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COMPUTATION OF RELATIVE CLASS NUMBERS
OF CM-FIELDS BY USING HECKE L-FUNCTIONS

STEPHANE LOUBOUTIN

ABSTRACT. We develop an efficient technique for computing values at s = 1
of Hecke L-functions. We apply this technique to the computation of relative
class numbers of non-abelian CM-fields N which are abelian extensions of
some totally real subfield L. We note that the smaller the degree of L the more
efficient our technique is. In particular, our technique is very efficient whenever
instead of simply choosing L = N+t (the maximal totally real subfield of N)
we can choose L real quadratic. We finally give examples of computations
of relative class numbers of several dihedral CM-fields of large degrees and of
several quaternion octic CM-fields with large discriminants.

1. INTRODUCTION

In [Lou6] we developed a general technique for computing relative class numbers
hy of CM-fields N based on the use of (8) and Theorem 2 below with L = N* and
X = Xn/N+o in which case one can easily prove that W, = 1 (use the functional
equations satisfied by (N and (y+). This technique has been used to compute
relative class numbers of various non-abelian CM-fields of degree 4, 6, 8, 12 or 16
(see [Lou2], [Lou3], [Loud], [LO] and [LOO]), and these computations were in turn
used to settle the class number one problem for the non-abelian normal CM-fields
of degree < 16. However, this technique becomes too slow when the degree and
discriminant of N become larger. Indeed, setting

(1)
A n/2
B(N) = Ag/n+ (ﬁ logAN/N+> , where Ay n+ = 4/dN/Tds,

we proved that if A > 1 and n are fixed, then, according to (8) and (11), we should
compute B(N) terms in the absolutely convergent series (10) (with x = X n+) t0

compute Ay when N ranges over a familly of CM-fields of degree 2n. In particular,
this technique is too slow to compute relative class numbers of dihedral CM-fields
of degree 4p when the prime p is not that large, say equal to 5 or 7.

The main prospect of this paper is to explain how (8) and Theorem 2 below
make it easy to compute the relative class numbers of such dihedral CM-fields
N by computing the values at s = 1 of (p — 1)/2 Hecke L-functions over the
real quadratic subfield L of N. According to Theorems 4 and 7, to get a real
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approximation of the integer hy close enough to it to enable us to deduce its exact
value, we have to compute much fewer than B(N) terms in each of the (p — 1)/2
absolutely convergent series (given in Theorem 4) whose limits are the values at
s =1 of these Hecke L-functions (see also our third example). Subsections 4.1, 4.2
and 4.3 will provide the reader with actual computations of Hecke L-functions over
real quadratic fields. Note that according to Theorem 2, there is nothing peculiar
to L being a real quadratic field. It is just that it is easier to compute in ray class
fields of quadratic fields than to compute in ray class fields of number fields of higher
degree. In fact, in using Theorem 2 below and [Lou6] to get a practical technique
for computing values of K,,,1 and K, 2 (i.e., to get a generalization of Theorems
6 and 17), it would be easy to generalize all our results to cases where L is not
quadratic (in the last section of this paper we work out an example of calculation
of a Hecke L-function over a real cubic field). Hence, it is worth noticing that our
technique is much more general than the one developed in [Mey], which assumes
L quadratic. Our technique is also more efficient than the one developed in [Okal]
and [Oka2] based on the results in [Shi]. Indeed, a close look at [Okal] shows that
if the fundamental unit '
€ = (T +ye\/dL) /2

of a real quadratic field L is large, which happens quite often (for example, if
dy, = 18361 then y. has 49 digits in base 10), then Shintani’s method becomes too
slow to be of any practical use for numerical computations, for it requires a number
of operations growing to infinity at least linearly in the size of y. to compute values
of Hecke L-functions over L at s = 1. Even in the case where y. is small, Shintani’s
method is less efficient than the one developed here (see subsection 4.3).

To conclude, the technique here developed is more efficient but less simple than
the one used in [Lou4] and [Lou6]. Indeed, if N is a normal CM-field, we only
have to know how to compute the inertia and residual degrees in N of any prime
p to be able to use the method developed in [Lou6]. Here, we need a precise
description of the Hecke characters associated to the abelian extension N/L, and
we must determine the values of all the W, ’s associated to these Hecke characters.
However, the present method is much more efficient.

2. NUMERICAL COMPUTATION OF L(1,x)

Let C = 001002 ---00:Cy be a cycle of a number field L, where Cp, the finite
part of C, is an integral ideal of L and where oo;, 1 < i < ¢, are t distinct real
places of L. For simplicity of notation, Ny,/q(C) and Ny, q(Co) will both denote
the absolute norm of the ideal Cp. Let CLy,(C) denote the group of C-ideal classes,
which is also called the unit ray class group of L modulo C. If C’ divides C, then the
canonical map CLy,(C) — CLL(C’) is onto and any character x’ on CLg,(C’), i.e.,
any morphism of multiplicative groups x’ : CLy,(C’) — C*, induces a character x
on CLg(C). We say that a character x on CLy,(C) is primitive if it is not induced
by any character x’ on CLL(C’) for any C’ # C dividing C. In that situation, C is
called the conductor of x and we write C = F,.

