
MATHEMATICS OF COMPUTATION 
Volume 69, Number 229, Pages 1-24 
S 0025-5718(99)01097-2 
Article electronically published on August 24, 1999 

A POSTERIORI ERROR ESTIMATION AND ADAPTIVITY 
FOR DEGENERATE PARABOLIC PROBLEMS 

R. H. NOCHETTO, A. SCHMIDT, AND C. VERDI 

ABSTRACT. Two explicit error representation formulas are derived for degener- 
ate parabolic PDEs, which are based on evaluating a parabolic residual in neg- 
ative norms. The resulting upper bounds are valid for any numerical method, 
and rely on regularity properties of solutions of a dual parabolic problem in 
nondivergence form with vanishing diffusion coefficient. They are applied to a 
practical space-time discretization consisting of Co piecewise linear finite ele- 
ments over highly graded unstructured meshes, and backward finite differences 
with varying time-steps. Two rigorous a posteriori error estimates are derived 
for this scheme, and used in designing an efficient adaptive algorithm, which 
equidistributes space and time discretization errors via refinement/coarsening. 
A simulation finally compares the behavior of the rigorous a posteriori error 
estimators with a heuristic approach, and hints at the potentials and reliability 
of the proposed method. 

1. INTRODUCTION 

A posteriori error estimates are a fundamental component in the design of reliable 
and efficient adaptive algorithms for the numerical solution of PDEs. Even though 
rigorous results are available for linear and mildly nonlinear parabolic PDEs [51, 
[61, [71, the theory is much less satisfactory for strongly nonlinear PDEs. There are 
no results applicable to degenerate parabolic PDEs, which in turn exhibit lack of 
regularity across interfaces and corresponding numerical pollution effects. The use 
of highly graded meshes and varying time-steps is thus motivated by the nonlinear 
structure of the PDE, as opposed to domain geometry, and is a vehicle for resolving 
small scale features with optimal computational complexity. 

In this paper we introduce a rigorous theory of a posteriori error estimation for 
degenerate parabolic problems of the form 

(I.-l) 9tu -\Ao(u) = f in Q := Q x (O, T), 
where : is nondecreasing and Lipschitz. A typical example of industrial interest is 
that of solidification (classical Stefan problem), for which 

(1.2) : (s) :/= L min(s, 0) + /3+ max(s - L, 0). 
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This corresponds to an ideal material with constant thermal coefficients /L, /S? > 0 
and latent heat L. Any approximation U of u satisfies 

(1.3) o9tU -/\,(U) = f -R in Q, 

where R, an oscillatory distribution of singular character, is the so-called parabolic 
residual. In spite of the simple parabolic structure of (1.1), (1.2), its degenerate 
nature makes the theory of [51 fail in that it exploits the regularizing effect of a 
linear parabolic dual problem. The corresponding dual PDE in this context is the 
nonstrictly parabolic equation in nondivergence form 

(1.4) ot?+b =-7 in Q, 

with vanishing and rough diffusion coefficient 0 < b < max(/h , /+) [81, [91, [101. 
Such a PDE does not exhibit a regularizing mechanism, and is not computable in 
that b is discontinuous and depends on both u and U. Problem (1.4) measures the 
error accumulation in time, and is thus crucial. Our objective is to prove global 
regularity properties of ( in ?2, and use them in ?3 to derive two representation 
formulas for the errors u - U and 3(u) - (U) in energy norms. These formulas 
are valid for any numerical method, evaluate R in two distinct negative norms, 
and lead to rigorous a posteriori upper error bounds. Since negative norms entail 
averaging, they are appropriate to quantify the oscillatory character of R. 

We next apply these ideas to a practical scheme consisting of Co piecewise linear 
finite elements over highly graded unstructured meshes and backward finite differ- 
ences with varying time-steps. The method uses mass lumping and evaluates /3(U) 
solely at the nodes, which makes it easy to implement and solve iteratively. We 
discuss the method in ?4 and derive in ?5 two rigorous a posteriori error estimates 
for it of the form (Approaches I and II): 

(1.5) flU - UII}L(O,T;H-1(Q)) + fl/:(U) -(U)lIL2(Q) < S(uo, f, T, Q; U, h,T) 

The estimator S is computable in terms of data u0 = u(.,0),f,T,Q, computed 
solution U, meshsize h, and time step T, but entails L1 or L2 norms in time. This 
is impractical in that the entire evolution history would be needed to control E. 

We thus resort to an L' norm in time, and introduce an adaptive algorithm 
which equidistributes space discretization errors for a uniform error distribution in 
time. Such errors are estimated via local a posteriori error indicators, and further 
equidistributed via a refinement/coarsening strategy based on bisection. This yields 
compatible consecutive meshes. These issues are fully discussed in ?6. 

We conclude in ?7 with simulations illustrating the viability of our Approaches 
I and II, as well as a heuristic Approach III based on using local regularity of ( 

in (1.4) and heat estimators away from discrete interfaces. We clearly show that 
they are all able to detect the presence of interfaces, and refine accordingly, and 
that Approaches II and III perform best. There is no need to compute the interface 
explicitly for mesh design, which is a major improvement with respect to [121. 

Further simulations, comparisons of several nonlinear solvers, and a detailed de- 
scription of the adaptive algorithm will be presented elsewhere [141. Even though 
our error estimates (1.5) are rigorous, they do not necessarily imply that 
S(uo, f, T, Q; U, h, T) -> 0 as h, T -> 0, because S depends on discrete quantities 
that change with h and r. Stability and convergence are assessed in [131. 
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2. SETTING AND PARABOLIC DUALITY 

Let Q c Rd (d > 1) be a bounded convex polyhedral domain, let T > 0 be the 
final time, and set Q := Q x (0,T). Let /3 E Wl'(R) satisfy /3(s) = 0 for all 
s E (0,L) and 0 < a < /3'(s) < A for a.e. s g (0,L). Let uo indicate the initial 
enthalpy, let 0o := /3(uo) denote the initial temperature, and let Fo := {x E Q 
Oo(x) = 0} be the initial interface. They satisfy 

0o E WJ'"(Q), Fo is a Lipschitz curve. 

Therefore, uO E Wl'(Q\Fo) and uo has a jump discontinuity across Fo. Finally 
let f be sufficiently smooth. The continuous problem then reads as follows. 

Continuous problem. Find u and 0 such that 

0 E L2(0,T;Ho'(Q)), u E L'(0,T;L2(Q)) n0H1(0,T; H-1(Q)), 

0(x, t) = /3(u(x, t)) a.e. (x, t) E Q, 

u(., 0) = uo, 

and for a.e. t E (0, T) and all 71 E Ho' (Q) the following equation holds: 

(2.1) (&tu, 71) + (V0, V7r) = (f, 7). 

Hereafter, (,.) stands for either the inner product in L2 (Q) or the duality pairing 
between H-1(Q) and Hol(Q). It is to be observed that the vanishing Dirichlet 
boundary condition on 0 is assumed only for simplicity and so that the interface 
F(t) := {x E Q : 0(x, t) = 0} does not include &Q. Existence and uniqueness for 
this problem are known [81, [9]. 

