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EXTRAPOLATION METHODS AND DERIVATIVES 
OF LIMITS OF SEQUENCES 

AVRAM SIDI 

ABSTRACT. Let {Sm} be an infinite sequence whose limit or antilimit S can 
be approximated very efficiently by applying a suitable extrapolation method 
Eo to {Sm}. Assume that the Sm and hence also S are differentiable functions 
of some parameter , de S being the limit or antilimit of { de Sm}, and that we 

need to approximate d S. A direct way of achieving this would be by apply- 

ing again a suitable extrapolation method E1 to the sequence { d Sm,}, and 
this approach has often been used efficiently in various problems of practical 
importance. Unfortunately, as has been observed at least in some important 
cases, when d Sm and Sm have essentially different asymptotic behaviors as 

m oo 00, the approximations to de S produced by this approach, despite the 
fact that they are good, do not converge as quickly as those obtained for S, 
and this is puzzling. In this paper we first give a rigorous mathematical ex- 
planation of this phenomenon for the cases in which Eo is the Richardson 
extrapolation process and E1 is a generalization of it, thus showing that the 
phenomenon has very little to do with numerics. Following that, we propose 
a procedure that amounts to first applying the extrapolation method Eo to 
{Sm} and then differentiating the resulting approximations to S, and we pro- 
vide a thorough convergence and stability analysis in conjunction with the 
Richardson extrapolation process. It follows from this analysis that the new 
procedure for d S has practically the same convergence properties as Eo for 
S. We show that a very efficient way of implementing the new procedure is 
by actually differentiating the recursion relations satisfied by the extrapola- 
tion method used, and we derive the necessary algorithm for the Richardson 
extrapolation process. We demonstrate the effectiveness of the new approach 
with numerical examples that also support the theory. We discuss the appli- 
cation of this approach to numerical integration in the presence of endpoint 
singularities. We also discuss briefly its application in conjunction with other 
extrapolation methods. 

1. INTRODUCTION AND MOTIVATION 

Let {Sm} be an infinite sequence with limit or antilimit S that can be approxi- 
mated efficiently by suitable extrapolation methods. Assume that the Sm and hence 
S are differentiable functions of some parameter (, d- S being the limit or antilimit 

of { dSm}, and that d Sm and Sm have essentially different asymptotic behaviors 
as m -* oo. Suppose that we need to approximate d S. In this paper we propose 
a procedure by which this can be accomplished very efficiently via derivatives of 
extrapolation methods used for approximating S. 
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Without further delay we proceed to the motivation of this approach, which 
we present through the well-known Richardson extrapolation process that we use 
as our model. In doing so we keep the treatment general by recalling that infinite 
sequences are either directly related to or can be formally associated with a function 
A(y), where y may be a continuous or discrete variable. 

1.1. Brief review of the Richardson extrapolation process. Let a function 
A(y) be known and hence computable for y E (0, b] with some b > 0, the variable 
y being continuous or discrete. Assume, furthermore, that A(y) has an asymptotic 
expansion of the form 

00 

(1.1) A(y) -AZ+ akyuk as y -* O+, 
k=1 

where Sk are known scalars satisfying 

(1.2) Sk # 0, k =1, 2,.. .; RO1 < wu2 < ..; lim hk = +X, 
k->oo 

and A and ak, k = 1, 2, ... , are constants independent of y that are not necessarily 
known. 

From (1.1) and (1.2) it is clear that A = limyo+ A(y) when this limit exists. 
When limy-o+ A(y) does not exist, A is the antilimit of A(y) for y -* O+ , and in 
this case RJo- < 0 necessarily. In any case, A can be approximated very effectively 
by the Richardson extrapolation process that is defined via the linear systems of 
equations 

n 

(1.3) A(yl)= Aij) + Zikyk, j < l < j + n, 
k=1 

with the yl picked as 

(1.4) Yi = yow 1 =0,1, ... , for some yoE (0, b] and wE (0,1). 

Here A$j) are the approximations to A and the ak are additional (auxiliary) un- 
knowns. As is well-known, A$j) can be computed very efficiently by the following 
algorithm due to Bulirsch and Stoer [BS]: 

A -j) A(yj), j = 0,1,... 0 - J 

(1.5) A$j+'~) -n(j 
A) - c, j=,1,... n, n=1,2,... 

where we have defined 

(1.6) Cn = n = 1, 2... 

Note that {yi} can be chosen to be an arbitrary positive decreasing sequence in 
(0, b] such that lim, 00 y, = 0. Actually, {y'} can be chosen to make the extrap- 
olation process more economical computationally. The choice of the Yl in (1.4), 
however, enables us to compute the A$j) by the very simple and elegant algorithm 
in (1.5) and to give a complete analysis of convergence and stability, and hence to 
justify our procedure rigorously. 
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1.2. The generalized Richardson extrapolation process for d-A. Let us 
now consider the situation in which A(y) and hence A depend on some real or 
complex parameter ( and are continuously differentiable in ( for ( in some set X 
of the real line or the complex plane, and we are interested in computing deA A. 
Let us assume in addition to the above that dA(y) _ A(y) has an asymptotic 
expansion for y -* 0+ that is obtained by differentiating that in (1.1) term by 
term. (This assumption is satisfied at least in some cases of practical interest, as 
can be shown rigorously). Finally, let us assume that the ak and Sk, as well as 
A(y) and A, depend on ( and that they are continuously differentiable for ( E X. 
As a consequence of these assumptions we have 

00 

(1.7) A(y) A + Z(&k + akuk log y)yUk as y -* 0+, 
k=1 

where ak =dak and Sk -d0k. Obviously, A and the ak and Sk are independent 
of y. As a result, the infinite sum on the right-hand side of (1.7) is simply of the 
form EZ%1 (ako + akl log y)yUk, with ako and akl constants independent of y. 