Let E/L be an abelian extension of number fields of conductor C = Fg,y, (a cycle
of L). According to class field theory, E is a subfield of the unit ray class field Ry, (C)
of L where from the Artin map we get an isomorphism Gal(Rr(C)/L) ~ CLL(C).
We let Xg /1, denote the group of primitive characters of conductors dividing C =
Fg/L which induce the group of (not necessarily primitive) characters on CLg(C)
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which are trivial on Gal(Ry(C)/N). We have the following factorization of the
Dedekind zeta function of E:

(2) Ce(s) = H L(s, x).
XE€EXE/L
Let N be a number field. We say that N is a CM-field if N is totally imaginary
and if N is a quadratic extension of its maximal totally real subfield NT. In that
situation, the degree 2n of N is even and the class number hy, of N* divides the
class number Ay of N, and the ratio hy = An/hy+ is called the relative class
number of N. Let Qn € {1,2}, wn, dn and dyy, denote the Hasse unit index of

N, the number of roots of unity in N and the absolute values of the discriminants
of N and N, respectively. We have (see [Wal)

- Qnwn [dn Ress=1(¢N)
) "N = @my \ g Resuct ()

From now on, we assume that N is a CM-field of degree 2n and that N is
an abelian extension of some of its totally real subfields L of degree m. Let C =
FN/L = 001 - 00, Cny1, denote the conductor of this abelian extension N/L, and
let Ct = F+ /1, denote the conductor of the abelian subextension Nt /L. Therefore,
C* divides C, RL(C™) is a subfield of Rp,(C) and Xy /y, is a subgroup of the group

XnyL- We set X;I/L = X~y \ XN+/L. Notice that the conductor F, of any x in

XN L is of the form F, = 00 - --00,Cy for some C, dividing Cn/r. Using (2) for
both N and N, we get

(n/a)s)= T Lis,x)

x€XN/L
and
) = e [ T L.
(@2m)n
XEXN/L

Note that there are [N : L]/2 = n/m characters in X s It is known that if x is
a primitive character of conductor C = 001 - - - 00,,Cy, which is ramified at all the m
infinite places of L, then the Hecke L-function s — L(s, x) satisfies the functional
equation

(5) F(—s,x) =W,F(s,X)

for some Artin root number W, with |[W,| = 1, where

(6) F(s,x) = A T™((s +1)/2)L(s, x)
and

(7) Ay = N q(C) /.

Let x N+ denote the quadratic Hecke character of conductor F N+ associated
to the quadratic extension N/N*. We have

AXN/N+ \/dN+ N+/Q( N/N+)/7TT"= mz H Ax7

XE€EXN/L
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and we obtain
(8) hI:I = 2‘”7r_”/2QNwN H AXL(]., X)
xeX;,/L

For R(s) > 1, write

ns
n>1
where
(9) ()= Y, x()
Ny, q(@)=n

(this sum ranges over all the nonzero integral ideals of L of norm n, and we set
x(I) = 0if Iis not coprime with F,). According to (9), n — a,(x) is multiplicative,
i.e., ged(m,n) = 1 implies aymn(x) = am(x)an(x). Therefore, when doing actual
computation we will only explain how we compute a,(x) on powers of primes.
Using (5) and the Euler product of s — L(s, x), the reader can easily prove

Lemma 1. If all the ayx(x) are real, then all the an(x) are real, Wy is equal to
+1 or —1, L(1,x) s real, and L(1,x) > 0.

Theorem 2. Let L be a totally real number field of degree m and let x be a primitive
Hecke character of conductor C = 001003 - - - 00mCy, 0n the ray class group CLy,(C)
for some integral ideal C,, of L. In particular, we assume that x is ramified at
all the infinite places of L. Let W, be the Artin root number which appears in the
functional equation of the Hecke L-function s — L(s,x). For a > 1 set

a+ioco 2—2s
Ko 1(B) 1/ () B gs

’ - 5—75 —ioo s—1
and
1 a+ico B2—2s
K., 2(B) = — I'(s) —————ds.
B =5 [T g
Then
an an
10) 20 =3 "Wk g+ w3 Wk /4,
n>1 n>1

where Ay = \/dLNp;q(Cy)/m™, and since for B > 0 we have

(11) 0 < Kpno(B) < K1 (B) < me 5",
both the series which appear in (10) are absolutely convergent.

Proof. Set
a-+ico

Hy,(x) = 5—17;/ ' ((s4+1)/2))z%ds (x>0 and a > 0)

—i00

G(z,x) = ——/ F(s,x)x™%ds = Z an(x)Hm(nz/Ay) (z>0and a>1).

—i00 n>1
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Using the same line of reasoning as in [Loud] and [Lou6], we obtain

(12) G ="2G0/m0 (>0,

F(s,x)=/ G(x,x)xs%; =/ G(x,x)xs_ldx+WX/ G(z,x)x °dx,
0 1 1
and

AxL(1,x) = F(1,x)

—Zan / H,(nz/Ay)dx + Wy Zan / H,,(nz/Ay) dx

n>1 n>1
Noticing that

mehj‘mMMvmdmﬂth/lhm@,
B B z

we get (10).

