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ON THE PROBLEM OF SPURIOUS EIGENVALUES 
IN THE APPROXIMATION OF LINEAR ELLIPTIC PROBLEMS 

IN MIXED FORM 

DANIELE BOFFI, FRANCO BREZZI, AND LUCIA GASTALDI 

ABSTRACT. In the approximation of linear elliptic operators in mixed form, 
it is well known that the so-called inf-sup and ellipticity in the kernel prop- 
erties are sufficient (and, in a sense to be made precise, necessary) in order 
to have good approximation properties and optimal error bounds. One might 
think, in the spirit of Mercier-Osborn-Rappaz-Raviart and in consideration of 
the good behavior of commonly used mixed elements (like Raviart-Thomas 
or Brezzi-Douglas-Marini elements), that these conditions are also sufficient 
to ensure good convergence properties for eigenvalues. In this paper we show 
that this is not the case. In particular we present examples of mixed finite 
element approximations that satisfy the above properties but exhibit spurious 
eigenvalues. Such bad behavior is proved analytically and demonstrated in nu- 
merical experiments. We also present additional assumptions (fulfilled by the 
commonly used mixed methods already mentioned) which guarantee optimal 
error bounds for eigenvalue approximations as well. 

1. INTRODUCTION 

We consider, as a model problem, the eigenvalue problem for Laplace operator 

(1.1) -Au = Au 

in a convex polygonal domain Q with suitable boundary conditions (to fix ideas, 
zero Dirichlet boundary conditions). Here and in the following we will always 
implicitly assume that eigenvectors (here u) are looked for among nonzero functions 
or vectors. We are interested in the approximation of eigenvalue/eigenvector pairs 
in the so-called mixed formulation that reads: 

find (q, u, A) in H(div; Q) x L2(Q) x R such that 
(1.2) | (a) T) + b(T, u) =0 VT E H(div; Q), 

b(a, v) = -A(u, v) Vv E L2 (Q)) 

where, as usual, (., ) is the inner product in L2(Q) or in L2(Q)2 and b(T, v) = 

(div T, v). Given finite dimensional subspaces Eh and Vh of H(div; Q) and L2 (Q) 
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respectively, we consider the approximate problem 

find (Uh, Uh, Ah) in Eh x Vh x R such that 

(1.3) (h, Th)?+ b(rh, uh) = ? VTh E Eh, 
b(uh, Vh) = -Ah(Uh, Vh) VVh E Vh- 

We point out explicitly that the study of the properties of the mixed eigenvalue 
problem (1.3) enters as a crucial ingredient in the analysis of more complicated 
applied problems, such as fluid-structure interactions (see e.g. [2, 18, 11]) or wave- 
guide resonance (see e.g. [3, 19, 5, 6]) where, in general, one cannot approximate 
the problem in the easier and more conventional form (1.1). 

We assume that the choice of Eh and Vh satisfies the usual stability conditions 
for mixed discretizations. These are the inf-sup condition: 

there exists 13> 0, independent of h, such that 

(1.4) inf sup b(1-h, Vh) > ) 
VhEVhw hEZh 1ITh11H(div;Q)JVh L2(Q) 

and the ellipticity in the kernel: 

there exists a > 0, independent of h, such that 
(1.5) (T,T) > atll7lH(I; 

12 
V_ E Kh) (nr)? aITIH(div;Q)VT Kh 

where the discrete kernel IKh is defined as 

IKh = IT E Eh such that b(T, v) = 0 Vv E Vh}. 

One might think (in the spirit of [15]: (3.12-16) and Section 7.a) that the above 
conditions are sufficient in order to give good approximation properties for eigen- 
value/eigenvector pairs, whenever Eh and Vh are reasonably good approximations 
of H(div; Q) and L2(Q) respectively. However, this is not the case, as we are going 
to show in this paper. The reason for failure is hidden in the definition of the 
compact operator whose spectrum has to be approximated (here the inverse of the 
Laplace operator) when the mixed formulation is used. To make things clearer, let 
us introduce the associated boundary value problem in its usual form and in the 
mixed formulation. Therefore, let f be given in L2(Q), and consider the problem 

(1.6) ~~~~find u E Ho'(Q) such that 
-Au=f in Q. 

The unique solution of this problem defines a linear compact operator T from L2 (Q) 
into itself: u = Tf. Consider the same problem in its mixed formulation: now, for a 
given f E L2(Q), we are looking for a pair (u, u) in H(div; Q) x L2(Q) that satisfies 

(1.7) f (, ) + b(r, u) =0 VT E H(div; Q), 
( 7) l ~~~b(a, v) = -(f ,v) Vv E L 2(Q). 

Clearly, the u part of the mixed formulation is still given by u = Tf, while a is 
just the gradient of u. However, to be precise, we have now another operator (say 
TM) which is acting from L2(Q) into H(div; Q) x L2(Q). This is not a good setting 
if we want to look for eigenvalues. Therefore [15], following [14], considers first the 
product space H = H(div; Q) x L2(Q) and the operator TH from H' into H defined 
as follows: 

given (g, f) in H', find (q, u) in H such that 
{ (a, T) + b(T, u) = (g, T) VT E H(div; Q), 

b(a,v) =-(f,v) Vv E L2(Q). 
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Then they consider the cutoff operator (say, F) from L2(Q)2 x L2(Q) into itself, 
given by F(g, f) - (0, f), and they are led to a generalized eigenvalue problem of 
the type 

(u, u) = ATHF(q, u). 