Note that when the Sk do not depend on (, we have Sk = 0 for all k, and, 
therefore, the asymptotic expansion in (1.7) becomes of exactly the same form as 
that given in (1.1). This means that we can apply the Richardson extrapolation 
process above directly to A(y) and obtain very good approximations to A. This 
amounts to replacing A(yj) in (1.5) by A(yj), keeping everything else the same. 
However, when the Sk are functions of (, the asymptotic expansion in (1.7) is 
essentially different, from that in (1.1). This is so since yak logy and yak behave 
entirely differently as y -* 0+. In this case the application of the Richardson 
extrapolation process directly to A(y) does not produce approximations to A that 
are of practical value. 

The existence of an asymptotic expansion for A(y) of the form given in (1.7), 
however, suggests immediately that a generalized Richardson extrapolation process 
can be applied to produce approximations to A in an efficient manner. In keeping 
with the convention we introduced in [Si3], this extrapolation process is defined via 
the linear systems 

L(n+l)/2J Ln/2J 

(1.8) B(y1) = Bn) + 53 ak0Yk + E ak logyl, j < < j + n, 
k=1 k=1 

where B(y) _ A(y), B$j) are the approximations to B =_ A, and ako and akl are 
additional (auxiliary) unknowns. (This amounts to "eliminating" from (1.7) the 
functions yUl , yUl logy, yU2, yU2 logy, .. ., in this order.) Provided we take the y' 

as in (1.4), which is what we shall do throughout, the approximations B$j) can be 
computed very efficiently by the following algorithm developed in [Si3] and called 
the SGRom-algorithm there: 

BOj) =B(yj)v j = O, 1v *.*.* 

(1.9) B()- B(?+l~n1 - ThBn-l l j=0,1, ... , n = 1,2, ... n i1- An 

where we have now defined 

(1.10) A2k-1 = A2k = Ck, k = 1, 2, ... 

with the cn as defined in (1.6). 
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Before going on, we would like to mention that the problem we have described 
above arises naturally in the numerical evaluation of integrals of the form B = 

fO(logx)x g(x)dx, where. RT > - and g E C??[0, 1]. It is easy to see that B = dA, 

where A = fo xfg(x)dx. Furthermore, the trapezoidal rule approximation B(h) to 
B with stepsize h has an Euler-Maclaurin (E-M) expansion that is obtained by 
differentiating with respect to ( the E-M expansion of the trapezoidal rule approx- 
imation A(h) to A. With this knowledge available, B can be approximated by 
applying a generalized Richardson extrapolation process to B(h). Traditionally, 
this approach has been adopted in multidimensional integration of singular func- 
tions as well. For a detailed discussion see Davis and Rabinowitz [DR]. See also 
Sidi [Si2]. 

1.3. Theoretical comparison of A&j) and B(j) If we arrange the APj) and B$j) 
in two-dimensional arrays of the form 

Q(O) 
(1) (0) QO Q1 

(1.11) Q(2) Q(1) Q(o 
Q(3) Q (2) Q (1) Q (0 

then the diagonal sequences {Q(M) } with fixed j have much better convergence 

properties than the column sequences {Q(j) } with fixed n. In particular, the 

following convergence results are known: 

1. The column sequences satisfy 

AM)- A = O(ICn+llj) as j - oo, 

(1.12) - B(j) -B = 0(jl-SlCm+ 1j) as j -* oo, s = 0,1. 2m+s 

2. Under the additional condition that 

(1.13) -Tk+1- k > d > 0, k = 1,2,... , for some fixed d, 

and assuming that ak, ak, and akuk grow with k at most like exp(3k97) 
for some 3 > 0 and r1 < 2, the diagonal sequences satisfy, for all practical 
purposes, 

n\ 

An )-O(' IIi A as n - oo, 

Bni) -B = 0 lAil as n -oo. 

In addition, A$j) and B$j) can also be expressed in the form 

n n 
(1.15) A$j') = Z PniA(yj+i) and B (j) = OniB(yj+i), 

i=O i=O 
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where both pni and OJni are independent of j and are defined through 

(1.16) 
n n n -iAi n 

Un(z) ZH =Z Pniz2 and Vn (z) = Hi?=z OniZi 
I___ 

C 
i=0 i=1 

i i =0 

The numerical stability of A$j) and B$j) with respect to errors (computational or 
other) in the input values A(yi) and B(yi) is controlled by the quantities 

n n 
(1.17) r1) =>Pnil and T$j)= ZE 10ni L 

i=O i=O 

respectively, and independently of j. Faom the fact that EUn0 Pni = 1 and n0 OfJni 
= 1, which results by letting z = 1 in (1.16), we have F$j) > 1 and Y(j) > 1. Thus, 
the larger F$j) and YTj), the worse the propagation of errors into the computed 
values of A$P and B(Y). We also have 

(1.18) _ni) < I| 1_ c and T __) < 

with equality in both cases when the ci all have the same phase or, equivalently, 
when all vi have the same imaginary part. 

The results pertaining to A(j) in (1.12), (1.14) and (1.18), with real Sk, are due 
to Bulirsch and Stoer [BS]. The case of complex Sk is contained in Sidi [Si3], and 
so are the results on B$j). Actually, [Si3] gives a complete treatment of the general 
case in which 

00 qk 

(1.19) A(y) -A 
+ 

E E aki(lgY) yk as y 3 0+, 
k=1 i=O 

where the qk are known arbitrary nonnegative integers, the aki are constants inde- 
pendent of y, and the Sk satisfy the condition 

(1.20) Sk # O, k = 1, 2, ... .; Ro1 <?R2 <*** lim TYk = +X, 
k->oo 

which is much weaker than that in (1.2). Thus, the asymptotic expansions in 
(1.1) and (1.7) are special cases of that in (1.19) with qk = 0, k = 1, 2,... , and 
qk = 1, k = 1, 2, ... , respectively. 