As for the proof of (11), we refer the reader to [Lou6, 3. Proof of Proposition
1]. Notice that K, 1(B) + Km2(B) = Kn(B), where m — K,,,(B) is the function
used in [Lou6]. e

3. HECKE L-FUNCTIONS OVER REAL QUADRATIC FIELDS

Let L be a real quadratic number field. Let Ap, dy, A1, xL and co; and oco2
denote its ring of algebraic integers, the absolute value of its discriminant, its class
number, its primitive modulo dy, quadratic character and the two infinite places of
L. Let Fy be an integral ideal of L, set F = 001002Fp, and let x be a primitive
Hecke character on Cli,(F), the ray class grocup modulo F. In particular, we assume
that x is ramified at both co; and ocog. It is known that if we restrict x to principal
ideals (a) coprime with Fp, then there exists a unique character xo on (Ar/Fo)*

such that
x((@)) = v(a)xo(a),

where for any o € L'\ {0} we let v(a) denote the sign of Ny, q(«). This character
Xo is called the modular character associated with x.

Notice that if Ay, = 1 then x = vxo and, to compute x on ideals, it remains to
explain how one can effectively determine a generator o, of a principal primitive

ideal d
P+
L=QZ+ %z
of norm Q. Set zo = (P + V/d1)/(2Q), let zo = [ag,a1,---] be the continued
fractional expansion of zg, and set =, = [an, @n+1,- - -]. It is well known that z, =

» +v/dp)/(2Qy,), where the P,’s and @,,’s are recursively defined by
an = [z5] = [(Pr + VdL)/(2Q0)],
Pn+1 - 2anQn - na
Qn+1 = (du — P711)/(4Qn).
We define two sequences (p,)n>—1 and (gn)n>—1 by setting

(p—l7 Q—l) = (07 1)7

(pOa QO) = (17 0),

(pn+17 Qn—i-l) = (anpn + Pn—1,0nqn + Qn—l)'
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Since L is principal, there exists m > 0 such that @,, = 1 and
Qr = ((2me ~ qmP) — qm dL)/2
is an explicit generator of the principal ideal £ (see [LO]).

Proposition 3 (See [Sie]). Choose v € L such that (yv/dr)Fo = I is an integral
ideal coprime with Fy, and set

TR(hXxo) = Y. xo(A\)ermTr_lm),
A mod Fy
where Try,/q stands for the trace from L to Q. Then

7 (Vs X0)
W, = x(@)v(vV/dL) ———=
X Nr/q(Fo)
has absolute value one and does not depend on the choice of v. In particular, if
Fo = (1) then we may take v = 1//dy, and we get W, = 1.

We now explain how to compute numerical approximations of L(1,x) that are
as good as desired for Hecke L-functions over real quadratic fields.

Theorem 4 (See Theorem 2 and (11)). 1. We have

(13) LL,x) =) anle) Ka1(n/Ay) + Wy Y anT(LX) Ky a(n/Ay),
n>1 n>1

and since 0 < K3 2(B) < K2 1(B) < 2e™B, these series are absolutely conver-
gent.
2. For any positive integer M > 2A,,, in setting

y~ an(x) LR
(14 Sul0) = 3 R K (/A + Wy 30 =2 Kaa(n/Ay),
n=1 n=1
we have
(15) IL(1, x) — Sar ()| < 4(log(Me) + 1)2e=M/4x,

and there exists C1 > 0 absolute and effective such that for any L, any x and
any M > 0 we have

(16) L(1,x)| < C1 log?(2e4,)
and
(17) : 1Sm(x)| < C1log?®(2e4,).
3. Conversely, there exists Co > 0 absolute and effective such that for any L and
any non-quadratic X we have
(18) |IL(1,x)| > Co/ log?(2eAy).
Proof. We prove point 2. We have |a,(x)| < d2(n), where da(n) is the number of

factorizations of n as a product of two positive integers. We now follow the same
line of reasoning as in [Loud], and set

S(z) 3 @ < (Z %) < log?(ex)

n<z n<x
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and

Ru(x) = Z Me—n/flx_

n
n>M

Using (11), we get |L(1,x) — Sm(x)| < 4Rpm(x) and

4RM(X) < 4 Z S(n) (e_”/Ax _ e_(”+1)/Ax)

n>M

IA

24— Z log?(en)e™™/4x

X n>M

4 [ee) oo

< —/ logQ(ex)e_m/Axdx=4/ log®(eA,z)e~%dz,
AX M M/Ax

where the last inequality holds for M such that M log(eM) > 2A,, hence for

M > 2A, (note that we always have A, > 1/2). Finally, in setting a = M /A, > 2

and b = eA, > 0, we get (15) from

/ lOgQ(b.’L')C_zdx = e @ log2(ab) +2/ log(bx)e—miig

a

IA

e ® logQ(ab)+§/ log(bx)e™®dx

2 2 [ dz
—a 2 £ _—a “ —x
e~ %log”(ab) + o€ log(ab) + a/a et —

I

2 2
—a 2 —a —a
< e %log®(ab) + e log(ab) + e

As for (16) and (17), we use the previous bound on Rjs(x) and note that
d2(n) _pja, o 4 2 —n/A 2
4 Z — e < i Z log®(en)e x < 8log”(2eA,).
n<2Ay n<2Ayx