This is surely correct, but now the operator THF, from H into itself, is not compact 
any more, and all the subsequent theory of [15] does not apply. We point out that 
the reason for failure does not originate from an inconvenient way of writing the 
eigenvalue problem: indeed, the operator TMI itself, (mapping f into (q, u)) is not 
compact as an operator from L2(Q) in H. 

However the results of [15] (Section 7.a) are true (see for instance [1]), since 
additional properties (besides the inf-sup and the ellipticity in the kernel) hold for 
their choice of finite element spaces Eh and Vh, which make the method work. 
On the other hand, other reasonable choices of Eh and Vh, although satisfying the 
inf-sup (1.4) and the ellipticity in the kernel (1.5) properties, fail miserably when 
applied to eigenvalue problems, as we shall prove analytically and demonstrate by 
numerical experiments. 

An outline of the paper goes as follows. In Section 2 we present an abstract 
framework in which the problem can be set and we define in a precise way what is 
to be considered as a good convergence property for eigenvalue/eigenvector pairs. 

In Section 3 we recall four types of choices for the spaces Eh and Vh: the truly 
mixed approach, the Qi - Po element on rectangular grids, the P1 - div(PI) 
element and the PI - Qo element on criss-cross grids. We show in particular 
that the last two elements satisfy both the inf-sup and the ellipticity in the kernel 
properties. The same is already well known for the truly mixed approach, while the 
Q, - Po element is only used as an auxiliary step for studying the others, although, 
being a well-known element, it deserves an analysis for itself: in particular we show 
that this element, which does not satisfy the usual inf-sup condition for Stokes 
problem, does indeed satisfy a sort of inf-sup condition in H(div; Q) that might be 
of some interest in other applications. 

Numerical experiments, reported in Section 4, show however that only the truly 
mixed approach gives good discrete eigenvalues, while the others exhibit the pres- 
ence of spurious ones. We stress the fact that the type of failure exhibited by 
approximations like P1* - Qo or P1 - div(PI) is, in practice, much more danger- 
ous than the type of failure normally exhibited by choices that do not satisfy the 
inf-sup condition. Indeed, the latter elements usually have a cloud of spurious eigen- 
values that immediately shows the bad quality of the computation. On the other 
hand, as will become clearer from the numerical experiments shown in Section 4, 
the former elements have just a few, well-isolated spurious eigenvalues that, when 
we look at the discrete spectrum, insidiously look like good ones. In Section 5 we 
prove analytically that the above elements (with the obvious exception of the truly 
mixed ones) must fail when used to approximate eigenvalues, thus confirming the 
numerical results of Section 4. Finally, in Section 6, we give some simple sufficient 
conditions for having good convergence properties of eigenvalue/eigenvector pairs. 
These sufficient conditions include the usual inf-sup condition and the ellipticity 
in the kernel plus an additional property regarding the so-called Fortin operator 
(see [10]). The truly mixed approach satisfies this last property, so that the theory 
again confirms the numerical results of Section 4. More general sufficient conditions 
and additional references can be found in [16] and [1]. 
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2. SETTING OF THE PROBLEM 

We are interested in the approximation of the following eigenproblem: 

find (u, u, A) E H(div; Q) x L2(Q) x R such that 
(2.1) f (a),T) + (divT,u) =0 VT E H(div;Q), 

(diva,v) =-A(u,v) Vv E L2(Q). 

Given finite dimensional subspaces Eh C H(div; Q) and Vh c L2(Q), the discretiza- 
tion of (2.1) is 

find (uh, Uh, Ah) E Eh x Vh x R such that 
(2.2) f (ah,rTh) + (divTh,uh) =0 VT? h E Eh) 

(div oh, Vh) = -Ah(Uh, Vh) VVh E Vh- 

Let T: L2(Q) -* L2(Q) be the self-adjoint compact operator defined by 

(2.3 J (a) ) + (div T, Tf) =0 VT E H(div; Q), 
(2.3) (diva,v) = -(f,v) Vv E L2(Q). 

Then (u, u, A) is an eigensolution of problem (2.1) if and only if 

(2.4) ATu = u, a = Vu. 

Hence the eigenvalues Ai (i E N) of problem (2.1) are positive. We denote them 
by 

(2.5) 
0~~~ < Al < A2 < .. < Ai < ... 

(2.5) lim Ai = +??- 
i-*oo 

For each i E N the algebraic multiplicity of Ai is one, and Ei is the one- 
dimensional eigenspace associated to Ai. In L2 (Q) we introduce an orthonormal 
basis {ui} such that 

(2.6) E= span(uj), 

(ui),Uj) = 6ij. 

The following mapping will be useful later on. Let m: N -* N be the application 
which to every N associates the dimension of the space generated by the eigenspaces 
of the first N distinct eigenvalues; that is, 

(2.7) m(l) = dim{ DE : Ai =Al, 
m(N + 1) = m(N) + dim { i Ei: Ai = Am(N)+l}- 

Clearly, Am(l),.. Am(N) (N E N) will now be the first N distinct eigenvalues 
of (2.1). 

