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ERROR ESTIMATES IN L2, H1 AND L?? 
IN COVOLUME METHODS 

FOR ELLIPTIC AND PARABOLIC PROBLEMS: 
A UNIFIED APPROACH 

SO-HSIANG CHOU AND QIAN LI 

ABSTRACT. In this paper we consider covolume or finite volume element meth- 
ods for variable coefficient elliptic and parabolic problems on convex smooth 
domains in the plane. We introduce a general approach for connecting these 
methods with finite element method analysis. This unified approach is used 
to prove known convergence results in the H1, L2 norms and new results in 
the max-norm. For the elliptic problems we demonstrate that the error u - Uh 

between the exact solution u and the approximate solution Uh in the maximum 
norm is O(h21 n hl) in the linear element case. Furthermore, the maximum 
norm error in the gradient is shown to be of first order. Similar results hold 
for the parabolic problems. 

1. INTRODUCTION 

Let Q be a convex domain in R2 with smooth boundary OQ and consider the 
general self-adjoint second order elliptic problem 

2 a au 
(1.1) Lu : (ai ) + qu f, x Q, 

X,2 

(1.2) u - 0, x C &Q, 

where q C L? is nonnegative, f C L2(Q), and the matrix of coefficients A 

(aij), ai3 a)i C WV1,'(Q) is uniformly elliptic; i.e., there exists a positive constant 
r > 0 such that 

2 

(1.3) E aij(x)(idj > r((?2 + 42) V = (41 2) C R2 a.e. in Q. 

The natural variational problem associated with (1.1)-(1.2) is to find u C U 

H-o(Q) such that 
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P 2 

Q~~~~~~~~~~ 

P 

FIGURE 1. Primal and dual partitions of a convex domain 

where 

p 1.~~2 a2 a 

(1.5) a(u, v) ]=t(Zaii a) a + quv)dx, 

(1.6) (f,v) j t fvdx. 

Q~~~~~Q 

Since the error estimates to be derived below require that the exact solution u be in 
H2 (Q) for the H1 norm case and be in H3 (Q) for the max-normn and L2 norml cases, 
it is necessary to have the smooth boundary assumption on the problem domain. 
If instead we were to consider a polygonal problem domain, all interior angles of 
the domain would have to be no greater than 2l5even if f C C??, rendering the L2 
and max-norm estimates so obtained too limited to be useful. 

Referring to Figure 1, let 7, = UKQ be a triangulation of the polygonal domain 
Q,, C Q into a union of triangular elements, where KQ stands for the triangle whose 
barycenter is Q. Here h :=max hf( is the maximum of the diameters hK over all 
triangles. The nodes of a triangular element are its vertices. We further require 
that thle vertices whichl lie on aQh also lie on a0, SO that there exists a constanlt C 
independent of h satisfying 

(1.7) dist(x,&0) ? Oh2 Vx C Q\Q,z. 

Associated with the primal partition 7i,, we define its dual partition Ih* of Q,z as 
follows. Let PO be an interior node and F2, i =1,... , 6 be its adjacent nodes, and 

'l =M0i be the midpoint of PoPi. Connect successively the points Ml,1, Qi, 
Q2... , A/G, Q6,) Al1I to obtain the dual polygonal element K7fp. Its nodes are defined 
to be Q2, i =1,.. , 6. The dual element Kp9 based at a typical boundary node P2 
is A1I12Q 1M\2Q2M/23P2. Let Qh. denote the set of all nodes of h7; Qh := QhQ the 
set of all interior nodes in Th, and SQ and S denote the areas of triangle KQ and 
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polygon K* , respectively. Throughout this paper we shall assume the partitions 
to be quasi-uniform. There exist two positive constants Cl, C2 independent of h 
such that 

(1.8) C1h2 < SQ < C2h2, Q e Qh, 

(1.9) Clh2 < S < C2h2, Po C Qh 

Corresponding to El, we define the trial function space Uh C Ho' (Q) as the space 
of continuous functions on the closure of Q which vanish outside Qh and are linear 
on each triangle KQ C Tb,. Let Hh: U -- Uh be the usual linear interpolator, and 
thus if u C W2,p(Q), 

(1.10) U-HLh.rn,p ? Ch2-t7nu12,p, m 0,1, 1 < p < oo 

where I - 1m,p is the usual seminorm of the Sobolev space W"P] (Q). This inequality 
can be obtained from its "polygonal" version using standard analysis [23] in the 
"skin layer" with the help of (1.7). Throughout the paper C will denote a generic 
constant independent of h and can have different values in different places. We use 
1 1 - ln and I - 1n, for the norm l l,,p and the seminorm of WmP(Q), respectively, 
when p = 2. 