Finally, the proof of point 3 follows by the same method as in [Loul]. e

Let N be a CM-field of degree 2n which is an abelian extension of degree n of
some real quadratic subfield L. Recall that

- A
hn = @nwnN H Z;rﬁL(l’ X)
X€EXN/L

and set
_ A
(M) =@Qnun [T 7£Su(M),
X€Xn,L

where the S, (M) are defined in Theorem 4. When doing actual computations, to
find an upper bound on |hyy — hyg(M)| we use (15)-(18) and the following technical
lemma:
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Lemma 5. Let (x)1<k<n be n nonzero complex numbers, let (ex)i1<k<n be n com-

plex numbers, and set € def maxi<k<n(|€k|). Then

(f1) - (FLe o) = (D) (o () )

We refer the reader to Theorem 7 for a more general use of this technical lemma.
Now we explain how we can practically compute K5 1(B) and Kj2(B) for any
B>0:

Theorem 6. Let v = 0.577 215 664 901 532 860 606 512 090--- denote Euler’s
constant and let B be positive. For i€ {1, 2}, set

1 1
an,z(B) —’Y+lOgB— m _I;E

We have the following power series expansions:

B2n+2
1 Ky1(B) = 4 n1(B)———mm————,
( 9) 2,1( ) 1+ 7;)0, ,1( )(2n+2)(n|)2
B2n+2
2 Ky5(B)=nB +4 n2(B)m—m————
(20) 22(B) =B+ 7;)“ 2( )(2n—|—1)(n!)2
and for any integer M > 0 we have
2n+2 2M+3
(21) S ani(By o e 2B
" (2n 4+ 3 —4)(n!) (M + 1)(M?)

Proof. For the sake of argument we only prove (20), and (21) for ¢ = 2. Recall that

1 a+ico ) B2-2s
Ko9(B) = — T —ds.
22(B) = 35 /a_ioo ()5 Wk
We set
1 —M—1+ico B2—2s
Ry = — I‘z(s)—ds,
2mi ) _M-1-ico s—(1/2)

and we notice that the poles of
s f(s) =T%(s)B*"* /(s = (1/2))

are s = 1/2 (which is a simple pole) and s = —n for any n > 0 (which are
double poles). Pushing the line of integration R(s) = « to the left to the line
R(s) = —M — 1, we obtain

M
K35(B) = Resem1/2(f)+ D Ress— n(f) + Ru
n=0

1 1'\/ 4B2‘n+2 )
7TB—nz>:0<2n+1 —1ogB+F(n—|— 1)) m‘l‘RM.
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Now, since (I"/T")(s+1) = 1 +(I"/T")(s) and (I"/T)(1) = —, we get (I'/T)(n+1) =
—y+ Y %1 #- Finally, we noticed in [Lou6] that

M
1 ™ 2k+1 ., 4r
N Y/ - — <
I( 2t i)l cosh(rt) klllol 2 il < (M")2 cosh(nt)’

which yields the desired bound

Ry <

2B2M+3 e} dt 2B2M+3
(M +1)(M!)? /_oo cosh(mt) (M +1)(M!)?"

4. EXAMPLES OF RELATIVE CLASS NUMBER COMPUTATIONS

4.1. First example: Some Hilbert 2-class fields. We let L be a real quadratic
field with fundamental unit of norm +1 and such that the 2-Sylow subgroup of its
narrow ideal class group is cyclic of order n = 2™ for some m > 2 (and hogqq will
denote the odd part of the narrow class number of L). Therefore, L = Q(,/p1p2)
for some primes p; and p; not equal to 3 modulo 4 satisfying 2 < p; < p2 and
(p1/p2) = +1 (Legendre’s symbol). We let N and N denote the narrow Hilbert
2-class field and wide Hilbert 2-class field of L, respectively. Then N is a dihedral
CM-field of degree 2n = 2™*! > 8 with maximal totally real subfield N*. Moreover,
the relative class number of a dihedral CM-field N of degree 2™*! > 8 is odd if
and only if N is some such narrow Hilbert 2-class field (see [LO]). In that situation
QN = wn =2, Ay = /di/7m? and W, = 1 (use Proposition 3) do not depend on
X € Xy /L and

is a perfect square. Now we explain how we computed a,(x) on prime powers
k
n = p":

If (p) = P is inert in L then P is principal in the narrow sense, x(P) = 1 and

0 (x) = 0 if kisodd,
X = 1 if k is even.

Therefore, we have a,(x) = 0 if (dr./n) = —1 (Kronecker’s symbol).

If p € {p1,p2} is ramified in L, say P?2 = (p) = (p;) = P2, then the order of
P in the narrow ideal class group of L is equal to 1 or 2, and x(P) = 1 or —1,
respectively, and

ape(x) = x(P)*.