To motivate the dual problem (1.4), already studied in [81, [91, [101, we subtract 
(1.3) from (1.1) and integrate by parts over Q against a smooth test function ( 

vanishing on &Q x (0, T). The error eu := u - U satisfies 

rT 

(2.2) (en, 0)Jt=T = (eu, 0Jt=0 + j(eu) Ot~ + bAZ) + R((), 

where 0 < b(x, t) < A is the discontinuous function 

b(x3 t) 
: 

u(X,t)-U(x,t) if u(x,t) 74 U(x,t), 
A otherwise. 

We could thus represent norms of e,,(, T) or their integrals over Q by making 
judicious choices of ~(, T) and &t3+ bZ?. Evaluation of 1R(() depends on regularity 
of (, which we now investigate. Given a regularization parameter a > 0 to be chosen 
later, we consider two backward parabolic problems 

(2.3) J(0) = -bl/2X in Q, +b(.,T) = 0 in Q, 

(2.4) J(q) = 0 in Q, (5, T) = p in Q, 

with operator J in nondivergence form 

(2.5) 1J(() := &t3 + (b + 5)A, 

+, 0 = 0 on &Q x (0, T), and X E L2(Q), P E Ho (Q). Existence of unique solutions 
+, E H2'1 (Q) follows directly from the theory of nonlinear strictly parabolic 
problems [9]. 
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Lemma 2.1. The following a priori bounds are valid for all 0 < t < T: 

(2.6) 211V?/(., t) L2(Q) A+6 |Ot'V'lL2 (Q), 46 11 Ab K, 22 (Q) < IIX 12 

Proof. We multiply (2.3) by /\ and integrate by parts in Q x (t, T) to obtain 

I j 
v)(.jt,j2 + j j (b? V) 1Af2 = ffb1/2x 

< XX bjAfbI2 + I X IXlx2. 
?JJQb~A~2?~JJT x2Q 

This yields the a priori bounds for Vfb and A\b. Finally, we multiply (2.3) by 
Ot+b/(b + 5) and integrate by parts in Q x (t, T) to get 

Tp TpT J X 1 10 s02 + 1 1X 
, s (. t) 12 =- x X 982 a 

T _ 2 < I 1 10 f 12 + I X IXlx2, 
because 6 > 0. This implies the a priori bounds for Ot+b, because b < A. D 

Lemma 2.2. The following a priori bounds are valid for all 0 < t < T: 

(2.7) 11,7 0(.' t) 11 2(X 
2 

110lltO11|2( , 2611/\A |12 2(Q) 
< ||VP||12(Q 

Proof. We multiply (2.4) by A/ and integrate by parts in Q x (t, T) to get 

I 
jVb(.,t)2 + jj(b + 6)IAb2= 

I 
jVp12. 

The a priori bound for AO5 thus follows from b > 0. In view of (2.4) we further have 

&0tq L2(Q) - (b + 6)A11 L2(Q) < (A + 6) || (b + a)1/2AO112 2(Q) < A+6 IIVpL12 

where we have used that b < A. This completes the proof. C 

Corollary 2.1. The following L2H2 a priori bounds are valid: 

(2.8) 2f 2 < I 
||X|12(Q) j 2w2 < IVPI2(Q) 

Proof. It suffices to invoke the well-known estimate [5], [9] for convex Q 

K/1H2(Q) < jjAr7tL2(Q) v D E Ho (Q) n H 2(Q) 

in conjunction with (2.6) and (2.7). C: 

The above dual problems will be instrumental in this paper. To see why, we 
point out that taking ( = +b in (2.2) yields an estimate for 113(u) - /(U) 1L2(Q), 

whereas taking ( = b in (2.2) gives rise to an estimate for lu - U11LO(O T;H-1(Q)); 

see ?3. We will use such an idea in ?5 and present two rigorous a posteriori error 
estimates for problem (2.1) in these natural energy norms (Approaches I and II). 

In contrast to the heat equation, problems (2.3) and (2.4) do not exhibit any 
regularizing effect; in fact as - > 0 the information on second derivatives is lost 
(e.g., if b = 0 in Q then, in the limit as - > 0, O(, t) = p( ) E Ho' (Q) for all 0 < t < 
T). Since the regularity of the dual problem dictates the weights (powers of meshsize 
and time step) of the a posteriori error estimators, this is an early indication of the 
striking difference between degenerate and strictly parabolic problems. 
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A simple calculation shows, however, that b > a, := ao/(L + ca) in the open set 

Q,J := {(x, t) E Q: IU(x, t) - 'I > L + (} 

for any or > 0. The proofs of Lemma 2.1, with splitting 21b1/2XZbI/ < bj\ 12 + IX12, 
and Lemma 2.2 yield 

(2.9) f I 12 < I II XI L2(Q) / A12< 1 |Vp||2 a, 2 (Q,2a,~ L2(Q) 

Then L2Hz2 semi norms of b and q in any compact subset Q, of Q, depend on the 
inverse of the parabolic distance between the parabolic boundaries of Q, and Q,. 
This lack of uniform regularity in L 2Hx2 prevents the construction of rigorous error 
indicators based on the heat equation away from discrete interfaces. However, in 
??5 and 6 we present an empirical estimator (Approach III), which utilizes heat 
estimators in QO, and compare its performance with Approaches I and II in ?7. 

3. ERROR REPRESENTATION FORMULAS 

The purpose of this derivation is to obtain formulas for the errors 

eA3(U) :/ 3(u) - /(U), e := u - U, 

where u is the true solution and U E L2 (Q) is any other function. We do not 
assume that U is any specific approximation of u, and so the resulting formulas are 
quite general. In particular we do not require stability of U and /3(U) in the energy 
norms L'L2 and L 2Hx) respectively. As a by-product we rederive the usual O(V/-) 
rate of convergence for a vanishing viscosity approximation U of u. 

For any function ( E C0([0,T;H-1(Q)), we denote (t(.) : (-,t) for all t E 
[0,T]. We multiply the PDE operator .J(() in (2.5) by eu,( ,t), which is in L2(Q) 
for a.e. t E (0, T), and use the property beu = eA(u) to write 

j euJ() = J (Uat + O(u)Av) - (Uat~ + /(U)AS) + a J euA4 

Let U?, UT E H-1(Q) be given, and set eo uo - U0 and eT = uT - UT. At this 
stage, both U? and UT are arbitrary, but they will later be the initial value U(., 0) 
and final value U(., T) of U, which make no sense in the present context. We then 
integrate by parts in space and time the first term on the right-hand side, employ 
(2.1), and add and subtract (U?, 0) -(UT, IT), to arrive at 

(3.1) (euj,T) - J = (eK, M) + k(z)-6 - etA, 

where R((), the parabolic residual, is the distribution 

(3.2) RYM) (U?0 M - (UT, >T) + (f + U&tI + 3(U)z) 

Together with the initial error (es, p0), R(() is a measure of the amount by which 
U misses being a solution of (2.1) and must be evaluated in negative norms. 