Comparison of the diagonal sequences {A(j) } and {B(j) } (with j fixed) 
with the help of (1.14) reveals that the latter has inferior convergence properties, 
even though the computational costs of A(j) and B(j) are almost identical. (They 
involve the computation of A(yj), 1 < j < j+n, and B(yj), 1 < j < n, respectively.) 
As a matter of fact, from (1.6), (1.10), and (1.14) it follows that the bound on 
A(j) - Al is smaller than that on B(j4 - B by a factor of 0 (Hi=1 Cm+i/cil) = 

o(dm2 ) as m - oo. This theoretical observation is also supported by numerical 
experiments. Judging from (1.14) again, we see that, when R -k+1 - k = d for all 
k in (1.13), B<JW will have an accuracy comparable to that of Aj)Q This, however, 

increases the cost of the extrapolation substantially, as the cost of computing A(yi) 
and B(yi) increases drastically with increasing 1 in most cases of interest. 
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1.4. A new procedure for d-A. This inferior quality of B$j) relative to that of 

A(j) is rather disappointing. Thus, we wonder whether we can somehow approxi- 
mate B = A as accurately as we are able to approximate A by A$j), and at a cost 
similar to that of A$j) as well. For this we first take a critical look at how the B$j) 
are determined. 

Now even though the equations in (1.8) that define the B$j) are based directly 
on the asymptotic expansion of A(y) given in (1.7), it is clear that the generalized 
Richardson extrapolation process applied to B(y) completely ignores the fact that 
B(y) and B are derivatives with respect to ( of A(y) and A, respectively. In fact, 
A(y) does not feature directly in (1.8) at all. Similarly, the relation of ak and Sk 

to ak and Sk, respectively, is also ignored. These seem to be important facts to 
overlook. 

Since we do not necessarily know either the ak or the ak, there is apparently 
nothing we can do with the fact that they are related. We do, however, know 
the function A(y) as well as A(y). On the basis of this it can be argued that 
an approximation procedure that is better than the one that generates the B(j) 
should probably make use of both A(y) and A(y). One such procedure may be to 
directly differentiate A$j) with respect to ( and take dA =j) A(j) as the desired 

approximation to A. This is exactly what we propose to do in the present work. 
We must add immediately that, a priori, there is no reason for A$j) to approximate 
A as well as AM') approximates A. In fact, we are not even sure that A(j) is as 
good as B(j) In addition, we must find a way to actually compute A$j) - From the 
equations in (1.3) that define A(j), it is not clear how this computation is to be 
carried out. For this purpose, we propose to differentiate the recursion relation in 
(1.5) that is satisfied by A(j) 

As far as we know, our approach is new and so is the relevant theory. Needless 
to say, this approach can be used for computing higher order derivatives of A with 
respect to (. Furthermore, it can be used for computing partial derivatives of 
arbitrary orders of A in case A depends on more than one parameter. 

1.5. Outline of the paper. In the next section, we develop an economical recur- 
sive algorithm for computing the A$j). In Section 3 we provide some results on 
the Pni and d Pni that are very useful in studying the stability and convergence 

properties of both A(j) and A$j). In Section 4 we analyze the stability of column 
and diagonal sequences of the A$j). The main result of this section is Theorem 
4.1, which states that both column and diagonal sequences are stable. In Section 5 
we dwell on the convergence issue for both APj) and A$j). In Theorem 5.1 we 
give a convergence result on column sequences that assumes (1.2), but not neces- 
sarily (1.13). In Theorem 5.2 we give computable upper bounds on JA$j) - Al and 

-AAj)-AI that we use to derive powerful convergence results for diagonal sequences. 
In Theorem 5.3 we show that both A&j) and A$j) converge as n -* oo at rates faster 
than exp(-An) for any A > 0, assuming (1.13). (For A$j) there is an additional mild 
assumption on the Sk.) Here the result for A$j) seems to be new. In Theorem 5.4 
we show that, by imposing suitable growth conditions on the ak and ak, in addition 
to those already imposed on the Sk in Theorem 5.3, both AYj) and A$j) converge as 
n -* oo practically at the rate of (Hln 1 1ci ), i.e., at worst at the rate of exp(-tnn2) 
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with n = 2(logw1)d, hence at the same rate as well. (The part of this theorem 

pertaining to A(j) is already given in (1.14) and follows from a more general result 
in [Si3], as mentioned earlier. We have chosen to give a much simpler proof of it 
here.) Thus, the new procedure for approximating A proposed in this paper seems 
to be superior to the generalized Richardson extrapolation process applied solely 
to B(y) _ A(y). 

In Section 6 we give a numerical example that supports the theory of the sec- 
tions preceding it. In Section 7 we show how the new approach can be applied 
very economically to integrals (simple or multidimensional) of functions that have 
logarithmic singularities at endpoints, corners, and along lines and surfaces. Fi- 
nally, in Section 8 we discuss briefly how to extend the procedure of this paper to 
a generalized Richardson extrapolation process and other extrapolation processes. 

As the developments in the remainder of this paper will involve the Ck abun- 
dantly, before we go on it is important to make the observations that 

(1.21) Ck =+ 1, k = 1, 2, .. .; I Ic > I C21 > *--; lim Ck = ?- 
k->oo 

These follow from (1.2) and (1.6). 
Also, note that all the developments of this paper, including the recursive algo- 

rithm of the next section and the theory of the subsequent sections, directly apply 
to infinite sequences {Sm} that satisfy 

00 

(1.22) Sm S + Zf3kc as m -* oo, 
k=1 

with the Ck as in (1.21). Here we have the analogy Sm + * A(ym), and S - A, the 
rest remaining the same. 

2. RECURSIVE COMPUTATION OFAn 

Differentiating the recursion relation given in (1.5), and invoking (1.5) again, we 
obtain the following recursive algorithm: 

(2.1) 

A(j) A(yj) and A(j) =A(yj), j = 0, 1.... 

A(j+') CA(j) 
AM n-I n-I 

A4(j) - n-i -n n-i C 
n - 1-cn 

A ij) n-Il - nn-I + Cn (A(i) A-j)r i) j 0, 1, . .. n 
d Here cn- C nr n = 1,2,. This shows that we need two tables of the form 

given in (1.11), one for A$j) and another for Aj)i. We also see that the computation 
of the A$j) involves both A(y) and A(y). 

As is clear from (2.1), the computation of A(j) involves A(yi) and A(y'), 1 = 
j,j + 1,... ,j + n, whereas that of A9j) involves only A(yj), = j,j + 1,... ,j + n. 

Thus it may be argued that the computational cost of A(j) is twice that of AQj) 
However, at least in some problems of practical interest, such as those that arise 
in numerical integration, A(y) can be computed simultaneously with A(y) and at 
almost no additional cost. In other words, the computational cost of A$j) for such 
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cases is practically the same as that of Anj) This is a very important and useful 
feature of the method that we have proposed. 