The test function space VI, C L2 (Q) associated with the dual partition 77* is 
defined as the set of all piecewise constants. More specifically, let XPO be the 
characteristic function of the set K* we have for Vh C Vh 

(1.11) 3V/ = E Vh,(PO),XPo. 

Po C , 

Note that a test function is identically zero outside QI,. Define the transfer operator 
Hh: Uh -- VI connecting the trial and test spaces as 

(1.12) HW := E Wh(PO)XP,o 
Po C , 

and hence 

(1.13) llw - TI*wllo < Chlwll. 

The approximate problem we consider is to find Uh C Ul, such that 

(1.14) a* (Uh, Vh) (f, vh) VVh C Vh, 

where 

(1.15) ~~a*(Uh, Vh) := EvI, (Po)a*(Uh,vXPO )v 
Po EQ0 

and 

(1.16) aa*(U1h,XPo) - (AVuh) . nds + J quhdx, 

where n is an outward unit normal to OK* and a*(., *) is bilinear by construction. 
Using the facts nlds = dx2 and '12ds =-dxl yields 

a* (Uh, XPO) - tn.ds+I qUhdx 

(1.17) __KPO PO 
= fJ~0 wIJh)dx2 + w 2)d l+J qUhdx, 

KPO KPO KPO 
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where nr is the i-th component of the outward unit normal to OK* and 

(1) 6iuh 6iuh (1.18) Wh .-all 2+ al 
Ox, OX2 

(2) 6iUh 6iUh 
(1.19) Wh a21 + a22 

Ox, &X2 

Let us relate our work to the existing literature. The basic idea of the finite 
volume method for general elliptic problems is to use the divergence theorem on 
the elliptic operator L of (1.1) to convert the double integral into a boundary 
integral as in (1.17). If one discretizes the boundary integral in (1.17) using finite 
differences, one gets the so-called finite volume difference methods [1, 22] or the 
generalized difference methods [15, 16, 17]. On the other hand if one uses finite 
element spaces in the discretization, one gets the so-called finite volume element 
methods [3, 4]. In both cases two grids dual to each other are used. More recently, 
Nicolaides [18] generalized the usual operators in vector analysis such as Div, Grad, 
and the Laplacian to Delaunay-Voronoi meshes. This class of methods is now 
termed the covolume method and has been successfully extended to practical fluid 
problems [13, 14, 19, 21]. See [20] for a survey of the covolume method. Porsching 
[25] initiated the so-called network method, which has also been extended to the 
Stokes problem [6, 12, 11] with rigorous analysis and to two fluid flow problems 
[24, 5]. In the network method the emphasis is to conserve mass or energy over 
control volumes. The meshes chosen do not have to be of the Delaunay-Voronoi 
type. In this paper we take barycenters in favor of circumcenters (the Delaunay- 
Voronoi mesh system uses circumcenters), since the maximum norm estimation 
is less amenable in the latter case. We shall refer to any finite volume method 
utilizing two grids as a covolume method since the last two methods mentioned 
above are now subsumed under the name the covolume method [20]. In all the 
covolume methods cited so far none has addressed maximum norm estimates for 
general elliptic or parabolic problems, which are crucial to studying their nonlinear 
counterpart where the coefficient matrix A becomes dependent on the solution. 
(However, some computational results in a discrete L? norm were reported in [13, 
p. 160].) The approximation problem (1.14) has been considered by [16, 17] where 
convergence results in the H1 and L2 norms were demonstrated. However, we shall 
prove these results in a unified way. The main purpose of this paper is to provide 
convergence results in the maximum norm for (1.14) and for an accompanying 
approximate parabolic problem. 