Let us denote by Th: L2(Q) -* L2(Q) the discrete counterpart of T, defined by 

2.8 f (7h,Th) + (div ThThf) =0 VTh E Eh 
(2.8) l (div ah,vh) = -(f,vh) VVh E Vh- 

Then {Th} is a family of self-adjoint compact operators with finite-dimensional 
range in L2(Q). As in the continuous case, (Uh, Uh, Ah) E Eh x V/h x R is an 
eigensolution of problem (2.2) if and only if 

(2.9) AhThUh = tUh, (h = VhUh, 

with Vh a suitable discretization of V. 
Let dim Vh = N(h); then Th admits N(h) real positive eigenvalues 

(2.10) Ah < ... < Ah < ... < A h 
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The associated discrete eigenfuntions u4, i = 1,..., N(h), give rise to an or- 
thonormal basis in Vh with respect to the scalar product of L2 (Q). Let Ei = 

span(u0) denote the discrete eigenspace associated to Ai. 

A classical assumption in the theory of spectrum perturbation is the uniform 
convergence of the operators, that is, 

(2.11) lim T - ThIL(L2(Q)) = 0. 
h---O 

As a consequence of (2.11), we have 

VE > O, VN e N 3ho > O such that Vh < ho 
max \AI-Ai <c 

i=1,... ,m(N) 

(2.12) m(N) m(N) 

d Ei, E Eh |< 6 

where c(E, F), for E and F linear subspaces of L2(Q), represents the gap between 
E and F and is defined by 

23(E, F) = max [(E, F), c (F, F)], 
(2.13) 6(E,F)= sup inf Ilu-vllo. 

uCE 11u11=1 vEF 

In (2.13) 1 o stands for the L2-norm. 
We conclude with an additional notation that will be constantly used in the 

following. Although the definition of the space Vh C L2(Q) will change from one 
example of finite element approximation to the next, we shall always denote by the 
symbol IPh the L2(Q)-projection onto Vh, that is, 

(2.14) j (v -Phv)vhdx=O VvEL 2(Q), VVh E Vh 

3. VARIOUS CHOICES OF SPACES 

In this section we present several possible choices for the spaces Zh c H(div; Q) 
and Vh C L2(Q). For each choice of spaces, we test the validity of the following two 
hypotheses: 

there exists a > 0, independent of h, such that 
(3.1) (r,r) > al T112iv VT E Kh, 

where the discrete kernel ]Kh is defined as 

IKh = {T E Eh such that (divT, v) = 0 Vv E Vh}, 

and 

there exists : > 0, independent of h, such that 
(3.2) inf sup divQTh, Vh) > 3 

VhCVh,T ,EZh |Th lldiv lVh 0| 

In (3.1) and (3.2), 11 * Ildiv denotes the graph norm in H(div; Q). 
It is well known that the assumptions (3.1) and (3.2) ensure the existence, unique- 

ness and stability of the solution of (2.8) (see [8]). We shall see that these hypotheses 
are not sufficient in order to have a good mixed approximation of the spectrum for 
the Laplace operator. 
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3.1. The mixed approach. Let us consider classical approximations of H(div; Q), 
among which there are, for instance, the elements introduced by Raviart-Thomas 
(RT), Brezzi-Douglas-Marini (BDM) and Brezzi-Douglas-Fortin-Marini (BDFM). 
For a unified presentation we refer to [8]. In this subsection Eh will be one of the 
mixed finite element spaces mentioned above. Correspondingly Vh will be the space 
div Eh, which contains piecewise polynomials of a certain degree k. 

We recall the main properties which are enjoied by the pair (Zh, Vh) and which 
turn out to be crucial for the eigenvalue approximation. 

The first property concerns the so-called Fortin's operator 11h, acting from W 
H(div; Q) n (Ls(Q))2 (s > 2 fixed) into Eh. This operator, defined using suitable 
degrees of freedom, gives us the commuting diagram 

w div L L2 (Q) 

(3.3) Ih } }]Ph 

Zh 3 Vh 
div 

This implies that (3.1) and (3.2) are satisfied (see e.g. [8], p. 131). 
The following approximation property holds for 1 < m < k + 1: 

(3.4) I hIT HO < Chhm|T|m. 

Let f E L2(Q). Then, due to the regularity assumptions on Q, Tf belongs to 
H2(Q). Hence we have (see [8], (IV.1.31)) 

(3.5) 1ITf - Thf Io < Ch(|| VTf I1 + tITf I1). 

This last equation means that Th converges uniformly to T, see (2.11). 

3.2. The Qi - Po element on a rectangular mesh. Let us consider a square 
domain Q and a partition of Q into N x N macroelements, each made of 2 x 2 
squares. As usual K will denote an element (of length h) of the triangulation Th. 

We consider the following approximating spaces: 

(3.6) -Q= {Th E [C0(Q)]2: ThIK E [Q1(K)]2 VK E Th}, 
Vh= {Vh: Vh|K E Po(K) VK E Th}. 

This choice of spaces does not satisfy the inf-sup condition (3.2). However, we 
prove a modified inf-sup condition involving a mesh dependent norm. This result 
will be useful in order to analyze the element of the next subsection. 

A local basis of Vh on a macroelement is shown in Figure 1. Notice that the 
basis we have chosen is orthogonal. 