We show first an L 2L2 error estimate for /3(u). To this end, let b be the 
solution of the dual problem (2.3), and note that fbT = 0 and 

le lbl/2 = (eueo( ))1/2 > 1!2 
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FRom (3.1) and (3.2), we easily get 

~e/3(U) L2(Q) = fQ e/3Qu)X 12 fQ 
bl2 

X2 SL2U(QP) XbJL2 (Q) A L2 (Q) HIXHL2 (Q) 

< A1/2 Sup ||eO,|lH-1(Q)IIV/(-,O)HL2(Q) 
(3 3) XGL2(Q) 11X 1L2 (Q) 

+A A12 SU RQ (b) 
XG L2(Q) HX1L2 (Q) 

+ 6112A1/2 SUP IIeUIIL2(Q) 1161/2\'IL2(Q) 

XGL2 (Q) 1X 11L2 (Q) 

It is thus apparent from (2.6) with 6 - 0 that the representation formula (3.3) 
hinges on a negative norm of the residual R({b) involving first derivatives of 9/, 

XGL2(Q) IIVIILo(O,T;L2(Q)) 

and leads to the following a posteriori error estimates for /3(u). 

Lemma 3.1. Let 9/ be the solution of (2.3) with arbitrary X E L2(Q). Then 

lle )IL2Q)< (A)1/2(IIe?|HO Q X,1 

Proof. It remains to deal with the last term in (3.3). Since 

leu I?< L+ le3(u) 

combining (2.6) with (3.3) implies 

(3.4) (1- A 2 e1/2)lIeH ? (4 )1Q2 (UIeIH-1(Q) +4I-, + LIQ 

The assertion then follows upon taking 6 -- 0. D 

To derive an L H-1 error estimate for u, let - be the solution of the dual 
problem (2.4). Therefore, according to (3.1) and (3.2), since eu,,J() = 0 we get 

leT HH1() s u p fQe p 

< su (Q)eIIeHII-1(Q)V O)HL2(Q) 

pGH'(Q) IlVpf2L2(Q 

+ S1/2 SUP |e, l L2(Q) II/R IIIL2(Q) pGH1(Q) IIVPflL2(Q) 

pEHo (Q) || VPI IL2 (Q) 

Again, in view of (2.7) with 6 -- 0, this representation formula hinges on a negative 
norm of the residual R(q) involving first derivatives of q; that is, 

pGH1(Q) IVkIILoo(o,T;L2() 
020 

Lemma 3.2. Let q be the solution of (2.4) with an arbitrary p E Ho'(Q). Then 

IeuQ,(-T)IIH-1(Q) < ||eOU,lH-1(Q) + I-1. 
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Proof. We make use of (2.7) and argue as in Lemma 3.1 to derive from (3.5) 

(3.6) jje'flH-1(Q) ? Jje0UjH-1(Q) + K-1 + 1 61/2 1e,g(U)HL2(Q) + 1LIQ1 6112. 

The assertion then follows upon taking d -> 0. D 

Lemmas 3.1 and 3.2 lead to Approach I below, and are pessimistic in that they 
deal with the worst scenario in terms of regularity of 9/ and q, namely one space 
derivative. An alternative and fruitful avenue consists of keeping 3 > 0, thereby 
allowing H2 space regularity of Vb and q, and optimizing 3 later without sending it 
to 0; this yields Approach II below and works best. To this end, we set 

ft -2 / 
ICO := 1 

(Al/ ?:=CoaLIQ1 l/2 C:=a (A/+ 2 

where R-2 := A1/2'K2 + 4-2/V involves the following negative norms of the 
residuals R(V)) and R(q) with two space derivatives of V/ and q: 

xGL2 (Q) =1SUP LU)12 (Q) , -2 p1(Q 11L2(Q) 

We expect 60 to be small because it involves R(V)) and R(q). However this cannot 
be guaranteed a priori and is reflected in the statement of our next result. 

Lemma 3.3. Let Vb be the solution of (2.3) with an arbitrary X E L2(Q) and let 0 
be the solution of (2.4) with an arbitrary p E Ho' (Q). Then 

IleI(u)hL2(Q) + fleu(.,T)11H-1(Q) ? \CoafleUIH-1(Q) 

+ {2(CoaLlQJI/2R)I/2 if 60 < 1 
t2CoR-2 if 60 > c2 

0 

Proof. We add twice (3.3) to (3.5), and argue as with (3.4) and (3.6). Since 

________< 1 R2(fb)1 k2(j)< 1 k2(q5) 

IjX11L2(Q) - 261/2 ||AV)pL2(Q) IVPIL2(t2) - X61/2 H|A04IL2(Q) 

we readily get 

(3-7) (2- Cod /2) ep(u)|L2(Q) + 2let(*,T)HH-1(Q) ? /Coa||e?|H-1(Q), +q(6), 

where q(3) = q-6-1/2 + q+61/2 with q_ := R-2 and q+ := CoaLIQ 1/2. We now 

observe that 3 = 60 minimizes q(6). If Co61/2 < 1, then the first assertion follows 

trivially from q(6o) = 2(qq+)1/2. Otherwise, if C060 > 1, then q+ < CGoq- and 

q(1/C02) < 2Coq-. This concludes the argument. E 

If U is a finite element solution, then the last term in Lemmas 3.1-3.3 (parabolic 

residual) can be further evaluated via Galerkin orthogonality; this is accomplished 

in ?5. We stress that U need not be a discrete solution, as the following application 

of Lemma 3.3 illustrates. Let U be the solution of (2.1) with 0E(s) := :(s) + ES 

in place of 0(s); namely, U is the usual vanishing viscosity approximation of u. 

The proof below is different from the original one in [10], easily extends to other 

perturbations of : such as that in [10], and is valid under minimal regularity of 

both uo and f, which precludes compactness. 
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Corollary 3.1. The following perturbation estimate is valid for ? small: 

IIe3(u)H|L2(Q) + IleuIILo(O,T;H-1(Q)) _< CE/, 

where the constant C depends on IIUOIIH-1(Q), IQ|) T, L, a, A, and lfIlLl(O,T;H-1(Q)) 

Proof. Since R(() =-? fQ UA<, the assertion results from Lemma 3.3 upon realiz- 
ing that R]2 < aCoEIHUIIL2(Q) < C0. To derive a bound on IIUIIL2(Q) under minimal 
regularity, we consider (2.1) with !E instead of 3 and strong data U? E L2(Q) and 
f E L2(O,T;H-1(Q)). We take , = GU(.,t) E Ho'(Q), where the Green's operator 
G is the inverse of -A in Ho'(Q), and obtain 

(3.8) 2dt (GU, U) + (!E(U), U) (Gf, U). 
We then integrate (3.8) in time for 0 < t < s < T, the maximum of IIU(*,t) IIH-1(Q) 
being attained at t = s. We easily deduce that 

I IIU(. 8)112 _1(Q) + IA I ll6 (U)( t) 11 220dt 
(3.9)o 

< 211U IIH l(Q) + IlU(, S)HIH-1(Q) /1 Gf(.,t) lHH(Q)dt, 

which yields a bound for IU(., s) IH- (Q) without use of Gronwall's inequality. We 
insert this bound in (3.9), now for arbitrary s, and use that :'(s) > :'(s) > a > 0 
for s ? [0, L] and Q is bounded to arrive at the desired estimate for IIUJIL2(Q) 

for strong data. We finally observe that the mapping (UO, f) -* (U,) !E(U)) from 
H-1(Q) x L1(O,T;H-1(Q)) -* L'(0,T;H-1(Q)) x L2(Q) is Lipschitz, which is 
easily seen with the technique leading to (3.9). This allows us to regularize the 
weak data U? E H-1(Q) and f E L1(O,T;H-1(Q)) via U? e L2(Q) and f, e 
L2 (0, T; H-1 (Q)), and eventually pass to the limit in the regularization parameter 
(T. E 

4. FINITE ELEMENT DISCRETIZATION 

We now introduce the fully discrete problem, which combines continuous piece- 
wise linear finite elements in space with backward differences in time. 