We now outline a central idea used in this paper to show convergence in L2, H1, 
and maximum norms. The idea, we think, is general enough to be useful for nu- 
merical analysts working in covolume methods. Our style of presenting it will 
follow that of the classical paper [23] on maxi-norm estimates in the finite element 
method. The central idea of analyzing the convergence of covolume methods is to 
reformulate (1.14) to find Uh C Uh such that 

a*(uh,1 17,T,) (f, HhT,t) VTh C Uh, 

which is a standard Galerkin method. With this association we can then tap into 
standard finite element analysis. A covolume method based on linear elements, if 
done properly, usually results in a system that is very close to the classical piecewise 
linear Galerkin method (more about this later). Comparison of the two systems 
then often leads to fruitful analysis. (This and similar ideas have been successfully 
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exploited in [6, 12, 11, 8, 9, 10].) Now if one strives to carry out this program, one 
is very naturally led into considering the quantity (d for "deviation") 

(1.20) d(v- Vh,Th) := a(v- Vh,Th) - a*(v- Vh,TIhTh), 

where v is a "general" function, Vh C U,, Th C Uh. The basic observation is that 
(see (2.11)) 

(1.21) d(v- Vh,Th) = E1 +F2 +F3 + E4 +E5, 

where the E. can be given various bounds that contain extra or "free" powers of h; 
something unexpected at first glance (at the E.). Thus, for example, the bounds 
on various E. take the following forms: 

(B.E1) CAh|v- VhlllH1ThHll, 

(B.E2) CAh[ v- Vh|l + h1/2Hv-Vhl i1Hvl i/2] Thlll. 

Here CA depends on JIVAII0,; it is 0 if the coefficient matrix A is constant. 

(B.E3) C2h21HVHI3,pHIThHlLP/, - + 
I 

= 1, 
p p'I 

(B.E4) CAh[v Iv- Vhjl + h1'2Hv-Vhl 1/Vl 2"'1HThlll, 

(B.E5) Cqh||v- Vh||O|Thl1l 

Here Cq = 0 if the function q- 0. 

Remark 1.1. See (2.12)-(2.26) for the derivation of these bounds. 

To give a feel for the usefulness of this observation, let us take the case of 

v-0, A constant, q _ 0. 

Then 

d(uh,Th) = 0! 

Thus the covolume approximation is given by 

a(uh,Th) - (f,I7ITh) VTh C Uh, 

whereas, for the ordinary Galerkin solution, Uth, 

a(iilh,Th) = (f,Th) VTh C Uh- 

Hence it is obvious that the covolumne approximation can be viewd as a Galerkin 
method with a variational crime. In the general case, 

a(uh, Th) + d(Uh, Th) = (f, HhTh) 

with similar interpretation as two variational crimes. This view is very useful when 
dealing with the generalized Stokes problem (see [6, 12, 11] for more detail). 

Now back to the issues of general estimates; take v= 0, Vh C Ul, and Th = Vh 

and apply (B.E1), (B.E2), (B.E4), and (B.E5) ((B.E3) is void since v 0): 

ld(vh, Vh)l < ChllvhKI.1 

FRom this the coercivity (for h small enough) and boundedness of a* (., H-) follow 
(see Lemma 2.3). 
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Next, take v 0, Vh = eh := h- uh (iLh ordinary Galerkin) to find 

||eh,ll < Ca*(Uh -Uh, H*eh) 

C [a* (Uih, Hh eh) - a* (Uh, Hh eh)] 

- C[(f, eh) - (f, lheCh) - d(iih, eh)], 

and it follows immediately that 

ICeh 11 < Ch(|| f|o + 1'uh II) IhIl 1 

so that, by the triangle inequality, IIU - UhI < ChI f 0,o which proves the H1 
convergence (see Lemma 2.5). 

Similarly, we can derive L2 convergence via a duality argument as follows. Note 
that 

eII, 1o = sup (eh,q$). 
I1X110=1 

Given a X with unit L2-norm, let L'b = , b= 0 on OQ and let "/h be the Ritz 
projection of ~b. Thus 

(eh, ) =a(eh, )=a(eh, f h) 

=a(u -Uh, fh) 

=d(u -Uh , h ) 

< CA(hu-hUhl+l + h U-uhil U27) 

+C2h2 IuHI3,pIfhI1,P' ( , + -, 1) 
p p 

+Cqhllu - Uh Ho. 

Here, 11h lll,pl < Cl L ll,p < Cp l' l2 (stability and Sobolev). Clearly, after some 
trivial manipulations, we obtain convergence in the L2 norm. 