Let Vjp be the subspace of Vh locally generated by vi, i = 1, 2,3. In the paper 
by Johnson and Pitkiranta [13], it has been proved that the spaces EQ and VJp 
satisfy the inf-sup condition as follows. 

Lemma 3.1. There exists a constant C independent of h such that 

(3.7) sup (divTh,vh) > Cll 1l 

ThCZQ tIThl ? Chl 

for all Vh (E VJP. 
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+1 -1+1 +1 

+1 -1 -1 -1 

V1 V2 

+1 +1+1 - 

+1 +1 -1 +1 

V3 V4 

FIGURE 1. Basis for Vh on a macroelement of 2 x 2 squares 

In Lemma 3.1 the space Vjp cannot be replaced by Vh. However, if the norm in 
H1 (Q) is replaced by a mesh dependent one, then it is possible to verify the inf-sup 
condition. We set 

(3.8) 12hHh = (HrhH| + ILJPh diVT_h 12)1/2; 

then the following theorem holds true. 

Theorem 3.2. There exists a constant C independent of h such that for every 
Vh E Vh there exists Th E EQ verifying 

(3.9) (divTh,vh) > IIVh I0, lThllh ? CH|VhHo. 

Proof. We work on macroelements of 2 x 2 squares. Let us split a given vh E Vh 
into the sum of vb E Vjp and v' which is locally generated by V4 (see Figure 1), so 
that vh = v' + v . 

Using Lemma 3.1, there exists Tb E EQ such that 

(3.10) (div Tb) vb) > I lVb 112) llIlbII < CIIIblvlo. 

The main step of the proof is to construct an element T'r E EQ such that 

(3.11) Ph diV h = vh, I|T'h I0 < C21 v'j o. 

We fix our attention on the row of macroelements lying in the strip Si = 

]0,2Nh[x]2(j - 1)h,2jh[. On each macroelement, v' is equal to V4 multiplied 
by a certain constant. We denote by ci the value of this constant on the ith macro- 
element, i = 1, ... , N. In the row we have considered, we define T' using the 2N 
degrees of freedom drawn in Figure 2. At all other nodes it is set equal to zero. 
Since v' is piecewise constant, an explicit computation shows that 'rc can be defined 



128 DANIELE BOFFI, FRANCO BREZZI, AND LUCIA GASTALDI 

Cl -C I C2 -C2 CN CN N 

-C I CI -C 2 C2 -C N CN 

FIGURE 2. Degrees of freedom for a row of checkerboards 

as follows, in order to have (Ph div Tc) IK = (v) K for each square K C Sj: 

Trc((2i - 1)h, (2j - 1)h) = 2h(O, -ci -2 ce), 
f=1 

Tc (2ih, (2j - 1)h) = 2h(O, 2 3 cf). 
f=1 

The L2 (Q)-norm in Sj of vc and Th can be evaluated as follows: 

N 

lll c 
112 4h2 Ec2 

i=l1 

N /i \2 

H7c12OS. < Ch4 (ECf) 
i=l f=1 
N /i \ i \N 

< Ch4 1) (c) < Ch2 c2 

Then we have 

(3.12) | ITc |12oSj < Cl lVc 112 

which implies the corresponding bound in the whole domain (3.11). 
We are now in position to conclude the proof. Let ry = (1 + C2)/2, where Ci is 

defined in (3.10). Taking fh = 7TC +Tb and noting that (div Tc, Vh) = (V, vc ) = 0, 
we obtain 

(div Th, Vh) = y/(div Tc, v ) + (div T b ,v b) + (diV T 
b 

Vc) 

> yv-jY + c- 112 divr |v|O ? y + I b -1C1v2h v> 1 

? (7- 1) | I l + 2vH ? I I Vh I lo 

1h1hh ? 'TcHhH1O +"ylHJPhdiv ThHo + I Thb 1 < C(Hvlc11 + I|Vb C11 Vh2l 
1 ITh h - 0 -h 0 h - h h 0 = CIIhll D 
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P3 

P4 F 

FIGURE 3. A criss-cross macroelement 

Remark 3.3. Theorem 3.2 does not imply the inf-sup condition (3.2), since in (3.9) 
the mesh dependent norm II- Ih is used instead of the norm of H(div; Q). The- 
orem 3.2 is however crucial for the analysis of the element presented in the next 
subsection. 

3.3. The P1 -div(Pi) element on a criss-cross mesh. It is well known that the 
PI - Po element does not satisfy the inf-sup condition (3.2) on a criss-cross mesh 
(see, for instance, [8]). Indeed there exists a piecewise constant function which 
is orthogonal to the divergence of every continuous piecewise linear vector fields. 
Hence we define Vh to be the space of the divergences of all continuous piecewise 
linear vector fields. 

For this element we are able to prove both the ellipticity in the kernel (3.1) and 
the inf-sup (3.2) conditions. 

Let us consider a square domain Q, which is split into 2N x 2N squares; each 
of them is then partitioned into four triangles by its diagonals (see Figure 3). We 
denote by Q E Qh the squares and by T E Th the triangles. 

We introduce the following finite element spaces: 

(3.13) Zh =T{h E [CO(Q)]2 : ThIT E [P1(T)]2 VT E El, 

(3.13) Vh div(Zh)- 

In the following theorem we observe that our choice (3.13) satisfies (3.1). 