3. THEORETICAL PRELIMINARIES 

Let us recall the definitions of cn in (1.6), of Pni in (1.15), and the result per- 
taining to Ei0np PniZ in (1.16). Theorem 3.1 below is a special case of Theorem 
2.1 in [Si3]. 

Theorem 3.1. The Pni satisfy 

(3.1) Xn(z) - E lPnil 4l < 1 + C Xn(Z) 
i=0 i=1 - 

Corollary. Assume the condition on the 0Jk given in (1.13). Then there exist 
positive constants Lo, L1,... , and M, all independent of n, for which 

n 
(3.2) Xn (1) = Pni < Lo) 

i=o 

n 
(3.3) Xn(Cs+l) = S Pni|I Ic,+1i < L,lc,+In v n > s, 

i=o 

and 
n n \ 

(3.4) Xn (cn+l) = E lPni IcCn+1 Ii < M ( IJCi I) 
i=O i=0 

Proof. We first note that the condition in (1.13) implies that Ici+i/cij < wd for all 
i. To prove (3.2) we let z = 1 in (3.1). We thus obtain 

(3.5) 2 1Pnil < - cl 
< - 

cl= 

The infinite products in (3.5) converge and have nonzero limits, since the series 
ci converges absolutely by the fact that Ici+i/cil <wd < 1 and by the ratio 

test. To prove (3.3) we let z = c,+1 in (3.1). We then have 

(3.6) E jPni I |Cs+1 ? < |CS (rIi 1+ /cs+i) 

The result follows again by the fact that the infinite products H1 1- ci and 
Hlo- (1 + Ic/ccs+ 1) converge and have nonzero limits. Finally, to prove (3.4) we let 
z = cn+1 in (3.1). We have 

(3.7) 

E 
lPniro 

ICn+1 (n cil) (II 
1? 

-ci ) 
? (][ 

Ic I) (I[ 
1 

C). i=o i=1 i=1 i -_1 i=1 

The proof can be completed as before. O 

Theorem 3.2. Define Pni-=j Pni and di=d, ci. Then 
np~ an n ~ 
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where Xm(z) is the upper bound on Xn(z) given in (3.1) and 

(3.9) bi(z)= ( li| + + )cL, i= 1,2,. 

Proof. We start with the recursion relation 

(3.10) 1 -- cmPm , i=O,1... , n, 

where we adopt the convention Pni = 0 for i < 0 and i > n. Differentiating both 
sides of (3.10), and invoking (3.10) again, we obtain 

(3. 11) pn-l,i-1 Cnpn-l,i + C (Pni -mPn-l,i) i = 0) 1) ... n 

Taking moduli on both sides of (3.11), multiplying by 4zl' and summing over i, we 
obtain 

(3.12) Yn(Z) < Z + ICn 
Yn-m1(z) + 1 I[Xn(Z) + Xn-j(Z)], 

-- -Cn .KX-?Cn) 

which, by invoking the upper bounds Xn(z) and Xmn-(z) on Xn(z) and Xnmi(Z), 
respectively, becomes 

(3.13) Yn(Z) < - + Yn-1(z) + bn(Z)Xm(z). 

Starting now with the fact that Yo(z) _ 0 and using induction on n, the result in 
(3.8) follows. D 

Corollary. Assume the condition on the 0k given in (1.13). Assume also that 
L??1 6i 1 < oo Then there exist positive constants L', L,..., independent of n, 
such that 

n 

(3.14) Yn(l) = I |Pnij < L 
i=o 

and 
n 

(3.15) Yn(Cs+l) ZPmnij Cs+i < Lc IC,+l In n > s. 
i=O 

If also 16i < KiIci 1 i = 1,2,..., for some Ki > 0, then there exists M' > 0, 
independent of n, such that 

n n n 

(3.16) Yn(Cn+l) = IPni Cn+ll < (M + E Ki) ICil) 

Proof. The proof can be achieved by setting z = 1, z = c+, and z = Cn+1 in 
(3.8), and recalling that limn oo Cn = 0. Thus, bi(1) 216i| as i -* oo, bi(c,+i) 

(1 + cs+j l- 1) I6jI as i -* oo, and bi (Cn+l ) < 11 -ci l-116li l+ Ki [ci_ Ij+ Kj as i -* oo, 
independently of n. In particular, we have Lo = IE' bi(I)] Lo < oc. We leave 
the details to the redear. D 

A very commonly occurring case is one in which Ki < K for all i. In such a 
case LEn> Ki < Kn. When Ki = O(i-1) as i -* oo, then ELn> Ki = 0(logrn) 
as n -* oo. When Ki = Q(ia) as i - oo, a > - 1, then En 1 Ki = Q(na+l) as 

n -* oo. In all these cases En 1 Ki - oo at worst like na with some a > 0, and, 
furthermore, we have E' 1 16i| < oo, since I ci = Rai < Waj dWid and w E (0,1). 
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4. STABILITY 

In Section 1 we mentioned the well-known fact that f(i) = EZ=0 n 
Pnil, cf. (1.17), 

controls the propagation of errors in input values of A(yl) into A$) by the fact that 

A(j) = En = PniA(yj+i), cf. (1.15). Analogously, by the fact that 
n n 

(4.1) A(j)= Z PniA(yj+i) + E Z niA(yj+i), 
i=O i=O 

what controls the propagation of errors in input values of A(yi) and A(y') into A() 
is now 

n n 
(4.2) Q$j => Pnil + E nZ = Xn(l) + Yn(l) 

i=O i=O 

independently of j. Using (3.1), we can bound Xn(1) by Xn(1), obtaining the easily 
computable bound on F(j) given already in (1.18). Using also (3.13), we can bound 
Yn(1) by Yn(1), where Yn(z) are determined from the recursion 

(4.3) Yn (z) = 11 - n Yn- (Z) + bn (z) Xn (z) v n = 1 , 2, ... .; Yo (z) = O. 