The W1,' and L? norm estimation follows the same vein but is more involved. 
The details can be found in Section 3. The organization of this paper is as follows. In 
Section 2 we list and prove preliminary lemmas and the H1, L2 norm convergence 
results. In Section 3 we derive maximum norm error estimates for the elliptic 
problems. The main results are contained in Theorem 3.1 (the max-norm error in 
the approximate solution is 0(h21 In h)) and Theorem 3.2 (the max-norm error in 
the gradient is 0(h)). The method of proof uses the above-mentioned central idea 
with the aid of the discrete Green's function. In Section 4 we give similar maximum 
norm estimates for parabolic equations. 

2. PRELIMINARIES 

Define the discrete L2 norm: 

(2.1) O|uh||o,h := |I7IIuI ho h { Z uhjP)Sp}1/ 
K7 CT,* Kp If 

Referring to Figure 2 and using the fact that Q are centers and Mi are midpoints, 
we have 

(2.2) I Vuh Io,h = >3 [uh(Pi) + uhjP2) + uh(P3)jSQ}1/2. 
KQ EfJt 
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P3 

M3 /2 

p~~~~~~~~ 

1 P2 

FIGURE 2. Primal triangular element with dual partition 

Next define the discrete H' seminorm and norm: 

(2.3) IUhl 17h =U ( , h,1hKQ)7 

(2.4) |ui K l.h If = {[( --- (Q))2 + (&Uh (Q))2]SQ}1/I, 
ax, &X2 

(2-5) | /4 |Lh := {HuUhl O,h + Iu }1/h 

Lemma 2.1. The two norum s I * a1,hand I * |1 are consistent, i.e., I - |lh I K Ili 
and 1 1 an0h ad 1 1. )1,h are equivalent to ||l flo and |11 Il, respectively. Here the 
equivalence constants are independent of h. 

Proof. The first statement is easy to see since VUh is constant over KQ. As for the 
second statement, it suffices to show the equivalence of the L2 norms. In reference 
to Figure 2, we have with =K KQ 

lUh 
12 

dcx = 
2 

[la(MI ) + U2h (MI2) -t U ( 13.l)] SQ, 

12 

=12[uh(Pi) + uh(P2))+ uhP3) + (uh(P,) +u U(F2) + uh(P3))I]SQ. 

Summing over K yields 

4IjU11,112 h12IUhI < |lUtzII2n 

Lemma 2.2. H1* is self-adjoint with respect to the L2 niner product. 

(2.6) (uh,J7~b1)h) = (iih,H*Uh), VUh,Uih E Uh. 

Define 

(2.7) ||UlhllIlo :=z (Uhl hhu;)'72. 

Then I I tIo and I tlo are equivalent. Here the equivalence constants are independent 
of h. 
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P3 

M3~~~~ 2 

FIGURE 3. A triangular elemeent K 

Proof. In reference to Figure 3, for z = 1,... , 3, let ei be the quadrilateral 

PiM1iQM1i+2, (NI5 = _/12, A4 = M1) and A- be the Lagrange nodal basis func- 
tions associated with Pi, i.e., A1, A2, and A3 are the barycentric coordinates. Over 
a typical K write 

3 

ull7 = ul- (Pi) Ai 

(we will use local indices when there is no danger of confusion), and use (1.12) to 
obtain 

(tuh, MH h) = > 'K H /*Uh.dx 

Kcf,, K 

ZZE Euh(PI)j u1zdx 

3 3 

= E uh (PI) E Uh(Pk,)J Akdx 
K'I,-S2 1=1 k=1 

3 3 

LE E UZ,I(Pl)ZUl, (Pk)] Aldx 
IcTc? k=1 1=1 k 

3 3 

= E Ull, (Pk) E Uh (Pl , Aldx 
KeI,l k=1 1=1 ks 

=(u7 Hh Uh ) ) 

where we have interchanged the summations and used the fact that 

J Aldx - j Akdx. 

This last equality can be shown as follows. First it is easy to see that the triangle K 
is divided into six equal-area subtriangles. Use the three-vertices quadrature rule 
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on linears to evaluate: 

J A2dx f A2dx+ A2dx 
el? 

(A2 (P1) + A2 (Q) + A2 (Ml))Se,+ 
1 

+(A2 (P1) + A2(Q) + A2(M3))Sej_ 

- (O+ 1/3+ 1/2)Se,+ + (O+ 1/3+O)Sel-, 3 3 

where el+ and e1_ are the two subtriangles that make up e1. Since Se1_, Sei?, Se-2 
and Se2+ are the same, we see that 

A2dx 1 Aldx. 