Note also that if P; has order 1 in the narrow ideal class group of L, then the other
P; has order 2 in the narrow ideal class group of L (for their product, which is
equal to the principal ideal (v/dy), is principal in the wide sense but not principal
in the narrow sense). In Table 1, we let p4 denote the p; for which the prime ideal
of L above p; is principal in the narrow sense.
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Finally, if (p) = PP’ splits in L, then x(P’) = x(P)~! and

k
ape(x) = Y x(P*)x(P*%)
a=0
k+1 if x(P) =1,
= ¢ (-D)kE+1) if x(P) = -1,
SO DR LZ) if X (P) = exp(2kpmi/2™) # *1 .

We fix a prime ideal @ of L whose narrow ideal class has order 2™ in the narrow
ideal class group of L (in practice, we choose Q whith smallest norm). Let e, €
{0,1,---,2™ — 1} be the only integer in this set such that Q¢7Phedad is principal
in the narrow sense. Then, x(P) = X(Q)‘ephf:dd where hogdahlzq = 1 (mod2™).
We also let ¢ be the character defined by 1(Q) = exp(27i/2™). We have X L=

{4*, 0 <i<2n—1andi=2j+1o0dd}. Using the technique developed in this
paper to compute the values at s = 1 of these n/4 = 2n/8 Hecke L-functions, we
computed Table 1 of relative class numbers (the tables are in §7). It agrees with the
results of the computations we did in [Lou3] and [LO]. In [LO] we used a technique
peculiar to these Hilbert class fields developed in [Zag] to efficiently compute such
relative class numbers. Let us point out that the use of Zagier’s method requires
the determination of the structure of the ideal class group of L, whereas the method
developed here does not require it, and, according to [LO, Table 2] and Table 1 of
this paper, both techniques agree for the four Hilbert 2-class fields considered in
[LO], for which the ideal class group of L is not cyclic.

4.2. Second example: Dihedral CM-fields of degree 4p. We now want to
explain how we can use our previous results to efficiently compute relative class
numbers of dihedral CM-fields N. This was our main motivation for writing this
paper. Indeed, in [LOO], to solve the class number one problem for the dihedral
CM-fields N of degree 12 we reduced the computation of hy to that of Ay, , the
relative class number of some non-normal sextic CM-subfield of N, and we used the
technique for computing relative class numbers of CM-fields developed in [Lou6].
But this technique is too slow to compute relative class numbers of dihedral CM-
fields N of higher degrees. Moreover, we used cubic polynomials Pk (X ) defining the
non-normal maximal real subfields K = N¢ of such Ny’s to compute the coefficients
an(xN0 /NG ). But it would be impossible to use such defining polynomials for fields

of higher degrees, for their computation would be much too slow. To overcome
both these problems we thought it more efficient to construct real dihedral CM-
fields NT of degree 2p by constructing characters of order p on ray class groups of
real quadratic number fields L, for this would then enable us to compute relative
class numbers by using the technique developed in this paper.

Throughout this section, N will denote a dihedral CM-field of degree 4p, p any
odd prime; that is, N is a normal CM-field such the Galois group Gal(N/Q) is
the (non-abelian) dihedral group of order 4p. Since the complex conjugation must
be in the center of this Galois group (see [LOO]), then the maximal totally real
subfield N* of N is normal, Gal(N*/Q) is the dihedral group of order 2p and we
let L denote the only quadratic subfield of N over which N is cyclic. Therefore, L
is real. We finally let M denote the maximal abelian subfield of N. Therefore, M
is an imaginary biquadratic bicyclic number field containing L. Conversely, let Nt
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be a real dihedral number field of degree 2p, where p > 3 is an odd prime. Let L
be the quadratic subfield of Nt and let M be any imaginary biquadratic bicyclic
field with maximal totally real subfield L. Then N = MN™ is a dihedral CM-field
of degree 4p which is cyclic over L. It is known that there exist positive integers
I+, fmyo and fi/n such that Fn+yr = (fn+/n)s Fvyn = 001002(fmy/L) and
FnyL = lem(Fy+ jn, Fvyn) = 001002(fy/) (see [Mar]). The following Theorem 7
and Proposition 9 explain how to compute relative class numbers of such dihedral
CM-fields:

Theorem 7. Let N be a dihedral CM-field of degree 4p. Set AN = /dL fﬁl /L /2
and let x be any one of the p — 1 characters in XN = XN \ XIC,[/L.

1. x = Xx+X-, where x4+ € XN+/L has order p, and x— = xm/L € XMm/1, which
does not depend on x, is the quadratic character associated with the quadratic
extension M/L.

2. The character x* of Gal(N/Q) induced by x is a real valued irreducible char-
acter of degree 2 of the dihedral group Ds,. Hence all the an(x) are real and
L(1,x) > 0, W, = +1 (see [FQ, Th. 1]) and A, = Ax do not depend on x.