Substituting these in (4.2), we obtain 

(4.4) Qni <Xn(1) + Yn(1), 

which provides us with an easily computable bound for Q(j)) 
The following theorem summarizes the subject of stability of the A(j). 

Theorem 4.1. The column sequences {A(j)$}J,m (n fixed) are stable in the sense 

that sup3 Q() < 00. Under the condition on the Sk given in (1.13) and the ad- 
ditional condition of Theorem 3.2 that Zi.0 d0 < oo, the diagonal sequences 
{A}j) }?n% (j fixed) are stable in the sense that SUpn Qnj) < 00 

Proof. The stability of column sequences follows from the fact that Q(j) is inde- 
pendent of j. The stability of diagonal sequences follows from Xn (1) < Lo and 
Yn(1) < Lo in the corollaries to Theorems 3.1 and 3.2, respectively. D 

5. CONVERGENCE 

5.1. Convergence of column sequences. With the subject of stability treated, 
we now turn to convergence. We start with the column sequences. 

Theorem 5.1. Assume that the 0k satisfy (1.2), but not necessarily (1.13). Then, 
for fixed n, the error A$j) - A has the complete asymptotic expansion 

(5.1) 
(d d An ) -A E { jjE,[Un (ck)akI + Un(ck)akJk 1ogYj yjf as j-oo, 

k=n+1 

as a result of which 

(5.2) AM - A = O(jlCn+llj) as j -*oo. 
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Proof. The expansion in (5.1) is obtained by term-by-term differentiation with re- 
spect to ( of the well-known asymptotic expansion of A$j) - A, namely, 

00 

(5.3) A$i) - A >3 Un(ck)aky yk as oo. 
k=n+l 

This is allowed by our assumption that A(y) has an asymptotic expansion as y - 

0+ that is obtained by term-by-term differentiation of (1.1) with respect to (. 

For the sake of completeness, we recall that (5.3) follows by substituting (1.1) in 
A(j) En {=0 PniA(yj+i) (which is justified since limyj00 yj = 0), and then invoking 
Yj+i yjWi, Ck = cJk (1.16), and finally Un(Ck) = 0, k = 1,... ,n. 

The result in (5.2) means that if the (n - 1)st column of the extrapolation 
table for A$j) converges, then the nth column converges at least as quickly as the 
(n - 1)st column. The nth column converges if lcnl < 1 even when the (n - l)st 
column diverges. If the nth column diverges, it does so at most as quickly as the 
(n - 1)st column does. In summary, each column is at least as good as the column 
preceding it. Finally, this convergence is linear. 

5.2. Convergence of diagonal sequences. We next treat the convergence of 
the diagonal sequences. We start this by deriving upper bounds on A$j) - Al and 

JAj) -Al that are valid for all j and n. 

Theorem 5.2. Define for each s 

(5.4) Rs(y) =A(y)-A -E Ckylk, 
k=1 

and also 

(5.5) &s+1 O<ma<x YRo (y)/yls+I 

and 

(5.6) s+=ma<x |t(y)/ (yls?+ logy)| 

Then, for n > s, the errors in Anj) and An)) satisfy, respectively, 

(5-7) |A() -A| < &s+1 ys+l |X(C5+1) 

and 

(5.8) 

A) - A| < ?+ S Yn(cs+) + +1 max I ( logyj+il Xn(c,+l). n 
a i yi O<i<n) 

Proof. We start with 
n 

(5.9) A$i) -A = >Pni?(Yj+i) for s < n, 
i=O 

which follows by substituting (5.4) in A(j) o Pni-A(yj+i) and invoking (1.16), 

iz=0 Pni = 1, and Un(Ck) = 0, k = 1,... , n. Differentiating (5.9) with respect to 
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we obtain 
n n 

(5.10) A$j) - A E niRs (yj+i) + E PniRs (Yj+i), 
i=O i=O 

with Rs(Y) R, (y). FRom (1.1) and (1.7), we have 

00 

(5.11) R,(y) ZE akyk as y -- 0+, 
k=s+1 

and 
00 

(5.12) Rs(y) V S (&Zk + a k 6k logy)yfk as y -O+, 
k=s+1 

which guarantee the existence of finite &s+1 and /s+l as defined by (5.5) and (5.6), 

respectively. To prove (5.7) and (5.8), we now take moduli on both sides of (5.9) 

and (5.10), use the fact that 

(5.13) 

1Rs(y)I < ?&s+lIy's+1 and IR&(y)I < :,+ ly'8+1 logyl for y E (O,yo], 

and then invoke Yj+i = yjwJ, Ck = WJk , and (3.1) and (3.8). D 

It is worth noting that when &s+1 and /3+i or upper bounds on them are avail- 

able, (5.7) and (5.8) provide computable bounds on IAj) - Al and IAj) - Al, 
respectively. 

The bounds of Theorem 5.2 can be turned into powerful convergence theorems 

for the diagonals as we show next. 

Theorem 5.3. (i) If (1.13) is satisfied, then 

(5.14) A$j) -A = 0(w1n) as n r oo, for any u > O. 

(ii) If, in addition, 1 il < oo, then 

(5.15) AO) - A 0 (w1n ) as n ?-oo, for any u > O. 

Proof. Invoking (3.3) in (5.7), we obtain 

(5.16) Aj - A = O( c+1 ln) = O(w(Rs1+)nf) as n -*.> oo 

Similarly, invoking (3.3) and (3.15) in (5.8), and noting that maxO<i<n I log yj+i 

I logw rIn as n -*> oo, we obtain 

(5.17) A$O) - A = O(nlc+i c nl) = O(nw(Rs?+l)n) as n -0.> oo 

The results in (5.14) and (5.15) now follow if we realize that s in (5.16) and (5.17) 

is arbitrary and that liMk,0 RiJik = +00. 