The other cases can be handled similarly since the underlying integrals only depend 
on the two areas as shown above. Finally, as a by-product, the equivalence of the 
two norms now follows by direct computation. D 

Now let us derive the important relation (1.21) mentioned in Section 1. For 
v E H2(Q), Vh, Th C Uh, we have by Green's formula and the fact that Th vanishes 
outside Qh that (see Figure 2) 

a(v - Vh, Th) E7 'K 
i 

- Vh') Tid 

+ j q(v - Vh)Thdx 
It 

(E l E aij (Za ) -aij (Q)]I & 9V h T dx 

(2.8) 2 
,= 

E JE aij (Q) ThdX 
7JK i,= 9Xio9x] 

z j zK iE aij (Q) Vh) cos(n, xi))Th ds 

? j q(v - Vh)ThdX, 
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where Q is the center of K. Let KV denote the set of all vertices of K. By Green's 

formula we have for w E H2, wh CE V 

a 2 w 

09 / 9 Whdx 
KET JK aawhx) 

zrZ Z I~OK&x2 Whdx 
nK axiix K P E JKv p 

F aW &Wh f aw 

IZ Sel. - IKpOK aS axi + &(Ko) <d cos(n, xi)wl,ds 

17 E J&(KK)X cos(nXi)Whds 

K r aw _w 
=~IS v v /cos(n, xi)w,lds + f a cos(n, xi)w,ds4. 

K PcK1' 1 JK* nK aXi J&KnK* aX) 

Hence, with aij (Q)w in place of w in the above equation, 

K7 aJK i(Q) d,. jE Ox;1 
Z LI ax1a9xj d 

(2.9) aj K i&K oK ij(Q)a cos(n, xi)wI,dsJ 

+ { f aij (Q) aaw cos(r n,Xi)Whds. } 

Now argue as in deriving (2.8) anid use (2.9) with w = v-vh and Wh =-HT, to 

obtain 

(2.10) 
a*(v - m. I IT,) 

- ~~ ~~. 2 a(V - Vh~) 

1?7 PEF IDKPhK 5 a2 g;a x cos(n, xi)H*Thds 

+? J q(v vh)lhTi,dx 

S2,2~~~~~~ 

- E E P KhK~El [a2j(x) - aij(Q)] O coa ( xi)j7*TI,ds 
K* PI) PnK tj1X 

K JK iEl Q) 17 Thdx 

+ EIK 2 aij (Q) 0 

+ f q(v -Vh)JhTldx. 



ERROR ESTIMATES FOR COVOLUME METHODS: A UNIFIED APPROACH 113 

Hence 
5 

(2.11) a(v- Vh, Th) - a(v- Vh.,, 1Th) = Ei (v- Vh,Thl), 
i=l1 

where 

(2.12) El (v- Vh, Th) = E JE [aij (x) - ij (Q) ] cj dx 

2 

E2(V-Vh, Th)=E E 5E [aij(x) -aij(Q) 
(2.13) K PCKv JKpoI i,j=1 

a(V - Vh ) cos (n, xi) II h TI, ds, 

(2.14) E3(v h,Th) -J] aij (Q) (Th-IH7Th)dX, 
K ij0=0x 

E4(v -Vh, Ti2) 

(2.15) SI a0K (Q)0~ V2) cos(n, xi)(TI, -Y* Th)ds, 

(2.16) E5(v - Vh,Th) j q(v -Vh)(Th- IHTh)dx. 

We are now in a position to show various bounds for Ei's introduced in the 
previous section. In view of the definition (2.12), bound (B.E1) is straightforward 
since aii is in W1 '. As for (B.E2), from (2.13) E2(v - Vh,Th) can be rewritten 
(see Figure 2) 

(2.17) 2(V -Vh, Th) EE E[aij(x) aij(Q)] &(V 
(2.17) ~~~~~K 1=1 ___Q_ 0j= 

x cos(n, xi)ds [Th(Pl)-Th(P+l?)], 

where P4 := P1. The equality is obtained by noticing that each line segment M1Q 
is traveled twice but in opposite orientations (once as M1Q, once as QM1) and then 
collecting the like-terms. By Taylor's expansion and the fact Th is linear in K, 