We denote by Tn the time step at the n-th step and set t' : T . Let 
N be the total number of time steps, that is, tN = T. For any function ( E 
c ((tn-, tn]; H- 1(Q)), we denote ((n(.) = ((.,tn). 

We denote by Mn a uniformly regular partition of Q into simplices {3]. Mesh 
Mn is obtained from Mn-1 by refining/coarsening, and thus Mn and Mn-1 are 
compatible. Given a triangle S E MAn, hs stands for its diameter and Ps for 
its sphericity, and they satisfy hs < 2ps/sin(oas/2), where aIs is the minimum 
angle of S. Uniform regularity of the family of triangulations is equivalent to 
as > ae > 0, with oa independent of n. We also denote by 13n the collection of 
interior interelement boundaries e of Mn in Q; he stands for the size of e E L3n. 

Let Vn C Hoj(Q) indicate the usual space of piecewise linear finite elements 
over Mn. Let {xkn}IK denote the interior nodes of MTn. Let In Co(Q) -_ Vn 
be the usual Lagrange interpolation operator; namely, (Inqr)(xn) = (Xn) for all 
1 < k < K . Finally, let the discrete inner product (-,-)) be defined by 

( n,ri)n f In (pri)dx d+1 S |5 E (x(Xn)n(Xn) V p, r, eE Vn. 
SEAMT xnES 
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This corresponds to the vertex quadrature rule, which can be easily evaluated 
element by element and leads to mass lumping [3]. 

We observe the validity of the local estimates 

(4.1) llf71- n('S71)flL(s) < -hS1V(p VI711 VIV W 7, qE Vn, 

||V(P||L2(s) < 'Ps |IL2(s) V ( E v - 

Consequently, the element inner product (, S = In (p) satisfies [15] 

JL2(S) (( ( )l)l/2 = <_ <C |K||L2(S) V (p E V, 

and the discrepancy between (p, r/)s :f fs w and (p, r)n can be bounded by 

(4.2) (p, 71)s- ((p, - < Sh1VpfL2(S)1HV71L2(S) 

- p24 _1s|H|L2(S)1| V'||L2(S) V( ,iDEV. 

The discrete initial enthalpy U0 E Vo is defined at nodes xo of MA0 M1 to be 

(4.3) U0(X0) := Uo(X) V x? E Q\Fo, U0(x0) := 0 V xo E Fo. 

Hence, U0 is easy to evaluate in practice. Then we set e0 := 1/3(U0). 

Discrete problem. Given Un-1, E)n-1 E Vn-1, then MAn-1 and Tn-l are modi- 
fied as described below to get Mn and Tn and thereafter Un, O8n E Vn computed 
according to On =In(Un) and 

(4.4) 1 KUn _ -nun-I u )n + (VE)n,7V() = ITnf n, p)n V p E Vn. 

In view of the constitutive relation On = In3(Un) being enforced only at the 
nodes, and the use of mass lumping, (4.4) is easy to implement and yields a mono- 
tone operator in RRK n. This problem is solved below via an optimized nonlinear 
SOR [12]. However, these computational tricks introduce further consistency errors 
that are apparent from (3.2). Whether these devices preserve optimal accuracy is 
still to be explored. 

We introduce some more notation. The following sets will be used later: 

jn :=U{ S E Mn t: O(n(X) = 0 for some x E S} discrete free boundary, 

n = tS Mmn: Otn(x)E) n-l(x) < 0 for some x E S} transition region, 

Cn U= S E Mn: S is coarsened from Mn-l} coarsening set. 

We point out that the compatibility of Mtn and Mn-l yields InUn-l 7A Utml only 
in cnm; in fact (Vmn-n Vnt)IS n 1 except for elements S in Cn. 

Let the jump Jen of VtEn across e E Btn be 

Je:= VtVm)e -e= (VE) n - V1S2) ve 
If the unit normal vector ve to e always points from S2 to Sl, then Jen is well 
defined. For any element S E Mmn, Jn stands for the jumps of VtEn across &S\0Q. 

Let U be the piecewise constant extension of {Un } defined by U(, 0) - U?() 
and U(., t) UT() for all t- <t <tt with nr> 1. Let 

(4.5) 
U n(.t) Utm(.) -n ImUntI(.) ( tnI <nt < tn n > 1 

Tn 

and let the interior residual Rn be 
n := Infn _ U 
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5. A POSTERIORI ERROR ANALYSIS 

We now state and prove two rigorous a posteriori error estimates. Theorem 5.1 
is based on Lemmas 3.1 and 3.2, that is, on H1 regularity of the solutions Vb and 
0 of the dual problems (2.3) and (2.4), and leads to Approach I. Exploiting H2 
space regularity of Vb and q in the spirit of Lemma 3.3 yields Theorem 5.2 and the 
corresponding Approach II. The derivation below parallels, and in fact extends, 
that in ?3, but exploits Galerkin orthogonality to express negative norms of the 
residuals R(V)) and R(T ) in terms of computable quantities. 

Theorem 5.1 (Approach I). There exist constants Ci > 0, depending on the min- 
imum angle of M' and the space dimension d, and C, := A1'2/ + 1 and 
C Al 2A1 2Coa, such that the following a posteriori error estimate holds: 

|eI8(u) II L2 (Q) + ||eu( ,T)IIH-1(Q) <S'(uo,f,T,Q;U,h,T) := C*ZESi +CS4, 
i#4 

where the error indicators Si ='iI for 0 < i < 8 rare given by 

So IIUO - U0IIH-1(Q), initial error, 

I:=C1 LTn E hellJe II2(e)) , jump residual, 

0t=2E ZT( E3 h2IHRnHli2()), interior residual, 
ni=l SEMTh 

N 

ZI=,TTh||V!3( Un )-VITh/3 ( UT)H||L2 (Q), constitutive relation, 
ni=l 

S4 - (E,Tn hIeU-ll 122 ) 1/2 time residual, 
n=l e 

N 

85 = E I tInUn - l_Un ~-1lllH_l(Q) 
, coars ening, 

ni=l 

N \1/2 

S6 = C6Z Tn S hsllVR IL2(S)) , quadrature, 
n=l SGnMT 

N 

S7 Z Tn 1 - n) _ f pnnH- ) interpolation, 
n=l 

N 1tn 

88 = >3] U n pu fn2H- 2 (Q) time discretization. 

n=l t- 

All indicators Si can be evaluated explicitly in terms of the computed solution U, 
initial datum u0, and source term f. Indicators o,oS, S, S, and r i are essential, 

and are also present for the heat equation but with different weights and cumulative 
effect in time [51. The error accumulation is measured here in L1 for SI, S2, 45 and 
in L2 for 54, whereas it is in L?? for the heat equation; the latter exhibits a weaker 
dependence on T for T> 1. The powers of meshsize in qu and at are smaller than 

those for the heat equation, namely h3 and h4S, respectively, thereby reflecting the 
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degenerate nature of (1.1), or equivalently the lack of H2 space regularity of i/; and 

The remaining indicators ?3, ?q, ?7, ?% are not essential and could in principle be 

removed at the expense of complicating the implementation of (4.4). In particular, 
we note that p(Un) ^ Inp(Un) only for ScF and Qnls ^ 0, provided p is 

piecewise linear, and that ?q < C?\, as results from (4.1). 
The following theorem yields the same weights for ?\ and ?\ as the heat equation 

but yet with a worse error accumulation in time. Note that this improvement comes 

at the expense of a smaller outermost power, namely 1/4 instead of 1/2. 