What Theorem 5.3 implies is that the diagonal sequences {Anj)) }?= and 

{A$j)j'>}') all converge and do so superlinearly in the sense that IAj) - Al and 

IAj) -Al tend to 0 as n r--* oo like exp(-An) for any A> 0. By imposing suitable 

growth conditions on the ?ak and Sk, we next show that IAj) - Al and IAj) - Al 
tend to 0 like exp(-,n2) for some N > 0. 
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Theorem 5.4. (i) In part (i) of Theorem 5.3 assume also that &Yk = O(e 00) 
as k - oo, for some fi > 0 and?] < 2. Then, for any E > 0 such that w+E < 1, 

(5.18) A A o ((- A)d /2) as n oo 

(ii) In part (ii) of Theorem 5.3 assume also that both &kYok = O(ek7) and 
3ky O'k =O(e0k) as k -> oo for some 13 > 0 and ?] < 2. In additioin, as- 
sume that Idjl < Kilcil, i = 1,2..., with Ki = (i') as i > oo, a > -1. 
Then, for any E > 0 such that w + E K 1, 

(5.19) A(j)-A = O((w + )d7 /2) as n > o. 

Proof. Letting s rn in (5.7) and (5.8), and invoking (3.4) and (3.16), we obtain, 
respectively, 

(5.20) JA$ - Al < M&n+l c (j cil) 

and 

(5.21) 

IA(j) - Al 

n~~~~~~~~~~~~~ 
< ( i+iKi) &71+i + M ~max Ilog yj?i) 13 ~ + ( c) 

The results can be obtained by noting that 

(5.22) t|: |ci| =E77. Roi < g(Roj)n+dn(n-1)/2 (5.22) ]7J c2= w~~ 
i=l1 

which follows from (1.13), and Z> Ki Q (na) as n - oo for some a> 0, and 

(5.23) max Ilogyj+j I-logwIn as n oo, 
0< i n 

which follows from (1.6). We leave the details to the reader. D 

Note. Under the conditions of Theorem 5.4 it is clear from (5.21) that both IA() -Al 
and IA$- -AI tend to 0 as n -> oo at the rate of (H> ci ) for all practical purposes. 

6. A NUMERICAL EXAMPLE 

In this section we shall apply our new procedure to the summation of the infi- 
nite series Zk=01 (-log k)k-(-1, whether this series converges or not. For Rf > 0 
the series converges and represenits a function analytic for R? > 0 in the (-plane. 
Furthermore, this function is ('(( + 1) = d ( ( + 1), where ( ( + 1) is the Riemann 

zeta function defined by the conivergent infinite series c=1 k-1-' for R? > 0 
and then continued analytically to the rest of the (-plane. Obviously, if we let 

Ek (-1=Am,I then EL1(-log k) k - d Am -Am,. It is known that, 
whether {A,,} converges or not, and as long as ( 0, 

00 

(6.1) An ((+ 1) + LoCkn-?-k+l as n -> 00, 

k=1 
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with a1 = a2 1/2, ak = _(-1(k-)Bk-1, k = 3,4,.... Here Bi are 

the Bernoulli numbers. It can also be shown that dAn = An has an asymptotic 
expansion as n - oo that is obtained by differentiating the one in (6.1) termwise. 
Thus, 

00 

(6.2) An ('Q( + 1) + Z(&k - ak log n)n-(k+l as n --* oo. 

k=1 

By drawing the analogy An<- A(y), nr1 y, + 1) --> A, -k = +k-1, k= 
1,2, ... , we see that A(y) is of the form discussed throughout the paper, provided 

( 0, -1, -2,.... Also, y now is a discrete variable that takes on the values 
1,1/2,1/3,... Finally, cYk = 1, and hence Ck (logW)Ck for all k, so that 

1?? 1 < oo and Ki = logwI for all i in Theorems 5.3 and 5.4. 
In our numerical experiments we took yo 1 and w = 1/2, so that Yl- 2- and 

A(yj) = A21, 1 = 0,1 ... . 

We computed A$j), A$j), and B$j) for 1 and -1+ 1O i, and we give the 
results of the computation in Tables 6.1 and 6.2. For ( = 1, {Am} converges and 
has ((2) = 7r2/6 as its limit. For ( = -1 + lOi, it diverges with antilimit 4(lOi). 
Similarly, {Am} has ('(2) as its limit for = 1 and ('(10i) as its antilimit for 

= -1 + IO i. Note also that when ( = -1 + IO i, the partial sum A2. diverges like 
2n as n -*0 oo. All our computations were done in quadruple precision arithmetic. 

The results shown in Tables 6.1 and 6.2 are in complete agreement with the 
theory provided in the paper. In particular, A$2) and A$-) seem to converge to 
their respective limits or antilimits at the same rate. Also, since RJ?k+1 - k =1 

for all k, An?) and B(?) do have comparable accuracies, in agreement with the 
last paragraph of subsection 1.3. 

TABLE 6.1. Results of computation with the series EZ=- k=-1 
and E 1j (- log k)k--1 for 1 (convergent series). 

n A2n-Al I JAr)-Al fi A2r-Al 1 A A [ B B fi 

0 6.45D - 01 6.45D - 01 9.38D - 01 9.38D - 01 9.38D - 01 
I 3.95D - 01 1.45D - 01 7.64D - 01 2.44D - 01 5.91D 01 
2 2.21D - 01 1.53D - 02 5.56D - 01 3.01D - 02 1.03D - 01 
3 1.18D - 01 5.16D - 04 3.69D - 01 1.14D - 03 9.1OD - 03 
4 6.06D - 02 8.13D - 06 2.30D - 01 2.71D - 05 4.25D - 03 
5 3.08D - 02 4.43D - 07 1.38D - 01 1.49D - 06 3.98D - 05 
6 1.55D - 02 4.74D - 10 8.01D - 02 7.81D - 10 2.42D - 05 
7 7.78D - 03 4.28D - 11 4.56D - 02 1.94D - 10 7.55D - 07 
8 3.90D - 03 8.79D - 14 2.55D - 02 4.15D - 13 6.82D - 09 
9 1.95D - 03 3.92D - 16 1.41D - 02 2.26D - 15 1.47D - 09 
10 9.76D - 04 4.79D - 19 7.74D - 03 2.92D - 18 4.45D - 11 
11 4.88D - 04 3.01D - 22 4.21D - 03 2.11D - 21 2.51D - 14 
12 2.44D - 04 1.88D - 25 2.27D - 03 1.38D - 24 6.09D - 15 
13 1.22D - 04 1.66D - 29 1.22D - 03 1.39D - 28 4.23D - 17 
14 6.10D - 05 1.58D - 32 6.53D - 04 6.07D - 32 6.25D - 19 
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TABLE 6.2. Results of computation with the series %kIk 1 
and Ek1(-log k) k&- for ( -1 + 10 i (divergent series). 