Theorem 3.4. The spaces Zh and Vh defined in (3.13) satisfy the ellipticity in the 
kernel property (3.1). 

Proof. The discrete kernel ]Kh, due to the definition of Vh, is contained in the 
continuous kernel. D 

In the following lemma, we characterize the space VIh. 

Lemma 3.5. The elements of Vh are piecewise constants and are characterized by 
the following relation between the values on each triangle in a criss-cross square 
(see Figure 4): 
(3.14) a+c= b+d. 
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b 

c a 

d 

FIGURE 4. Piecewise constants on a criss-cross square 

0 

+1 / 

0 

0 ~~0 

+1 

FIGURE 5. The divergence of B 

Proof. In Figures 5 and 6 the divergence of some basis function in Eh are rep- 
resented. By linearity the result follows immediately for the divergence of every 
vector in Eh. D 

We set 

(3.15) V { = {v E Vh: VlQ is constant VQ E Qh}, 

(3.16) Vb = {V E Vh: v = OV Q E Qh}- 

It is immediate to see that Vb, in each square Q, has dimension two, a basis 
being given by the two modes on the right-hand side of Figure 5. 
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-1 ~~0 

0 

FIGURE 6. The divergence of an element in Eh 

Lemma 3.6. The following orthogonal decomposition holds true: 

(3.17) Vh =VcDVb, with VcIVb. 

Proof. Given v E Vh, let us consider the element vc E Vc such that 

(3.18) JVC = J VQ E Qh- 

Then vb = v - vc is an element of Vb. It is obvious that with this construction the 
decomposition is unique. Moreover, 

(3.19) j VcVb = 0 

D 

We set 

(3.20) B = span{r E Eh: suppr C Q, Q E Qh}- 

The divergence of a local basis in B is represented in Figure 5. The inclusion 
div B C Vb is obvious. 

The following lemma is also obvious from Figure 5 and a simple scaling argument. 

Lemma 3.7. The divergence operator is injective and surjective between B and 4b. 
That is, for each Vb E Vb there exists a unique b E B which satisfies 

(3.21) divb = vb. 

Moreover, there exists C independent of h such that 

(3.22) jjtjjo ? Ch| Vb |Ho 

We set 

(3.23) Ec = {T E Eh divT E Vc}. 

Lemma 3.8. The following decomposition holds true: 

(3.24) Eh = Ec D B. 

Moreover, the following orthogonalities are satisfied: 

(3.25) (divTc,vb) = 0 VTc E Ec VVb E Vb, 
(3.25) (div b,h v) = V Vb E BB Vvc (EV . 
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Proof. Let us consider T E Zh. By definition of VI, and Lemma 3.6 there exist 
VCE Vc and Vb E Vb such that divT = vc + vb. Let b be the unique element of B 
such that div b =Vb (see Lemma 3.7). We define Tc = T- b. Then divTc = VC, 
and hence Tc E Zc. The decomposition is unique by construction. Finally, the 
orthogonalities (3.25) are straightforward. D 

The following lemma will be useful in order to apply the results of the previous 
subsection. 

Lemma 3.9. Let EQ be the space defined in (3.6) (that is, locally Qj). Then for 
each e EZQ there exists Th E SC satisfying 

(3.26) (div Th, V) = (div -(h'V) 
VV EV' 

(3.27) ZlThllr < CROr (r = O, 1), 

with C independent of h. Moreover, Th can be chosen so that it attains the same 
values as hat all nodes of Qh- 

Proof. For a Th E SC equation (3.26) means that div Tr is the L2(Q)-projection 
of div h onto Vc. Let Q be a square in Qh (see Figure 3). Let us denote by SOj, 
i = 1,... , 4, the piecewise linear basis functions associated to the vertices P1, P2, 
P3 and P4 of Q and by iO5 the one associated to the center. On Q, Th E Zh can be 
represented as follows: 

5 

(3.28) Th Z(u= E i,vi)i 
i=l1 

We take 

(3.29) 
(2i,Ui) ~~~ 

((hPi)) i = 1, ........... 4 

Whatever the value of (U5, v5) may be, the mean value of div Th on Q is equal to 
the mean value of div h' thanks to the Gauss theorem. Hence condition (3.26) 
is satisfied. We have only to fix the value Of Th in P5 in order to achieve that it 
belongs to Zc. A straightforward calculation leads to 

(3-30) U5 = (Ul- Vl + U2 + V2 + U3 -V3 + U4 + V4)/4) 

V( = (-Ul + Vl + U2 + V2-U3 + V3 + U4 + V4)/4. 

A scaling argument gives the bounds (3.27). D 

We state the main result of this section. 

Theorem 3.10. The following inf-sup condition holds true: 

(3.31) vinf sup (divi, > 
V 

o > v) Vh > v) 

Proof. Given Vh E Vh, let vc E Vc and Vb E Vb be such that Vh = vc+vb. Theorem 3.2 
and Lemma 3.7 imply the existence of (h E EQ and b E B, respectively, satisfying 

(divh 
I vC) ? 12 (div b, Vb) I Vb 1 

1 
(3.32) <ih ? C 

> 
0, 

11Q1di < CIIVcIIO 11~jdiv ? C2hllVb 0O 
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Using Lemma 3.9, there exists T C EZ, such that 

(33) (div T,, V,) = (div (h) VC), 

11TC11H(div;Q) < C1 ? 1H(div;Q)- 

It is not difficult to verify that, defining Th = ?+ b, thanks to Lemma 3.8, one 
has 

(3.34) (divTh,Vh) > |lVhllo, Il0hlldiv ? C IVhIIO. 