Theorem 5.2 (Approach II). Let 

Ct := (A + 1/C02)1/2(2A1/2 + 1/V2), C% := y/2C0a, 

Si:= 
L\Q\^ 

and 

jump residual, 

interior residual, 

constitutive relation. 

n=l eeBn 

^??=c2(f> E ^n^iii?(s))1/2, 
n=l SeMn 

^??=(E^II/5(C/n)-/n/5(^n)ll2L2(n))1/2, 
n=l 

The following a posteriori error estimate holds: 

l|e/3(?)h'(Q) + \\eu(; r)||H-i(n) < f n(?o, /,T, 0; ?7, fc,r) := Ct ($, 
+ ? $) 

+ Ct?l + V2C?* 
10,(5? +?? + ^n) ^>^. 

i=5 

5.1. Residuals. We first express the residual 7?(C), for a generic function C ? 

H2,1{Q)i m terms of computable quantities. We notice that, since U is piecewise 
constant in time, summation by parts yields 

/ (U, dtc) = 
J2(un, c - c-1) = (uN, CN) - 

(u?, C?> 
- 

E^ 
?'? n=l rt=l 

[/ n?1 /-n?1 
.c*-1). 

Moreover, in light of (4.5), the last term can be written equivalently as 

N 

n=l 
J2(un-un-\c~1) 

= 
[ <^,o + E / <^c-1-o + E<ri|7n"1-|7n"1^"1>- 

n=l 
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Rearranging terms, the residual R(() becomes 

N tn 

7Z() = zj| ((Rn , ) -(VI I (Un),V )) 
n=1 tn1 

N tn N 

(5.1) - 3 Ut(n1 - - n - 

n=1 n~~~~~~r=1 
N tn N tn 

+ ?3 j (VIT/n(Un) _-V3(Un), V() + S y _ ( If n 

n=1 n-_~~~~~~~~~i1 

We next rewrite the discrete problem (4.4) as follows: 

(RnI(p) - (VIT/n(Un)V,(p) = (RnT(p) - (Rn o)n VT C VeVThn 

and subtract this expression from the right hand side of the residual R(() given by 
(5.1). This crucial step is usually referred to as Galerkin orthogonality. We finally 
decompose the integral (V0hn, V(( - W)) over all elements S e Mn and integrate 
by parts to obtain the equivalent expression 

-(VIT3(UTh), V(~- (p)) Z _ ((J_, -(p))e V( P e Vn 
e E3n 

where KK, ))e denotes the L2-scalar product on e e En. Thus we easily arrive at 

N tn N tn 

Th(() e E L3 (j (P -))e + E j (Rn, ( - 

N tn N tn 

+ j (VITh/3(Un) _-,V(Un),V) - ,j (,Ut( -1 

N N tn 

-EZInun-l - un-1,Qn-1) + E?> (KRn,p) -(RRIP)n) 
n=1 n=1 

N tn 

+ Znjf-If,)=:I + -+ VI. 
n=1 

Since we need to approximate ( under minimal regularity assumptions, we re- 
sort to the Clement interpolation operator Hn: L2(Q) __ Vn, which' satisfies the 
following local approximation properties [4], for all q, c Hk(Q) and k = 1, 2: 

(5.2) ll71-IH 711L2(S) + hsjjV(1 -In H,)|IL2(S) ? ChkS|1|Hk(?)1 

-l HI 7|L2(e) ? Che /1Hk(S), 

where S is the union of all elements surrounding S E Mn or e e L3n. The constants 
C depend solely on the minimum angle of the mesh Mn. An important by-product 
of uniform mesh regularity is that the number of simplices adjacent to a given 
element is bounded by a constant M independent of n, meshsizes, and time steps. 
Hence 

(5.3) S II1IIL2(S) ? Mfl?JIIL2(Q) V 71 c L2(Q). 
SGMtn 
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This, in conjunction with (5.2) for k = 1, yields 

(5.4) |VH71||L2 (Q) ? (1 + CM112)||Vr1|L2 () V 7? E Ho (Q). 

We now estimate each term I to VII separately to derive Theorems 5.1 and 5.2. 
We argue with - +b, solution of (2.3) with X E L2 (Q). Similar estimates are valid 
for ( = 0, solution of (2.4) with p c Ho (Q). We make extensive use of the a priori 
estimates of Lemma 2.1 (and Lemma 2.2). 

Selecting p(.,t) = H7U/j(.,t) for t- 1 < t < t' and using (2.6), (5.2), and (5.3), 
we can bound terms I and II as follows: 

III < CI E 1 eE helJIL2(e)) 1IIXIIL2(Q)) 

nI SE 

Moreover, (2.6) also yields 

N tn 

IIII < E IIV/3(UT) - VIln(Un)IIL2(Q)IIV7(.,t)IIL2(Q) < 1 

I- tn-_7=9IIIL 
() 

The estimators El, S, and ?3 are those defined in Theorem 5.1; the constants Ci 
and C2 depend upon C in (5.2) and M in (5.3). Alternatively, if 8II,"I, and gEI 

are the estimators in Theorem 5.2, in light of (2.8) we can also write 

N tn 1/2 

III N t he lRI L (S)) t)IH2 () (Q) 

and, upon integration by parts, 

N tn 

III < Z, 1113(Un) _ Inf(Un) )IL2(Q)tIA/(.,t)IIL2(Q) < _86-3/2XIIL2 
n=1 tn- I 

With the aid of (2.6) and the fact that /)- 6)-1 = - 06, we readily obtain 

N (Z nIu _ Inun lll2(Q)) 1/2( T f&I2 1/2 
n=I 

< (A + 3)1/2S4IIX11L2(Q). 

Using (2.6) again, now combined with (4.2) and (5.4), we easily deduce that 

N 0n 12 

|VII < ? 0 S ( 3 /4VRn 11222(S)) IIV b(, t)IIL2(Q) < E6IJXI1L2(Q)) 

n=ltm L 72 
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where 06 depends on C and M. The remaining bounds follow directly from (2.6): 
N 

lVI < E I_unn-1 - un-1 IIH-1(Q)11Vn 1fL2(Q) < 7 S511XIIL2(Q), 

n=1 

N tn 

I I EJ ~lif _Infn |I-( )II i Vt) IL2 (Q) 
< 1 ( E)11 

Collecting all the previous estimates, we get the following bound for R(4'): 
8 1(Si+S 

(5.5) IRNO)I < Si + (A + d)1/2s4 + v ?1 ?2 S) 

IIXIIL2(Q) v- 612(I I 

Similarly, using (2.7) we obtain 

(56) 2(R)I < E ?i + 1 (A + 6)'12S4 + 2 3 
+ 

(56) IVP1IL2(Q_ 
v/2 -112 (s"?s1 i) 

5.2. Proofs of Theorems 5.1 and 5.2. Upon adding A1/2 times (5.5) to (5.6) 
and taking 3 -* 0, Theorem 5.1 is an easy consequence of (3.3) and (3.5). 