__n ||A2n-Al | IA(?)-Al f A2 -Al JA?)-Al ] IB(?)-Bl 
0 7.63D - 01 7.63D - 01 4.95D - 01 4.95D - 01 4.95D - 01 
1 5.04D - 01 1.44D + 00 4.80D - 01 5.91D - 01 9.94D - 01 
2 5.54D - 01 2.90D + 00 8.30D - 01 3.92D + 00 1.57D + 00 
3 8.97D-01 2.54D + 00 1.91D + 00 5.34D + 00 2.54D + 00 
4 1.67D + 00 8.80D - 01 4.66D + 00 2.40D + 00 3.83D + 00 
5 3.25D + 00 1.54D - 01 1.13D + 01 5.11D - 01 2.89D + 00 
6 6.42D + 00 1.26D - 02 2.67D + 01 4.91D - 02 2.19D + 00 
7 1.28D + 01 5.68D - 04 6.20D + 01 2.55D - 03 8.OOD - 01 
8 2.55D + 01 1.27D - 05 1.41D + 02 6.43D - 05 2.58D - 01 
9 5.10D + 01 1.55D - 07 3.18D + 02 8.79D - 07 3.95D - 02 
10 1.02D + 02 1.OOD - 09 7.06D + 02 6.27D - 09 6.1OD - 03 
11 2.04D + 02 3.28D - 12 1.55D + 03 2.26D - 11 4.98D - 04 
12 4.08D + 02 6.31D - 15 3.39D + 03 4.72D - 14 3.51D - 05 
13 8.15D + 02 5.45D-18 7.34D + 03 4.43D-17 1.38D-06 
14 1.63D + 03 3.14D-21 1.58D + 04 2.74D-20 5.36D-08 

Finally, all of these approximations can be computed quite stably. Actually, 
from (1.18) and (4.4), we have that F$() < 9, T() < 69, and Q(j) < 22 for 1, 
while for ( -1 + lOi we have 1(j) < 38, T(j) < 1387, and Q(j) < 200. 

7. APPLICATION TO NUMERICAL INTEGRATION 

Let us consider the numerical approximation of the integral 
I 

B j (logx)xfg(x)dx, RJ > -1, 

with g E C??[0,1]. As mentioned in Section 1, B d _ A, where A 

f0 x g(x)dx. Let us set h 1 l/n, where n is a positive integer, and define the 
trapezoidal rule approximations with stepsize h to A and B, respectively, by 

(7.1) A(h) =h [ZG(jh) + G(1)1 G(x) _ xY(), 

and 

(7.2) B(h) h [ZH(jh) + -H(1)1 H(x) (logx)x g(x). 

Note that B(h) = A(h) since H(x) =G(x). The following extensions of the classical 
Euler-Maclaurin expansion are special cases of those given by Navot in [Ni] and 
[N2]: 

00 00 

(7.3) A(h) V A + Z?aih2i + Z bihjV+zl as h > O, 
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and 
00 00 

(7.4) B(h) B + Z aih2i + Z(bi + bi log h)h?+2+l as h -0 
i=l i=O 

with 

(7.5) a, = ( G(2i-1)(1)) i = 1,2,...; bi - 9(i) (i)9 , i 0 1 

dd and e,i = clai and bi =dA. As before, Bk are the Bernoulli numbers. The 
expansion in (7.4) is obtained by differentiating that in (7.3). (Note that G(x) 
depends on ( but g(x) does not.) For a different derivation of (7.3) see Lyness and 
Ninham [LN]. 

Let us now consider the case -1 < RJ < 0. Then A(h) is of the form described 
in Section 1 and treated throughout, with ol, 92, ... as in 

(7.6) 93i-2= +2i-1, 93i-1 +2i, 93i 2i,i=1,2,.... 

so that (1.13) is satisfied with d = min(-RQ, 1 + RT) > 0. 
Let us also apply the Richardson extrapolation process to the sequence {A(h1)} 

with hl - wi, 1 = 0,1,... , for some w E {1/2, 1/3,... }. (We should, of course, 
keep in mind that other more economical choices of {hi } are possible, but they do 
not enable us to make rigorous statements about convergence, convergence rates, 
and stability. We therefore stick with the above choice of {h, }.) 

Recall now that A($) -Al is practically O(H1=1 Icil) as n -> oo. This implies 
that IA(j) -Al - 0 as m -* oo practically like WZm, where Em = 

E3m Ri 
3m2 + 0(m) as m -* oo. (Recall the note at the end of Section 5.) 

Since Q3i-2 = &3i-l = 1, &3i 0, i = 1,2,... , we have 63i-2 = (logW)c33i2, 
c3i-1 = (logW)c3&l, c3i = 0, i 1,2,..., and thus E' 1 16i| < oo and Ki < 

I logwI for all i. Consequently, Theorems 5.3 and 5.4 apply, and so I -A3-Ai -* O 
as m -* oo like 3m2 practically. (Again, recall the note at the end of Section 5.) 

Similarly, B(h) = A(h) is of the form given in (1.19) with vi as in (7.6) and 
q3i-2= q3i-1 = 1, q3i = 0, i = 1, 2,.... Let us also apply the generalized Richard- 
son extrapolation process to the sequence {B(hi)} with hi = w', 1 0,1, ... , for 
some w E {1/2, 1/3,... }. By Theorem 4.2 in [Si3] the sequence {Bj) }?n0?= con- 
verges to B, and especially from equation (4.16) in the proof of this theorem, it 
follows that B(j) - B is practically O(H3.m ICilqi+l) as m oo. This implies that 

IB(j) - BI -* 0 as m -* oo practically like WAm, where Am E3=m(qi + l)(Rai) = 
5m2 + 0(m) as m -* oo. 