Remark 3.11. Inequality (3.31) is optimal; in fact it cannot be improved, since for 
each h there exists Vh E Vh such that 

(3.35) (diVThI,ih) < C11Th10JJ)hJo V'rh EE Zh- 

This inequality was proved by Qin in his Ph.D. dissertation [17], using an idea of 
Boland and Nicolaides [7] (see also [12]). In particular, the element -, is a properly 
chosen linear combination of checkerboards on the macroelements. 

Remark 3.12. In the proof of Theorem 3.2, the normal component of vectors in 
Eh has not been used, while we used the tangential component on the boundary 
(see Figure 2). Actually the proof could be completed without using any boundary 
degrees of freedom for the space Zh. It turns out that the spaces Zh n Ho (Q)2 and 
div(Zh 0 Ho (Q)2) satisfy the inf-sup condition (3.2). 

3.4. The P1* - Qo element on a criss-cross mesh. Let us consider again the 
P1 -div(PI) element of the previous section. During the analysis of this element, we 
introduced the subspace E, (see (3.23) and (3.15)) made, essentially, of P1 vectors 
(on a criss-cross grid) where the value at the "cross node" is adjusted in order 
to have a divergence which is constant in each square. This is what we call PI*. 
Hence we use here E, c H(div; Q) for approximating the vectors and V, c L2 (Q) 
for approximating the scalars (we always refer to the definitions (3.23) and (3.15)). 
From Theorem 3.2 and Lemma 3.9 we easily obtain (cf. also (3.33)) that this choice 
satisfies the inf-sup condition (3.2). Moreover, as div(EZ) = V, the ellipticity in 
the kernel property (3.1) will also hold trivially. 

4. NUMERICAL RESULTS 

Let Q be the square ]O, -r[x]0, -r[. Table 1 shows the first frequencies obtained us- 
ing some of the mixed elements discussed in the previous section: Raviart-Thomas 
of lowest degree (RT), P1 - div PI (P1) and P* - Qo (P1*). For all the elements, 
the 16 x 16 criss-cross mesh has been used. 

We point out that only the RT element gives satisfactory results. In the other 
two elements spurious modes appear, which neither converge to any continuous 
eigenvalue nor tend to zero or to infinity. 

We describe this behavior more precisely in Table 2 for the P1 element. We 
can observe that the fourth numerical eigenvalue seems to converge to 6, which 
does not belong to the spectrum of the continuous problem. The P1 and P1* 
elements, even if they satisfy both conditions (3.1) and (3.2), give poor results for 
the approximation of problem (2.1). The presence of the spurious eigenvalues can 
be motivated by the fact that (3.1) and (3.2) are not sufficient conditions to ensure 
that the eigensolutions are "well approximated". In the next section we state the 



134 DANIELE BOFFI, FRANCO BREZZI, AND LUCIA GASTALDI 

TABLE 1. Comparison of frequencies for different approximations 

mode exact RT P1 P1* 

(1,1) 2.00000 1.99786 2.00428 2.01286 
(2,1) 5.00000 4.99382 5.02674 5.08056 
(1,2) 5.00000 4.99382 5.02674 5.08056 

5.98074 6.03707 
(2,2) 8.00000 7.96568 8.06845 8.20593 
(3,1) 10.0000 9.99754 10.1067 10.3240 
(1,3) 10.0000 9.99754 10.1067 10.3240 
(3,2) 13.0000 12.9292 13.1804 13.5448 
(2,3) 13.0000 12.9292 13.1804 13.5448 

14.7166 15.0528 
14.7166 15.0528 

(4,1) 17.0000 17.0241 17.3073 17.9431 
(1,4) 17.0000 17.0241 17.3073 17.9431 
(3,3) 18.0000 17.8258 18.3456 19.0411 
(4,2) 20.0000 19.8995 20.4254 21.2951 
(2,4) 20.0000 19.8995 20.4254 21.2951 

TABLE 2. Nodal approximation on criss-cross mesh 

exact computed 

2.00000 2.01711 2.00761 2.00428 2.00274 
5.00000 5.10637 5.04748 5.02674 5.01712 
5.00000 5.10637 5.04748 5.02674 5.01712 

5.92302 5.96578 5.98074 5.98767 
8.00000 8.27150 8.12152 8.06845 8.04383 
10.0000 10.4196 10.1890 10.1067 10.0684 
10.0000 10.4196 10.1890 10.1067 10.0684 
13.0000 13.7043 13.3195 13.1804 13.1156 
13.0000 13.7043 13.3195 13.1804 13.1156 

13.9669 14.5093 14.7166 14.8163 
13.9669 14.5093 14.7166 14.8163 

17.0000 18.1841 17.5423 17.3073 17.1972 
17.0000 18.1841 17.5423 17.3073 17.1972 

mesh 8 x 8 12 x 12 16 x 16 20 x 20 

meaning of "well-approximated eigensolutions" and we give a necessary condition 
for this property. 