3. On = Qm, wn = wm and hy; diwvides hy (see [LOO)), and hy/hy =
(hn /M)2 is a perfect square (see [LP] or the proof of Theorem 12) and

(p—3)/2 AN .
(22) hyn = 11 EL(l,xzﬁl).
Jj=0

4. Let a real number A > 1 and a prime p > 3 be given. Set

B/(N) = Ap—;lAN log AN

and
(p—3)/2 An 4
h‘I:I/M(M) = 4—7TSM(X2]+1),
3=0

where the Sy (x*+1)’s are defined in Theorem 4. Assume that M > B'(N) >
2Am. Then the limit R(M) = |hy —h;I/M(M)I as An approaches infinity
s equal to 0.

Proof. To prove point 3 we use (8) for N and M and notice that the characters in
XN /M come in conjugate pairs. Let us now prove point 4. We simplify the notation
and set A = AN. Since the (p—1)/2 primitive characters which appear in (22) have

the same order 2p, none of them is quadratic and we may use point 3 of Theorem
4. Set

ear = 4(log(eM) 4 1)%e~M/4
(which decreases for M > 2A4). Using Lemma 5, (15) and (18), we obtain

(p—1)/2 A (p—1)/2 p— 1 5
R(M) < CY? (E) log? ! (2¢ A) (exp ( 2C, ey log (2eA)> - 1) .

Therefore, M > B'(N) yields e M/4 < A=\P=1/2 ¢\ <« log?(2eA) A~ P—1)/2
and

logPt3(2eA)
R(M) < 5556173

from which the desired result follows. e
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Remark 8. When doing actual computation we use

(p—3)/2 An (p—3)/2

. o A
yo (S (¥t —enr) < hN/M < I—IO N
]=

yp (S (¥t + emr)

=0

(provided that all the (p — 1)/2 terms on the left hand side of these inequalites
are positive), and we stop the computation when M is large enough and such that
these inequalities squeeze only one rational integer.

Proposition 9.
1. Let Ly and Ly denote the two imaginary quadratic subfields of M. We have
famy/L = \/ 9L, 9L, /dvr, and a rational prime | divides fy/n if and only if it
divides both dy, and dy, . Now, since for any prime ideal L of L lying above

some rational prime | > 2 the value xnm/L(L) depends on | only, we may
define € = x/L (L), and we have

0 if XLo ()= XL, () =0,
a =< -1 ifxu(l) #—1 and either xp, (1) = —1 or xg,, (1) = -1,
+1 otherwise

2. Let 1 = x?11 be any one of the (p—1)/2 characters of order 2p which appear
in Theorem 7, and let ¢ = P with ¥y € X4 /L and P_ = xm/L denote
its factorization. Then, for any rational prime | > 2 we have:

(a) Ifl divides fn/L = lem(fa+ /L, fayL), then ap () = 0.
(b) Assume that | does not divide fn /1.
(i) If xr.(l) = =1, then ¢ = ¢4+ (I) = +1 and

an () = {0 if k is odd,

1 if k is even.

In particular, a,(v¥) =0 if xL(n) = —1.
(ii) If xu(1) =0, then a;x () = €.
(iii) If x.(l) = +1 and () = LL in L, then

ap () = 4 B+ Det if Y4 (L) = +1,
’ snGUADRCr/E) b if 14 (L) = exp(2kei/p) # +1.

In particular, if a,(v) # 0, then ged(n, fn/L) = 1 and xL(n) # —1.

Proof. We only prove point 2. If [ not dividing fn,1, is inert in L, then (I) = £
splits in N /L and in M/L (look at inertia fields), which yields (L) = +1,
¥_(L£) = 41 and the desired result. If I not dividing fn/1 is ramified in L and
(1) = L2, then L splits in N* /L (see [Mar, Prop. II1.3 page 124]), v, (L) = +1,
and we get the desired result. Finally, assume that [ not dividing fn,1 splits in
L, and write (I) = £L'. Using the same line of reasoning as in [Cox, section D
page 190-192], one can prove that any real dihedral field Nt of degree 2p and
conductor Fy L= (fn+/1) is a subfield of the ring class field of conductor fn+ /1
of the real quadratic field L (see [Lef] or [LPL]). Hence, any 1, in Xy /1, must
be trivial on the group generated by the principal ideals of the form (), where
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a € Ay, satisfies @ = a (mod (fn+,1)) for some rational integer a relatively prime
to fn+,1- Therefore, we have ¢ ((1)) = +1, which yields ¢4 (£') = ¥, (L),

k
ar () = & S (L) (L)% = e (£)7F 3 g (£)%,
a=0
and the desired result. o

It remains to explain how we can compute ¥ (£) and how we can construct real
dihedral fields Nt of degree 2p.

4.2.1. Numerical computation of the relative class numbers of some dihedral CM-
fields of degree 4p. To test the efficiency of our approach, we choose to apply it
in the following simple situation: the computation of relative class numbers of
dihedral CM-fields N of degree 4p (p any odd prime) such that their real quadratic
subfields L have class number one (which yields x = vxg), such that the extensions
M/L are unramified at all the finite places (which yields Fn/ = 001002 F 4. /L
and xo = x4, for any x € X /L) and such that the conductors F. q, of the
cyclic extensions N* /L of degree p are as simple as possible, i.e. are of the form
Fn+ /L= (q), where q # p is a positive prime integer (see Point 1 of Proposition
10 below). We refer the reader to [LPL] for a comprehensive exposition of the
construction and the computation of the relative class numbers of the dihedral
CM-fields of degrees 4p (p any odd prime). We also refer the reader to [Lef] for
the use of the technique developed here in the determination of all the dihedral
CM-fields with class number one. We collect in the following proposition all the
information we need to construct such simple dihedral CM-fields and to compute
their associated modular characters:

Proposition 10 (See [Mar], [Lef] and [LPL]). Let p be a given odd prime. Let L
be a given real quadratic field.