2 

|Th (Pl) -Th(Pl+1) E 0 [xi (TPi h -xi (hP+ 1 
(2.18) i=1 

< h(l OT h + l 
Th 

1) < QTh l h K 

On the other hand, by the Cauchy-Schwarz inequality 

(2.19) fI I(v-vh)ds < Ch d2{ sl 
JM1Q OA i M1 Q 
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where qi := &(v-vh) Use the trace theorem ([2, p. 37]) and a scaling argument to 
obtain 

JMIQ lXilds < C(h ]kbiHo0K + IVIbiH|O,K|bi||O,K) 

(2.20) < C(hlv - Vh 1,K + IV - Vh2,KIV - Vh|1,K) 

= C(hlv - Vh 1K + IV12,KIV 
- 

Vhl,K)- 

Collecting estimates, using Lemma 2.1 and the generalized H6lder's inequality, we 
have 

(2.21) |E2(v-Vh,Th)| < Ch{|v-VhlllTh I + h Vhl | ThIl}, 

which implies (B.E2). 
Using proper quadratures for the two integrands and the fact that the quadri- 

laterals ei of Figure 3 have equal area, it is easy to see that 

I (Th- HTh)dx =0 VTh C Uh. 

Hence 

2 19rA 2 V(X) ___2V 

(2.22) E31 = EIK i -PK E? ,X ](Th - HTh)dxL, 

where '9K is the local L2 projection to the space of piecewise constants. (Note that 
using lPK afV instead of ,f (Q) avoids asking v to be in C2, as is done in some 

literature.) From this bound (B.E3) follows easily. 
As for the estimation of E4, first note that avh cos(n, xi) is constant along an 

Dxi 

edge L of the element K and that 

(2.23) J(Th - HlTh)ds = O. 

Thus 

E4 (v -Vh, Th) 

(2.24) = ~I&K S aij(Q)&(V - Vh)cosK(n, xi)(Th - Hh1*Th) ds 
(2.24) K i,j=l1 0? 

~ 2 
__V 

K K [iE1 aij(Q) <xcos( xi) (Th- HTh)ds. 

Let S be the collection of all the interior edges in the primal triangulation Th. (An 
interior edge does not lie on &Qh.) 
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Using the boundary condition of Th on &Qh, continuity of Th - HhTh and con- 
tinuity of 19' cos(n, xi) across the edges in S (guaranteed by v E H3(Q)), we have 

2 

E4 = z Z(aij(Q) -aij(QZ)) 
LEE i,j=l 

9V 
x ,) cos (n, xi) (Th - 11 hTh) ds 

(2.25) 2 

- Sf S E(aij(Qt) - aij(QZ)) L 

L1 LEE i, j= l 

x ( -Vj cos(n, xi)(Th-'71hTh)ds, 

where QL+ and QL- are the centers of the two triangles sharing L as a common edge, 
and the addition of a constant vj is due to (2.23). Now we choose vj as 

_( h + Vh) 
2&oxj &9xj' 

where v+ (resp. v-) is the restriction of Vh to the left (resp. right) triangle KL 

(resp. KR). 

Observe that 
I 2 09V ~< 

S S E (aij (Qt) - aij (QL)) ) cos(n, xi) (Th-IH JTh)ds, 
LEE i,j=l / 

where a = + or - resembles E2. The technique used in deriving (2.20) yields 

(f _ (Th HTh)2 ds) < Chl/21 IThl,llK 

Thus as in deriving out (2.21), we have bound (B.E4) 

(2.26) |E4(V-Vh,Th)| < Ch{vV-h|lllTh||l + h / Vhl |V12 ||Thlll} 

Finally, bound (B.E5) follows from (2.16) easily. The following lemma is now proved 
in view of the central observation in Section 1. 

Lemma 2.3. There exist positive constants ho, a, M such that for 0 < h < ho 

(2.27) a*(Uh,JHhUh) > a|'Uh|l, VUh E Uh, 

(2.28) la*(uh,IHTh) <? M|UhHlllHThlll, Vuh,Th E Uh- 

For covolume methods we seldom have a symmetric bilinear form a* (., H7. ) even 
though a(., ) is. However, we have a lemma which measures how far the bilinear 
form a* (., H* -) is from being symmetric. This lemma will be used in the parabolic 
problem. 