Remark 4.1. Although the Qi - Po element does not satisfy the inf-sup condition, 
the eigenvalues computed by this method behave like those of the P1 and P1* 
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methods. In this case the first spurious eigenvalue converges to 18 (actually, 18 is 
a simple eigenvalue of the Dirichlet problem in the square, while in the numerical 
computation it is approximated by two distinct modes). 

For the Neumann problem the following explicit formula of the numerical eigen- 
values computed by the Qi - Po element is available (see [4]): 

(4.1) ,A7 - (4/h2) sin2(mh) + sin2(nh) - 2sin2( mh) sin 2(nh) 
1- (2/3)(sin2( mh) +sin2(n h)) + (4/9)sin2( (h)sin2(nh)' 

for 0 < m, n < N-1, with m + n 7& 0 and h = -w/N. 
It is easy to verify that for m, n fixed limh,o An = m2 + n2 = Amn , and hence 

A33 - 18; on the other hand we also have by (4.1) limh,o AvN-1 N-1 = 18. 

5. ON THE CONVERGENCE OF EIGENVALUES AND EIGENVECTORS 

In this section, using the notation introduced in Section 2, we show that prop- 
erty (2.12) is a sufficient condition for the uniform convergence (2.11). 

Theorem 5.1. Condition (2.12) implies the uniform convergence (2.11). 

Proof. Let f E L2(Q) be such that IIf Io = 1. Since the eigenfunctions ui, for 
i E N, are an orthonormal basis in L2(Q), we have 

00 

(5.1) f = ui, where a?i = (f,ui), 
i=l1 

and 
00 

(5.2) lifilo = oi =1 
i=l1 

Let IPh be the L2(Q)-projection operator defined in (2.14); then we can write 

N(h) 

(5.3) JPhf = E a4hUh) where ah = (f,Uh), 
i=l1 

and 
N(h) 

(5.4) ]Phfl o = Z (oxh)2 < Iff = 1. 
i l 1 

Due to the definition of Th, we have Thf = ThJPhf, so that we obtain 

Tf-Thf = Tf-TljPhf 

T( aiUi)-Th(N h) 

(5.5) 00 N(h) NThu 

= SeiTui- - 
i=l i=l 

00 N(h) 1 

=ZLE-ei Ui- E 
\h 

h 
El il 2z 

hU 
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For every N E N we set M m(N) as defined in (2.7). Then we can write 
M A/f 

Tf- ThJ = + (aiui - au (+) + E +) hu 

(5.6) 
= 

N(h) 1 1 
- S h a + E A-a2u2. 

i=M+l i1 i=M+l 

Now fix a positive E. The last term is bounded in norm by l/Ami+l and is therefore 
smaller than E for M big enough. The third term has a norm smaller than or equal 
to 1/Ah1+1. For M fixed and h small enough, it will also be smaller than E. The 
same is true for the first two terms: due to (2.12), for M fixed each one of them 
will have norm smaller than E for h small enough, and the proof is complete. D 

Let us conclude this section by showing that (2.11) is false for the third choice 
of spaces presented in the previous section. 

Theorem 5.2. Let Eh and Vh be defined as in (3.13). Then the sequence {Th} 
introduced in (2.8) does not converge to T in the norm of L(L2(Q)). 

Proof. In order to prove that (2.11) is false, we construct a sequence {v*} C Vh 
such that 

(5.7) = 1 Vh > O, 
I jTv*-Thv*Ilo 7 0 as h -+ 0. 

We take v* = vh/llvhlo0, where Vh is defined in Remark 3.11. Hence (3.35) 
reduces to 

(5.8) |(divT2h,Vh)1 < ClHThIlO Vh EE h- 

Since I vIlo = 1 and v* has zero mean-value in each macroelement, the sequence 
{ vh } converges weakly to zero in L2 (Q). Owing to the compactness of T, it follows 
that 

(5.9) Tv* -) 0 strongly in L2(Q). 

Consider the solution (hrh, uh) of the problem 

(5.10) f (h,TOh) + (diVTh,uh) = 0 VTh E Eh, 
(div Ouh, Vh) =-(,Vh) VVh E Vh- 

We observe that by definition Uh Thv*. Our aim is to prove that I Uh I I 0. 
From the second equation of (5.10) and the first of (5.7) we obtain 

(5.11) J(divcrh,uh)j = I(Vh,Uh)l ?< IUhIlo, 

and from the first equation of (5.10) 

(5.12) |(divcrh,uh)j = 110hlo1. 

Using (5.8) and then the second equation of (5.10), we get 

(5.13) 11h 0 ? > Ul(divcrh,Vh)I = -(Vh,Vh) = 

Finally, putting together (5.11), (5.12) and (5.13), we obtain 

(5.14) I UhIlO > 02 
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This concludes the proof of (5.7), because Tv* tends to zero as h -) 0 while 
uh = Thv* does not. D 

Remark 5.3. A similar proof shows that (2.11) does not hold for the Q1-Po element 
of subsection 3.2, nor for the P1* - Qo element of subsection 3.4. On the other hand, 
from (3.5) it follows that (2.11) holds for the mixed approach of subsection 3.1. 