1. Let N* be a real dihedral field of degree 2p containing L. There exist distinct
primes q; not equal to p and satisfying ¢; = x1L(q;) (mod p) such that

, 2 if p does not divide dr,,
IN+/L =p“Hqi, wherea=0or a= 41 if p > 3 divides dr,
=1 1or2 ifp=3 divides dr.

2. Assume that p does not divide hy,. There is a bijective correspondence between
the real dihedral fields Nt of degre 2p containing L and of conductor f, > 1
and the groups of order p generated by primitive characters of order p on
(AL/(f+))* which are trivial on the image of Z and on the image of er, in
this group. In particular, if a prime q # p is unramified in L and satisfies
q = x1(q) (mod p), then there exists a real dihedral field Nt of degree 2p and
conductor q if and only if p divides (¢ — xL(q))/nv,q, where

nre =min{n >1; 3k € Zlef, =k (mod (q))},

in which case such an N7T is unique. Note that since the quotient group
(AL/(q))*/ImZ has order ¢ — x1(q), then ny, , always divides ¢ — x1(q).
3. Let q # p be prime.
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(a) If (¢9) = QQ' splits in L and ¢ is a nontrivial character on (Ar/(q))*
which is trivial on the image of Z, then there exists a nontrivial character
¢q on (AL/Q)* such that for any oo € Ay, prime to (q) we have

¢(a) = ¢q(a/a/) = pg(a)gq(),

where o denotes the conjugate of @ in L. Since (Z/qZ)* is canonically

tsomorphic to (Ar/Q)*, we may assume that ¢, is defined on (Z/qZ)*.
(b) If (¢) = Q is inert in L, then any character on (Ar/(q))* of order p

dividing ¢ + 1 = q — xL(q) is necessarily trivial on the image of Z.
In particular, if ¢o is a given character of order p on the group (Ar/(q))*
which is trivial on the image of Z in this group, then {¢f; 1 < k < p—1}
is the set of all the characters of order p on the group (Ar/(q))* which are
trivial on the image of Z.

Throughout the remainder of this section we will choose ¢g defined as follows:
1. Assume that (¢) = QQ’ splits in L. We let g, denote the least positive gener-

ator of (Z/qZ)* and let ¢, be the character of order p on (Z/qZ)* defined by
¢q(9q) = exp(2mi/p). If P, € Z is such that 4q divides d, — P2, then we may

assume that

It is easily checked that for any algebraic integer oo = (z + y+/dL)/2 € Ay we

have

_ @y (mod 9),

= \e+yP)/2 (mod @),
and for any a € (Ar/(¢))* we can compute n, € Z such that n, =
(x —yPy)/(z + yP,) in (Z/qZ)*, and according to the previous lemma we
set

60(0) = exp(2mjai/p) Where j, = min{j > 0; no =g/ (mod g)}.

. Assume that (¢) = Q is inert in L. We let g, denote a generator of (Ar/(g))*

and according to the previous proposition we let ¢y be defined by ¢o(g,) =
exp(2mi/p), which yields

¢o(a) = exp(2mjai/p), where j, =min{j >0; a = gg (mod (q))}.

Now, in Point 2 of Proposition 9 we may assume that we have chosen x such

that x40 = ¢o. Hence, if ¥ = x?*! is an in Point 2 of Proposition 9, then

Yy =

¢27*! ) and we can now practically compute the coefficients a;x (x2*!) and

the approximations hyy\;(M) of hy - In Table 2 the reader will find some

examples of our computation of relative class numbers of such dihedral CM-fields
of degree 4p > 12.

Remark 11. Take x = x4+x- € Xy, and notice that since M/L is assumed to be
unramified at all the finite places, then xo = x40 is a primitive character of order
pon (Ar/(g))* which is trivial on the image of Z in this group. In Proposition 3
we choose v = (1/g+/dy,), which yields Z = Ay, = (1) and

(23)
W= tr(/aviie) =7 Y xoWex (2niTraq(/avi))

A (mod (q))
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We used this formula to check numerically that all the Artin root numbers W, are
indeed equal to +1.

4.3. Third example: Quaternion octic CM-fields. Throughout this section
we let N denote a normal octic CM-field whose Galois group is the quaternion
group of order eight. In that situation, the maximal totally real subfield Nt of
N is a normal biquadratic bicyclic field, and we let L denote any one of the three
real quadratic subfields of N*t. Notice that N/L is cyclic quartic, and we let
x denote either of the two conjugate quartic characters associated to this cyclic
quartic extension N/L.