Lemma 2.4. There exist positive constants M, ho such that for 0 < h < ho 

(2.29) la* (Uh,HTh) - a* (Th,I*Uh)I < MhHUhII1ThII1 VUh,Th E Uh. 

Proof. Use (1.20) and the triangle inequality to derive 

la(Uh,H*Th) - a* (Th, NHuh)I < Id(uh, T) - d(Th,uh)|. 

Invoking proper bounds for d(., ) completes the proof. C 
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The next lemma is proved in Section 1. 

Lemma 2.5. The solution of Uh of the problem (1.14) and the exact solution u of 
(1.1) satisfy 

(2.30) HzU - Uhtjl < Chllul12, 
(2.31) HIU - UhHlO < Ch21IUI13,P (p > 1), 

whenever the right-hand sides make sense. 

Given any z C Q, we define G h c Uh to be the discrete Green's function associ- 
ated with the form a(., .) if 

(2.32) a(Gz wh) = Wh(Z) VWh E Uh- 

Lemma 2.6. The function Gzj possesses the following properties [26, 27]: 

(2.33) JIG1 < Cllnhl1/2. 

Let v be a given unit vector (direction) and let Az be any vector parallel to v. 
Then we define 

Gh Gh 
(2.34) 9zGh lim z+Gz 

Az-*O JAzl 

Lemma 2.7. The derivative ozGzh E Uh has the following properties [27]: 

(2.35) a(9zGZ,Vh) = &ZVh(Z) VVh E Uh, 

(2.36) Il&zGZ h1 < Ch-1. 

Lemma 2.8. Let u and Uh be the solutions of (1.1) and (1.14), respectively. Then 

(2.37) a* (u-Uh, Vh) = O, VVh C Vh. 

3. MAXIMUM NORM ESTIMATES FOR AN ELLIPTIC PROBLEM 

Theorem 3.1. Let u be the solution of (1.1) and Uh be the solution of (1.14). 
Then 

(3.1) I IU-Uh I 0,00 < Ch2 ln hl [I |UI 13 + I |UI 12,0,], 

provided that u E Ho' (Q) n W200o (Q) n H3 (Q). 

Proof. Let 'uh be the ordinary Galerkin of (1.1). 

(3.2) IU-UhO < IU-UhJ10O, + iihUh 0,oo0 

Since it is well known [26] that the maximum norm error in 'uh is bounded by 
Ch2 In h I IU 1 2,00, it suffices to estimate eh := - Uh. By the definition of the 
discrete Green's function and (2.37) 

eh(z) = a(eh, G ) 
= a(u - uftGz) 

= d(u- Uh, Gh). 

Now we estimate Ei (U - Uh, GZh), i = 1, ... ,5. By (B.E1), (2.33) and Lemma 2.5, 

(3.3) IEl(u-Uh, G h) < ChllU-Uhl 1 lG h1 < Ch21 Inhl1/2 IUI12. 
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By (B.E2), (2.33) and Lemma 2.5, 

|E2(U-Uh,Gh)I <? CAh[Ilu- UhI I+ hl212IU-Uhl 1/2 IU 11/2] G hll 

(3.4) < Ch2 ln hl - 2UI 12 

By (B.E3) and (2.33), 

E3(U- Uh7G h)I < Ch2 IU I 13 Ghlll 

<Oh2 lnh 2 u 3 

JE4(U-Uh,Gz)? <Ch2 lnhl IU12. 

Finally 

(3.6) gE5(U-Uh Gh)I < Chl -Uh o 
< Ch2 1U113. 

Theorem 3.2. Under the hypotheses of Theorem 3.1 

(3-7) I1U - Uh II,oo,< Ch [I UI13 + IUI 12,] 

Proof. The proof parallels the development in Theorem 3.1. Since it is well known 
[26] that the error in th is bounded by Ch Iu 12,0, it suffice to estimate eh :Uh-Uh 

in W1 '. As before 

9zeh(Z) = a(eh, ozG ) 

= a(u -Uh,& ozG ) 

d(u- Uh,7 &zGZ ) 