In order to prove Theorem 5.2 we proceed as in Lemma 3.3. We take 3 < I/CC2 

and resort to (3.7), which in the present context becomes 
8 

(5.7) IIeO(U)IIL2(Q) + IIeZu(,T)IIH-1(Q) ? c< s0?+ s2) +CtS4+ XC?q(3,T) 
i=5 

with 

q(6, T) := q_ (T)-1/2 + q+ (T 

(T: 1I I 2 63 q+(T) := LIQ 

We then realize that 3 = 61 optimizes q(6, T), and argue as in Lemma 3.3. 
To derive the L (0, T; H-1(Q)) error bound of (1.5) we finally allow T to be 

arbitrary and note that Si (T), as well as q_ (T) and q+ (T), are nondecreasing in T. 
We thus obtain (1.5) with S(uo, f, T, Q; U, h, r) = 2SI or alternatively 2EII. 

5.3. Approach III. The local treatment of terms 1, 11, and III above, in conjunc- 
tion with (2.9), suggests removing the factor 6-1/2 away from discrete interfaces. 
This idea, heuristic in the sense that Lt Hx regularity of +b and X is not nrecessarily 
uniform, yields a method somewhat in between Approaches I and II. We set the 
estimators 8III, 82II, 8 II equal to those of Approach I near discrete interfaces and 
equal to those of Approach II (heat estimators), but with factor D/C* instead of 
1, away from discrete interfaces, where D := a1/2Co, and obtain 

Ile13(u) ||L2(Q) + || eu(*,T)||H-1(Q) < III(uo, f, T, Q; U, h, T) 
8 

C* (?0 + E 
5 

i) + CO?E4 + C* (8III + S2II + ? I) 

i=5 

To this end, we add A1l2 times (5.5) to (5.6), let 6 -* 0, replace I 1D2L2(QO) by 
JJA(JfL2(QO) for b = 4, X and use (2.9), and ultimately pretend that the lower bound 
of b is a instead of ao = 0. If 4' and X were computable, we could keep these Hx 
norms and evaluate them locally, in which case they could be viewed as weights. 
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6. ADAPTIVE ALGORITHM 

The error estimators E(uo, f, T, Q; U, h, T) of ?5 entail an L' or L2norm in time, 
which is impractical in that the entire evolution history would be needed to control 
E. We resort here to an L? norm in time, and explain our error equidistribu- 
tion strategy, which is based upon minimizing the spatial degrees of freedom for 
a uniform error distribution in time. A similar strategy is derived in [1] for a lin- 
ear elliptic problem. We then fully discuss element error indicators, and all tests 
necessary for mesh and time step admissibility. 

6.1. Mesh design. Let M(t) be a time-dependent mesh with variable meshsize 
h(x, t) and let T(t) be the underlying variable time-step. Since hdr is proportional 
to the volume of a generic space-time finite element, then the computational com- 
plexity of (4.4) can be accounted for by the total number of degrees of freedom 

(6.1) M := j h(x, t)-dT(t)-l(x, t) dxdt = jT (t)-1M(t) dt, 

where 0 < a_ < u(x, t) < a+ is a local measure of element shape regularity and 

(6.2) M(t) :=j h(x, t)-da(X, t) dx 

stands for the cardinality of M(t). Let S be a generic a priori error of the form 

(6.3) 6= F(t)dt= j (h(x, t)L1 + T(t)O)E(x, t) dxdt. 

Given an error tolerance ?, we then pose the following question: optimize h and - 

for an error distribution 

(6.4) S=c. 

We have to minimize (6.1) subject to the constraint (6.4). This constrained 
optimization problem is equivalent to seeking a saddle point of the functional 

L(h, T, A) := h-dT-l o-.A(- (ha' +,T)E), 

with Lagrange multiplier A. Differentiation with respect to h and T yields 

0= j ?tht(h, TA)= 1 j(-*dh- d?)T1 ?Aahe-E)(, 

r r~~~Tr 
0= j , T (h,T,A)= I 1 (-h-dT-2 + A3T-E) 

where ( = ((x, t) and 71 = 71(t) are smooth functions. Hence 

d d TfE_1 
(6.5) hoE = T -dr-la TO E = 1-TM(t). 

Aa A 

These relations, in conjunction with (6.1) and (6.3), yield 

dl h-dA-l j d-?M(ta = M* 

We thus deduce the following expression for the Lagrange multiplier: 

d/+a M* A= 
a/ c 
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We conclude from (6.5) that the optimization procedure consists of equidistributing 
the local space-time errors according to the recipes 

(6.6) M*9Jlh d?a E = df M* + E= E 

a? + d3 ' M(t) JQ a + d 

A serious difficulty of (6.6) is that M* is never available for all times so as to make 
the optimization feasible. 

A different and more stringent objective would be to equidistribute pointwise 
discretization errors in (6.3). This leads to the local requirements 

(6.7) TlQlhaE= 'E, T7- jE= 2, 

which corresponds to having a constant integrand in (6.3), and yields (6.4). This 
method does not require M*, and can thus be implemented. If we further require 
T = T/N to be constant, we end up with the method chosen in [11] for a priori 
mesh design. 

Upon combining (6.6) and (6.7), we get a third strategy that can still be imple- 
mented: we optimize the spatial degrees of freedom for a uniform error distribution 
?(t) in time. Minimizing (6.2) for each 0 < t < T, subject to the constraints 

(6.8) TJ h(x, t) 'E(x, t) dx = 2,E Tr(t)$ J E(x, t) dx = 2 E, 
Q~~~~~~~ 2 

results in the following restrictions on h and T, which are intermediate between 

(6.6) and (6.7): 

(6.9) TM(t)u(x, t)-lh(x, t)d+?'E(x, t) = 'E, TT(t)O j E(x, t) dx = 
1 

E 

We adopt such a viewpoint here, and discuss its implementation next. Note first 
that E would depend on the discrete solution, and so implicitly on h and T, if S in 
(6.3) were an a posteriori error estimator. So the above analysis is a priori. 

6.2. Equidistribution strategy. The equidistribution strategy (ES) is an itera- 
tive procedure that in the kth step improves upon a mesh density hk(x, t) by means 
of the following two opposite operations, based on the first constraint in (6.9). Let 
o < A < 1 be a refinement factor, and take Mk = fQ h% -d from (6.2) with h = hk. 

(a) Refinement. Set hk+1 = Ahk for all elements satisfying 

(6.10) Pk := 2TMkJ'lhd+ E > E. 

(b) Coarsening. Set hk+1 = A-lhk for all elements verifying 

(6.11) Pk < 2d+a? 