6. ERROR ESTIMATES 

The aim of this section is to recall, for convenience of the reader, the proof of the 
good behavior of the mixed approach described in subsection 3.1 when applied to 
problem (2.1). In particular we shall prove the uniform convergence (2.11), together 
with the error estimates for eigenvalues and eigenvectors for a general choice of 
spaces Eh and Vh satisfying some suitable abstract conditions. Results of this type 
are well known. For instance, the specific case of Raviart-Thomas elements can be 
found in [1], together with an abstract framework and several references. 

We introduce the operator S: L2(Q) -) H(div; Q) given by 

(61) f (Sf,T) + (diVT,U) =0 VTE H(div;Q), 
(divSf,v) =-(f,v) Vv E L2(Q), 

and Eo = S(L2(Q)), which due to the regularity assumption on Q satisfies 

(6.2) Eo c H (Q) 2. 

Let us recall the so-called Fortin's operator (see [10]) Hh: EO - Eh: 

(6.3) (div(cr-Hlh0r),vh) = 0 VVh E Vh, 
11H|hoi||div < C 21 ll. 

Proposition 6.1. Let f E L2(Q) be given. Suppose the existence of Hh 0 -E Zh 

satisfying (6.3). Assume moreover the ellipticity in the kernel property (3.1). Then, 
using the notation of (2.3) and (2.8), the following estimates hold: 

(6.4) ||cr PihII <?C (|c-Hh- | 0+ X infvhEvh IITf-vh 

|ITf-Thf|o ?<C(infv,1Ev, I ITf-Vh|o? I I 191-(h I Io) 

Proof. The result is essentially known (see e.g. [9, 12, 1, 8] for results of this type). 
However, for convenience of the reader, we give the idea of the proof. In order to 
estimate the difference IIJPhTf - T 0fo we can use the inf-sup condition which is 
implied by the existence of Hh: 

I 1,PhTf -Thf Io < C sup (PhTf-Thf,div T) 

TCZ;I 1 ldiv 

< C sup (JPhTf -Tf,divr) + (Tf - Thf,div ) 
(6.5) TECh I ITIdiv 

< CJlPhTf-Tf Io + sup -(gi - 2h, i) 
rCZh IT1 ldiv 

?ClIPhTf-Tf 0jo+ 110-Qi0hI0. 

The second estimate of (6.4) is then obtained by the triangle inequality. Finally, 
the first one can be easily deduced using again the triangle inequality, the error 
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equations and the ellipticity in the kernel property (3.1): 

IHhcr- c0|II = (H7hf - 0I, HhFh - P) + (5 - 9ih, ThuQi - 91h) 

=66 (h 0-, Hh? - O-h) -(div(Hh02 - O-h), Tf - JPhTf) 
(6.6) 

I IHh91 -h hI0 Io- - 11h71 lo + div(TIhTf - ]P)I() Tf -IP1Tf 
0 

V|h h0 1-7z10+|TI PhTf - 

Remark 6.1. It is well known that the existence of the operator HI, verifying (6.3) 
together with (3.1) implies the following error estimate for problem (2.8): 

(6.7) 11- u-JhIldiv _< C (inf u u-Vh, lo+ inf 1 - ThI(liv) 

Actually, estimates (6.4) and (6.7) are not enough to ensure the uniform conver- 
gence (2.11). This has been proved with the counterexample given in the previous 
section. The P1 - div P1 element and the PI* - Qo element on a criss-cross mesh 
satisfy both (3.1) and (3.2). Moreover, it is not difficult to show the existence of 
an operator HIh which satisfies Fortin's hypothesis (6.3). However, they do not 
satisfy the uniform convergence (2.11); hence they are not well suited for the ap- 
proximation of eigenproblem (2.1), as has been proved in the previous section and 
numerically demonstrated in Section 4. 

From Proposition 6.1 it follows that it will be sufficient to add the following 
hypothesis for the uniform convergence (2.11): 

(6.8) [I- HhLC(zEoL2(Q)2) 2 0. 

The following theorem gives the error estimates for eigenproblem (2.2). 

Theorem 6.2. Assume that there exists a linear operator H,h : EO E h which 
satisfies Fortin's conditions (6.3) and (6.8). 

Assume also the ellipticity in the kernel property (3.1). 
For every N E N define moreover the following function PN :]0, 1] *R 

(6.9) PN(h)= sup (ilf ||u- Vh ?+| Vu- Hhu 0>- 

ttEEi11(N) Ei \V'LE/l/ 

Then problem (2.2) is well posed and the following error estimates hold trte 'with 
C independent of h: 

t7n.(N) 

Z A2-Ah I< C(PN(h))2, 

(6.10) (N) \ 
ihI 
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Proof. The proof is an immediate consequence of estimate (6.4) of Proposition 6.1, 
the definition (6.9) of PN and classical results on eigenvalues approximation (see 
[15], (3.17), (3.18) for the derivation of estimates (6.10); see also the references 
therein). D 

Remark 6.3. This last theorem implies, in particular, that the mixed spaces recalled 
in Section 3 give good results for the approximation of problem (2.1). For instance, 
when using the RT elements of lowest degree it is well known that for N fixed one 
has pN(h) = 0(h) (this is also easy to check using (3.4) and (6.9)). 
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