5 

- Z Ei(u-Uh, zGZ), 

where 

El(u-uI,azG h)I < Chlleu-Uhl IIzG 1 

< Chllul 12, 

E2(U -Uh,7 zG h) I < Ch2 1 UI 12 I 9z h 
< Chl |UI 12, 

(3.8) JE3(U -Uh,7 zG h) I < Ch2 1U I 131 1 Gh 
< Chl |UI 13 , 

E4(U-Uh, zGh) ? < Chu 12, 

E5(U - Uh,7 zG h) I < CU |U-Uh 0 lo I lozG h 

< Chl lul p3 

Combining all the above inequalities completes the proof. FC: 
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4. MAXIMUM NORM ESTIMATES FOR PARABOLIC PROBLEMS 

Consider the associated parabolic problem to (1.1)-(1.2): 

(4.1) ut + Lu = f (x, t), (x, t) Q x (0, T] 
(4.2) U = 0, (x,t) o9Q x (0,T] 
(4.3) U = Uo(x), t = 0,x E Q, 

where L is the elliptic operator of (1.1) and ut := . The domain Q has the primal 
partition Th and dual partition Th* of the types specified in Section 1. The trial 
and test spaces are still Uh C Ho (Q) and Vh C L2 (Q), respectively. Consider the 
time-continuous approximation to (4. 1)-(4.3): 
Find Uh := Uh(-, t) E Uh,0 < t < T such that 

(4.4) (Uh,tt,Vh) + a* (Uh,Vh) = (f, Vh) VVh E Vh, t > 0, 

(4.5) Uh(X,0) = UOh(X), X E 

where the approximate initial condition UOh is the elliptic projection (see (4.8)) of 
the exact initial function to be specified in (4.15). 

Theorem 4.1. Let u and Uh be the solutions of (4.1)-(4.3) and (4.4)-(4.5), re- 
spectively. Then for p > 1 

(4.6) JU - Uh IIL-(L-) < Ch { nhl{ IIIL-(H3) + IIUIIL(W2,-) + |IUtIIL2(W3P)}, 

(4.7) |U - UhhL-(W1,') < Ch{f lIl Lo(H3) + IIUIIL-(W2,-) + IIUtIIL2(W3,P)}7 

where L'(Lo) := L'(O, T; L`(Q)), L(H3) := L(O, T; H3(Q)). 

Proof. Introduce the self-adjoint operator Rh: H2 (Q) n Ho' (Q) -+ Uh defined by 

(4.8) a*(RhU,Vh)-=a*(u, Vh) VVh EVh- 

By Lemma 2.5, and Theorems 3.1 and 3.2, 

(4.9) (u - RhU)tIIo < Ch2 l(Ut 3,p, P> 1, 

(4.10) 11(u-RhU)1o,,, < Ch21lnhl [ UI 13+I UI12,,,], 

(4.11) 1(u - RhU) III,o < Ch [ U 13 + IUI 12,oc]- 

Write U - Uh = (u - RhU) + (RhU - Uh) := r + (. It suffices to estimate (. By 

(4.1)-(4.4) and (4.8), 

(4.12) ((t,VVh) + a* (, Vh) =-(t, Vh),VvVh E Vh. 

Set Vh = 1H1t and use (2.7) to obtain 

(4.13) IgtfII2 2 d + 

- ~(t, Hh t) + l[a* (t, a*-t) 

By Lemma 2.4, an inverse inequality, and Lemma 2.2, 

|a*((t,rH7*) - a*((,HJlt)l < Ch| ltl |11 111 

< CHtHlogIll < IgtHl?O + CgI2, 
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where we have used the 6-inequality ab < ca2 + 4b2 for positive c, a, b. Taking c 
small enough to absorb the (t term on the right-hand side into the left-hand side, 
we have 

(4.14) d a < C(II?7tII2 + gfl) 

Set 

(4.15) tUOh =RhU(0) 

so that ((0) = 0. Integrate (4.14) and use Lemma 2.3 to get 

(4.16) al l'11 < a* (,H r1 ) < ? ( t l+oC )dT. 

Use (4.9) and the Gronwall's inequality to get 

(4.17) 11i111 < Ch2 IUt IL2(W3p), p> 1. 

From the asymptotic Sobolev inequality ([23, p. 274]), we have 

(4.18) | 1l o.oo < Cl In hl 211v71lo < Ch2 lnhl 2 1ItII L2(W3P). 

Combine (4.10) and (4.18) to get (4.6) and then use an inverse inequality to get 

(4.19) 1i0lll,oo < Ch-111'111 < Chl Ut IL2(W3,p). 

Noting (4.11) derives (4.7) completes the proof. C: 
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