In practice, more elements will be refined and fewer will be coarsened, to preserve 
mesh conformity. In fact, every local mesh modification involves also adjacent 
elements. Since 

f hd < A-d f -d( = A -dM Mk?1 ~,k?1 - A] kJAMk 

we see that Pk+1 < A'Pk for refined elements whereas Pk+1 < -2d-pk < E for 
coarsened elements. We conclude that coarsened elements will not be candidates 
for refinement in the (k + 1)th step, because Pk+1 < E and so test (a) fails, and that 

Pk+1 < min (,l APk) - 
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The latter guarantees convergence of ES in a finite number of steps. 

6.3. Element indicators. We now introduce error indicators of the form (6.8) 
with density E(x, t) computable element by element and denoted by En(S) for 
S E MAh and t = tn. We first replace the global norm H-1(Q) in 80,85,87,88 by 
the L2(Q) norm scaled with the smallest diameter dQ of Q, which is the Poincare 
constant. We next show how to determine computable global indicators Eo (initial 
error), ET,1, ET,2 (temporal errors) and EhJ, Ekh2 (spatial errors) satisfying 

?o < Eo, 

(6.12) 84 < ET,l, 88 ? ET,2, 

85?8 ?6?8 ?7?< Eh,1, 8?8?8k +'k +k < E k2, 

where k = 1, 11 stands for the approach. Each of these errors Ep is obtained from 
element indicators Epn(S) via 

Ep maxN ( E (S)) 
S<n<N 

where the max is superfluous for p = 0. The element indicators are given by 

Eo(S) d S2uIS-IUO _ l (s)0 local initial error, 

EnI(S) TIWUn _ InUn-1112(S) local time residual, 

En (S) QT2dw ff - f L(tn-h1tn;L2(S))1 local time discretization, 

E?n (S) 3T2 (d2 T-21InUn-1 _ Un-111(2 local coarsening 

+ C62h VR 112 (S) local quadrature 

+ d2lfn -Inf InIf 2(S)) local interpolation, 

E (S) : 3T2 (IC2hsIIJsn 12(1s) local jump residual I 

+ C22hsllRlL2(s) local interior residual I 

+ IIV,3(Un) - VIJn(Un)II22(s)), local constitutive relation I, 

Eh In(S) := 3T(ICl2h3 IJsn II2(Os) local jump residual II 

+ C22h 4 R n 2(s) local interior residual II 

+ 1/3(Un) _ In/(Un) 122(S))) local constitutive relation II. 

Since uo E W1' (Q\Fo), interpolation gives fluo- UIILLo(S) < ChsIIVUoILOO(S) = 
O(hs) away from Fo. If S intersects Fo, instead, then uo has a jump of size L , which 

yields IIuO - U0 WIL(S) = 0(L). In both instances, the ensuing orders match that of 

the local jump residual I, which indicates that M0 will not be drastically modified. 

If in addition uo E W2'??(Q\Fo), then IUo-U?IIL?O(S) < Ch 2 ID2UOHILOO(S) = O(h2) 
away from Fo, which yields the order O(h4s+d) of the local jump residual II. 
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According to ?5.3, we introduce the local indicators for heuristic Approach III, 
which is based on combining Es(S) and El("). With D - we set 

h",S)2 fEbS ifSc'ith EIII ~~~ nn h2 if S cfn, 
Eh2 ( ) * l Dc2 E Iv(S) if S s/L T. 

A simple but tedious calculation shows that (6.12) is fulfilled, and the following 
inequality is valid for Approaches k = I and III (heuristic for Approach III): 

(6.13) sk(uo f, T, Q; U, h, T) < Ek := C*(Eo + ET,2 ? Eh, k ? Eh,2) ? C"ET,l. 

On the other hand, if 6 < 1/CO2 and q(6) := El'_6-1/2 +LT'/2JQJ1/21/2) then (5.7) 
and (6.12) lead to 

6 (uo, f, T, Q; U, h,T) 

(6.14) _< El' Ct(Eo + ET,2 + Eh,1) + CtE,r1 + +Cqq(6) 

6.4. Adaptive strategy. Given an error tolerance ?, the objective is to adaptively 
select time steps T and mesh densities h so that the spatial degrees of freedom are 
optimized for a uniform error distribution in time and 

(6.15) Ek(Uo, f, T, Q; U, h,Tr) < E. 

To this end we equidistribute the local estimators of ?6.3 according to (6.9) via ES, 
and use bisection to perform refinement/coarsening operations (6.10) and (6.11). 
Bisection creates compatible consecutive meshes, extends naturally from 2D to 3D, 
and is handy for combined refinement/coarsening operations; we refer to [2]. 

Given refinement parameters F > 0 and coarsening parameters -y > 0 satisfying 

FO?+Fr+h?1, 'YT<rT, < Yh<Fh, 

the time steps and mesh densities for Approaches k = I and III are reduced until 

C*Eo < Fo E, 

(6.16) < CoEF,1, C*Er,2 < 1r E, 

7Yh& < C*Eh,l,CC*E2 < 
h 1h2 

In fact, from (6.13) we readily obtain (6.15). Achieving (6.15) for Approach II is 
more problematic in that the optimal choice of 6 in (6.14) turns out to be 

62 hl,2 
L2= Tl/21QI1/21 

which is not a computable quantity as it involves a maximum over all time steps. 
To overcome this difficulty we restrict the meshsize and time step as follows: 

CtEo < o0E, 

27YT&< Ct Er,t,lCt'Er,2 -2 TE., 

(6.17) 2YhE < CtFEh,1 < 1Fh&, 

1GYh& < C2aEl2 < 4GFrh, 

with 

G mn (i 4aLTi/2IQV1/2) 
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We claim this yields (6.15). In fact, if G < 1 then 

El' G2 1 
6 = h,2 < __ 

h 
__ 

G < _ 

2tT1/21QI1/2 -16Cl2a2L2T Q o 

whence 

+Ctq(62) = 2CoaL1/2T /4lQl1/4(E112)1/2 h 

On the other hand, if G = 1, then with 6 = 1/CO2 in (6.14) we deduce that 

$ Ctq() = C02aE12 + aLT1/21Q1/2 < 1Fh ? ? 17 ? = r 

We now describe an algorithm based on (6.16) for Approach I (and III). The 
implementation of Approach II is similar, but based on (6.17) instead. Let Mn 
denote the cardinality of Mnh at any step of ES. 

6.4.1. Initial mesh. Given a coarse mesh, ES bisects all S E M? such that 

C*2Eo (S) > M? 
E 

as suggested by (6.10) without T. We interpolate uo by means of (4.3) to find U0 
(and 90) and estimate Eo(S) as Eo(S) h2SISHVU01l2oo(S) 

6.4.2. Time step selection. Starting with Tn = Tn-i, the algorithm checks whether 

ETn:=4max (C2 E En(S),C*2 E E n2() > ]rT2 _2) ETn < -y?2 E2 

SC-Mn S C-Mn 

In the first case Tn is reduced, whereas in the second one (corresponding to Tn being 
too small) Tn is accepted but the initial guess for the next time step size is enlarged. 

6.4.3. Mesh size selection. Starting from Mn = Mn-, ES checks whether 

EhI, (S) := 4C2 max (Eh n1(S), El n2(S)) > ]h E Ivn (S) < a-h 

as suggested by (6.10) and (6.11). Then refinement and coarsening operations are 
performed accordingly, with the precaution of choosing ah < h properly to prevent 
ES from alternating such operations over the same elements. 