Thus, Aj) - Al and JB$j) - BI tend to 0 as n -* oo like n/ and 3 

respectively, for all practical purposes. That is to say, of the two diagonal sequences 

{Aij)}l=' and fB7(j)n=0 the former has superior convergence properties. Also, 
B(i)/ j will have an accuracy comparable to that of A$j). Of course, B(i 

. 

[ \,5/3 nj [, \5 /3nj 

is much more expensive to compute than A(j) itself. (Recall that the computation 
of A(yj) or B(yj) involves 21 integrand evaluations.) 

The comparative study above suggests, therefore, that the computation of inte- 
grals of the form fg (log x)xg(x)dx by first applying the Richardson extrapolation 
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process to the integral fo xfg(x)dx and then differentiating the resulting approxi- 
mations with respect to ( may be a preferred method if we intend to use extrapo- 
lation methods in the first place. This approach may be used in multidimensional 
integration of integrands that have logarithmic corner, or surface, or line singu- 
larities, for which appropriate extensions of the Euler-Maclaurin expansion can be 
found in, e.g., Lyness [L], Lyness and Monegato [LM], and Sidi [Sil]. All of these 
E-M expansions are obtained by term-by-term differentiation of other simpler E-M 
expansions, and this is what makes the approach of this paper appropriate. Since 
the computation of the trapezoidal rule approximations for multidimensional inte- 
grals becomes very expensive as the dimension increases, the economy that can be 
achieved by this approach should make it especially attractive. 

The new approach can also be used in the computation of the singular integrals 
Ir fg (log x)rx g(x)dx, where r = 2,3, ... , by realizing that Ir = rA. (Note 
that B = I1.) The approximations produced by the generalized Richardson extrap- 
olation process have convergence properties that deteriorate in quality as r becomes 
large, whereas the d'r Aj) maintain the high-quality convergence properties of the 

A(j) For the application of the generalized Richardson extrapolation process to 
such integrals, see [Si3]. Again, the extension to multidimensional singular inte- 
grals is immediate. 

Before closing this section we would like to make the following interesting obser- 
vation that is analogous to an observation of Bauer, Rutishauser, and Stiefel [BRS] 
about Romberg integration, see also [DR]: The approximation A(j) to B can be 
expressed as a sort of "numerical quadrature formula" with stepsize hj+n of the 
form 

(7.7) A$i) =j w)kH(khj+n) + E w(l) G(khj+n), M 1/w, 
k=O k=O 

in which the "weights" W(Ok and Wjlk depend on j and n, and satisfy 

vj +n vij+n 

(7.8) S w() =I and / =jn k= 
k=O k=O 

These follow from the facts that En= Pn= 1 and En P 0ni = 0. (We have obtained 
(7.7) and (7.8) by adding the terms 1G(O)h and 1H(0)h to the right-hand sides of 
(7.1) and (7.2), respectively, with the understanding that G(O) 0_ and H(O)- 0.) 
Also, these formulas are stable numerically, in the sense that 

vj+n 

(7-9) 5 (o)w + l?w(l) < Qni) < Lo + LI < oo for all j and n. 
k=O 

8. EXTENSION TO OTHER EXTRAPOLATION METHODS 

The derivative approach that we have introduced in Section 1 for A(y) as in (1.1) 
and (1.2), and for A$j) as defined via (1.3) and (1.4), can be extended to the more 
general case in which 

00 

(8.1) A(y) A + E Ckqk(y) as y -* 0+, 
k=1 
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where {fk(y)}Jk?=1 is a known asymptotic sequence, i.e., 

(8.2) $k+1 (Y) = (qk(y)) as y- 0+, k = 1, 2,... 

In this case approximations to A can be obtained through the generalized Richard- 
son extrapolation process, which is now defined by the linear systems 

n 

(8.3) A(y1) =A$i) +E6kqk(YI), j < l <j+n, 
k=1 

where {yl'}l c (0, b] is a positive decreasing sequence with liml,y0 = 0 that 
is picked by the user. As before, if A(y) and A depend on ( and A is desired, we 
propose to approximate A by AIj), and to obtain the Aj) by differentiating the 
recursive algorithms by which the A(j) are computed. Two such algorithms are 
the E-algorithm of Schneider [Sc], different derivations of which can be found in 
Havie [H] and Brezinski [B2], and the FS-algorithm of Ford and Sidi [FS]. For arbi- 
trary Ok (Y) these algorithms are quite involved, and their derivatives are even more 
involved. Nevertheless, this approach may yield better approximations than the 
generalized Richardson extrapolation process applied to the asymptotic expansion 

00 00 

(8.4) A(y) A + E &kqk(Y) + E Cek5k(y) as y -* 0+, 
k=1 k=1 

and defined through 

L(n+1)/2j Ln/2j 

(8.5) B(yi) = B$j) + C ~ko(nkk(YI) + j 6kl('k(Yl)i j < 1 < j + n, 
k=1 k=1 

assuming, of course, that {$k (y)} ??1 is an asymptotic sequence as y -* 0+ just like 
{c/k(Y)}k??=1, and the two are of essentially different nature. 

Before closing we would like to note that the procedure of this paper can be ap- 
plied in a very simple fashion in conjunction with extrapolation methods that are 
already defined via recursion relations, whether these are generalized Richardson 
extrapolation processes or not. One such method is the transformation of Shanks 
[Sh], which can be implemented very efficiently by the 6-algorithm of Wynn [W]. 
When this transformation is applied to a sequence {Sm} that depends on a param- 
eter (, our derivative approach produces the following recursive algorithm: 

(n) - (n) = 0 (n) SnI and (n) =n, n = O, 1, ... 
-1 

- 
-1 0 ~~~~0 - l 

(n) (n+l) + 1 
(k+1 k-1 +(n+l) (n) 

(8.6)k k 

.(n) .(n+) .(n+1) . (n) 

6k+1 6k-1 - - o1(n+l),k(n) 2 

Here (n) and e(n) are approximations to S, the limit or antilimit of {Sm}, and to 
d s respectively. Another such method is the 0-algorithm of Brezinski [B1], which 

is defined exclusively by a recursion relation similar to the 6-algorithm. 
We propose to consider the application of the procedure of this paper to some 

of the known extrapolation methods in a future publication. 
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