 83, 229, 641, 809, 967, 1031. 

We see that for some values of m (e.g., m = 179) we miss factorisations revealed 
by the basic continued fraction approach, but there are other values of m (e.g., 
m = 59) which succeed here but not with either of the previous variants. Note that 
the greedy variant requires only one Euclidean division to compute each value of 
y, compared to the two required by the continued fraction approach (since for the 
latter only alternate denominators are used). 

For m = 59, we find that xo E {1035,1519}. With xo = 1519, X2 = 823, Y2 = 12, 
and Q(823,12) = (229.59)2, which splits n. Indeed we find the same solution to (3) 
as we did with m = 229 using the basic method. 

For a larger example, take n = 663621 112452 523783. Here one finds that 
m = 95971 splits n (with y = 112), finding the factors 700 119223 and 947 868721. 

Using PARI-gp on a SUN Sparc 5, I have found the greedy variant to be best. 
Pollard, however, on a PSION 3A, finds this variant slower than the basic method, 
observing that Q(x, y) is more often a square mod 64 for the values of x and y 
produced by this variant. Hence the test for squareness takes longer on average. 
His observation can be explained by noting that Q(xj, yj) is a square mod ny , and 
for the greedy variant the yj tend to have many small factors (yj is the product of 
rl, ..., rj, and the rj are usually small). If xj _ 0 (mod 8), then Q(Xk,Yk) is a 
square mod 64 for all k > j. 

6.3. Composite moduli. Any of the variants discussed work in principle with 
composite values of m, but we may then need to consider more than two pos- 
sibilities for x0. For example, n = 84009841 (as above) is split by m = 36: 
XO E {369, 739,1179, 1225}, and we have seen already that Q(369, 1) = (36.73)2. 

7. INTERPOLATING THE QUADRATIC SIEVE 

With Q(x, y) defined by (2), we have Q(x, y) _ (x + by)2 (mod n). In the above 
method, we sought Q(x, y) an exact square. Instead, we can try to factor Q(x, y) 
over a factor base 13, consisting of a few small primes, then use several relations 

(6) (xi + byi)2 = Q(xi, Y,) = fi pap i 

pE8 

to find squares which agree mod n (by Gaussian elimination over the field with 
two elements), in the hope of factoring n. This idea is the basis of several modern 
factoring methods. 

If we restrict to yi = 1, then we have a simple version of the quadratic sieve 
(p10.4.1 of [1]). For p E 13 we compute values of xp (generally two of them) such 
that Q(xp, 1) -0 (mod p). This allows us to sieve over a range of x and find 
relations as in (6) more quickly. As x grows larger, so does Q(x, 1), and it becomes 
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less likely that Q(x, 1) will factor over 13. In the multiple polynomial version (?10.4.2 
of [1]), Q(x, 1) is replaced after a while by another quadratic polynomial (with the 
same discriminant), to keep the numbers represented by the polynomial small. The 
cost of such a change is that the xp have to be recomputed. 

Moving from Q(x, 1) to Q(x, y), for fixed y, gives a relatively cheap change of 
polynomial, in that the new xp are computed',simply by multiplying the old xp by 
y (mod p). We can view this change of polynomial as a rational interpolation of 
Q(x, 1), taking x E Q with denominator dividing y, then clearing denominators. 
One also notes that this process is essentially inverse to the "special q's" idea of 
Davis and Holdridge, in which Q(x, 1) is replaced by the polynomial Q(qx+xo, 1)/q, 
where Q(xo, 1) _ 0 (mod q). 

Having viewed the process of moving from Q(x, 1) to Q(x, y) as giving rational 
approximations to /n, rather than integer ones, we may ask what happens if we 
look for the best rational approximations, as appear in the continued fraction ex- 
pansion of /n. Not surprisingly, this gives the continued fraction factoring method 
(p10.1 of [1]). 

For the method of this paper, we seek Q(x, y) = z2. By looking for z _ 0 (mod 
m), we are using the special q's idea with q = M2. In allowing y > 1, we are 
interpolating. 

8. TIMINGS 

The timings shown in Table 1 should be interpreted with caution. I used my 
own routines for both SQUFOF and the method of this paper, using PARI, via the 
PARI-gp programming language, on a Sun Sparc 5. These should run much more 
quickly if the PARI routines were called from a C program. For comparison, I give 
also the times to split n using the MAPLE V routine if actor(n,squf of). 

My SQUFOF program follows Algorithm 8.7.2 of [1], making no use of the infras- 
tructure of the class group. The values of n were products of two randomly chosen 
primes. For the method of this paper, I used the greedy variant, with m > n1/4) 

and y < n1/4/10. Strictly, I should first eliminate the possibility of factors below 

TABLE 1 

SQUFOF Our method 
n MAPLE V PARI-gp PARI-gp 

n 3n 
91739369 x 266981831 4 10 3 6 

327083137 x 1245254189 25 66 19 46 
1640261503 x 1672679527 192 520 277 1 
700119223 x 947868721 0 60 41 7 
108797839 x 1832615053 20 53 8 203 
883283243 x 1682761103 179 137 9 3 
1258514107 x 2023452479 214 575 61 26 

22178813 x 669848353 74 163 19 2 
1018825649 x 1690938463 30 80 26 48 
589472101 x 1180140427 0 37 176 15 

mean 74 170 64 36 
median 27 73 23 11 
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about nl/4. On the Sun, using PARI, this can be done in negligible time using Pol- 
lard's p method (Algorithm 8.5.2 in [1]). On a small computer, trial division may 
be preferable, in view of the extra complications of performing arithmetic to greater 
precision. Alternatively, one can start with m, as small as 3, thereby incorporating 
trial division into the method. 

As with SQUFOF, there is considerable variation in the time taken to split 
numbers of similar size using the method of this paper. In Table 1, I give the 
times (in seconds, to the nearest second) taken to split 3n, as well as n. There is 
considerable advantage in trying both: the mean of the minima of times to split n 
and 3n is only 11 seconds, with median 7 seconds. Thus if one tested each m on 
both n and 3n the mean time would be 22 seconds, with median 14 seconds. 

9. APPLICATIONS TO OTHER METHODS 

The key idea used to speed the search for solutions to (3) is that given any m, a 
square is divisible by m2 if and only if its square root is divisible by m, so that we 
gain information mod m2 with probability 1/m. The obvious generalisation may 
be applied to any polynomial equation in which one of the variables appears only 
as a square or higher power. This has been used already in another speed-up of 
Fermat's method, in ?5 of [5]. It can also be applied to Euler's method, or the 
variants in [3] and [4]. These seek solutions to an = x2 + dy2 for various a and d. 

For example, to solve n = X29+ y2 (when possible), we can take several prime 
m of size about nr1/4 and hope that either m divides x or m divides y. Each such 
m can be tested in polynomial time (assuming that we can compute square roots 
mod m2 in polynomial time, which we can in practice). If we are unlucky, and do 
not find a solution, then we can try an in place of n, where a is representable by 
the form X2 + y2. This gives a heuristic 0(nl/4+E) method. Applying this idea to 
the 0(nl/2+E) algorithm in [3] gives another heuristic 0(nl/4+E) factoring method. 
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