6.4.4. Flow chart. We summarize Approach I in the following flow diagram: 
start with M1 = M, T1, U0 
for n > 1, while tn-1 < T 

(1) set tn = tn-1 +?Tn 

solve for U" , En 

compute error estimators E n and EI'n(S) for S E& n 

if En > 72 , reduce TTn and goto (1) 
(2) for every S E M n 

if Eh'n(S) > ph2E2/Mn, refine S 
if Ehjn(S) < _yE2/Mn, coarsen S if possible 

if the mesh was changed 
solve again for Un , En 
compute error estimators 
if ETn >FrT2?2, reduce TT and goto (1) 
if Ej,n > F&2, goto (2) 

accept Un, en and Mn, Tn 
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set Mn+l = Mn4 Tnn+T = n 
if Ern <_y2E2, enlarge Tn+l 

After each iteration of ES, both Un and EO are recalculated on the new mesh using 
the new time step size. To minimize the overall computational cost, a compromise 
is reached between the minimization of the number of mesh elements (degrees of 
freedom) and iterations of ES. ES stops iterating as soon as 

EI7 := E (S) < _2 2 

is fulfilled, thereby allowing some elements to violate the local error tolerance. 
Consequently, discretization errors might not be equidistributed. As implemented, 
and shown in the flow diagram, at least one mesh modification per time step is 
performed in order to permit elements near the moving interface to be refined, 
even if the global error bound is already fulfilled by the old mesh. 

6.5. Convergence. We elaborate here on convergence of the algorithm of ?6.4; a 
more comprehensive study is given elsewhere [13]. For all 1 < n < N, we assume 
the following discrete a priori estimates, which are slightly stronger than the natural 
bounds: 

lve3f|IL2(Q) = 0(1), }n\zn| = o(1 

nu n - InUn-l2 (2) + T-1lfen - InEn-1 1L2(Q) + Z hsIJS 2(as) =o() 
SCQ\Jmn 

where Zn := U cS Mn = O} is the numerical mush. We now examine a few 
relevant terms, using the hyperbolic and parabolic relations: 

(6.18) r:= max 2 <OnH, rx <= ma Cp H SCTCThr T,2 -SCQ\Tf Tn- 

We consider first the jump residual, for which it suffices to estimate the contribution 
of F,,\ Zn, namely 

E3 heJenIL2(,) ? CV |L2(-n\Zn) o(1). 
eCJZn\Zn 

The same calculation applies to the constitutive relation. For the interior resid- 
ual, we decompose the integral over Tn and the complement, where we use Un - 

In un-1 = emn _ In en-1 , to deduce that 

h2 s nU _ ITUn - I2 
S EA4n Tn 

< rnflU -n InUn 1l12 (Q) ? P n?n - InOn-1112 (1) 

Finally, IUn - InUn-1 IL2(Q) = o(1) also controls the time residual. This demon- 
strates that the a posteriori estimators of ?6.4 tend to 0 as both meshsize and 
time-step approach 0. Therefore the goal (6.15) is achievable. On the other hand, 
(6.18) reflects the hyperbolic structure of the interface as well as the parabolic 
structure of the problem elsewhere. We refer to [11] for a similar observation. 
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7. SIMULATIONS 

We present results of the adaptive method for the model problem from [12] with 
known exact solution 

(7.1) u(x,y, t) O656r <6' 
11 + (1l5 a/(t) Yt))(r- ) if r > 16' 

where r := ((x - _)2 + (y _ a(t))2)/2 . The interface is a circle of constant radius 
r 1 centered at (3, a(t)) with a(t) := 0.5 + 0.1 sin(12.5t), and thus oscillates in 63 
the vertical direction with highly varying normal velocity. Initial datum, boundary 
values, and heat source f are directly computed from (7.1). The domain is Q 
(0.1,0.7) x (0.2,0.8), and the final time is T = 1. 

Note that f is discontinuous across the true interface. Therefore a simple minded 
use of Inf leads to large errors which dominate the local indicators. However a dis- 
continuous f is not realistic in practice, being just the cost of having a simple exact 
solution. To examine the essense of the proposed methodology, a special quadrature 
is used for those triangles crossed by the exact free boundary: their intersection is 
determined first and then separate quadrature used in the resulting quadrilateral 
and triangle. The nonhomogeneous Dirichlet boundary condition is handled in the 
standard fashion since the interface does not touch the fixed boundary. 

Several simulations were carried out with error tolerances ? = 20, 14,10, 7, 5. 
The following parameters were used for partitioning the total error into initial, 
temporal, and spatial components: 

1O = F, = 0.2, Fh = 0.6, -yT = 0.155, Yh = 0.2683 (I), 0.1897 (II, III). 

Since the expected local coarsening error is proportional to the power of meshsize, 
and such a power is smaller for Approach I than for II and III, more coarsening 
(larger aYh) is allowed for Approach I. The results are summarized in Figures 7.1 to 
7.4. 

Figure 7.1 shows the meshes at time t = 0.3 produced by Approaches I with 
E = 14 (10), and II and III with E = 10 (7). Meshes from left to right correspond to 
Approaches 1, 11, and III. The true errors for all three pictures on top and bottom 
are similar. Approach I leads to more triangles than II and III because of the lower 
power of meshsize in the estimators. Approaches II and III are comparable. 

Figure 7.2 shows three meshes generated by Approach II for quite different in- 
terface velocities. In the left and middle pictures the velocity is highest, and the 
interface is moving upwards (t = 0.5) and downwards (t = 0.765) as reflected in 
the isotherms (the interface is enhanced with a bold line). The rightmost picture 
corresponds to vanishing velocity and so to circular isotherms (t = 0.876). Higher 
interface velocities lead to higher refinement near the free boundary, because veloc- 
ity is proportional to the temperature gradient jump. Higher velocities yield also 
larger temperature gradients in the liquid phase and corresponding additional mesh 
refinement. The triangle counts are 1670, 1734, and 1366, respectively. 

Figure 7.3 illustrates the effect of aYh for Approach I with the interface moving 
downwards. The ratio 1h/-Yh cannot be close to 1 nor too small. The former situ- 
ation leads to mesh oscillations due to repeated coarsening/refinement operations 
over the same elements. A small ratio instead leads to meshes with unnecessary 
triangles, which thereby reflect the evolution history. This is an undesirable event. 
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In Figure 7.4 we provide a quantitative comparison: a plot of the total element 
count (added over all time steps), which is proportional to the total amount of 
work, as a function of the true error. Approach II performs slightly better in the 
range tested. 

_ Z N 7 ~~~~/ t ?D. \[ED Zr\ 
VAb? D v u XiXiD,222g '2 f 

FIUR 73 Efet ofcasenn for A .poc I an SE = 10, 

Yh /Fh = N\/0 2 (v/0 . 1) . 

Sum_NT 

le+06 - A.I 

2 A III 

le+05 - X 

5- 

2- 

le+04 - 

Error 
5 le-02 2 

FIGURE 7.4. Total element count vs true error for Approaches I, 
II, and III. 
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