Theorem 12. Let N denote a quaternion octic CM-field. The character x* of
Gal(N/Q) induced by x is the real valued character of degree two of the quaternion
group. Therefore, since L(s,x) = L(s,x,N/L) = L(s, x*,N/Q), then all the a,(x)
are real, W, is equal either to +1 or to —1, and L(1,x) > 0. Finally, Qn = 1,
wN =2, hy ts even (see [Loub, Lemma 5]), hy/2 = (ﬁ§)2 18 a perfect square and
Py = XL01,%)
(use (8)). Let A > 1 be given, and set B'(N) = AA, log A, and
(M) % X80, (),

where the Sy (M) are defined in Theorem 4. Assume that M > B'(N) > 2A,.
Then the limit R(M) = |hy — h(M)| as A, approaches infinity is equal to 0.

Proof. We have hy = |L(0, x)|?/8. Now, x has order 4 and according to the Siegel-
Klingen theorem we have L(0, x) € Q(%) (see [Hid, Cor. 1, page 57]), and since x*
is real valued then L(0, x) is real. Therefore, L(0,x) is rational and the positive
integer hyy/2 = |L(0, x)|?/16, which is a square in Q, is the square of some positive
integer hy.

Remark 13. Notice that the bound (1) is equal to B(N) = ’%Ai log® A, .

4.3.1. Some pure quaternion octic CM-fields. We set L = Q(v/2) and let ¢ = 1++/2
denote the fundamental unit of the ring of algebraic integers A = Z[v/2] of L. Let
¢ = 3 (mod 8) be a positive prime and let N, denote the only pure quaternion
octic CM-field with maximal totally real field N; = Q(v2, v/@), and notice that
hy is odd if and only if N is some N, (see [Fro] and [Lou5]). We have dy, = 2%¢°

and d g, = 28¢%, so that we easily get Fn/L = 001002(49V/2) and FNt+/L = (29).
q

Let x € Xy /L denote any of the two conjugate characters of order 4 on the ray

class group of conductor /1, of L associated to the cyclic quartic extension N /L.
Then A, = 16q/7.

Proposition 14 (See [Fro]). Let ¢ = 3 (mod 8) be a positive prime. Let Py =
(v/2) denote the prime ramified ideal of L = Q(+/2) lying above 2. We may write x =
vXo, where Xo = X2Xq 15 a primitive character of order 4 on the group (Ar/F,)*
and where x2 and x, are primitive quartic characters ont the groups (A/P3)* and
(A/(q))*, respectively.
1. We may assume that xo = X2Xq 15 defined by means of x2(—1) = +1, x2(5) =
—1, x2(€) = xq(€) = i = exp(2mi/4).



386 S. LOUBOUTIN

2. For any o € Ay we have x2(c’) = x2(a), xq(¢/) = xq(a) and xo(a’) =
Xo(@). In particular, if (p) = PP’ splits in L then x(P’) = x(P)
3. We have agm(x) = agm(x) =0, and if p # 2 and p # q then we have

0 if p is inert in L and m is odd,

(x((p))™? ifp is inert in L and m is even,

(m+1)er  if (p) = PP’ splits in L and ¢, = x(P) = £1,
HEVTem  f (p) = PP’ splits in L and €, = x(P) = =i.

P

apm (x) =

Hence, all the apm(x) are real.
4. We have W, = —1.

Proof. We note that the multiplicative group
(AL/P3)* = {£5%"; a € {0,1}, b€ {0,1,2,3}}

of order 16 is isomorphic to (Z/2Z) x (Z/2Z) x (Z/4Z), and that the multiplicative
group (Ar/(q))* of order ¢> —1 =8 (mod 16) is cyclic. Now, as {1,5} is the kernel
of the canonical map (Ar/P3)* — (AL/P3$)* and as x2 is primitive, we must
have x2(5) = —1. As (=1)(@~1/4 = 1, then —1 is a fourth power in (Ar/(q))*
and x4(—1) = +1. Moreover, as N, q(€) = —1 and ¢ = 3 (mod 4), then € is not a
square in (Ar/(g))* and x4(e) = £i. Finally, since

X)) = m1xe(=1) = x0(=1) = xa(=Dxg(1) = xa(~D),
t=x(0) = {(()= V(©x0(9) = ~x0(6) = —x2(xs(6)

we get x2(—1) = +1 and x4(€) = x2(¢e) = +i. Now, x2(€') = x2(—1/€) = 1/x2(¢) =
x2(€) yields x2(a’) = x2(a) for any a € Ay,. o

The following table is used to compute xz(a) for @ = z + yv/2 € Ay, prime to

V2

a= 1 € €2 e -1 —e —¢? —e3 (mod P3)
a= |1 14+v2 3+2v2 74+v2 7 7T+3vV2 5+2v2 1+43v2 (mod P)
x2(a) | 1 i -1 —1 1 i -1 —1

a= |5  Be 5¢? 5e3 -5 —be —5e2 —5e3 (mod P3)
a= |5 542 7T4+2v2 3+v2 3 3+43vV2 1+2v/2 5+3v2 (mod Pj)
x2(a) | =1 —i 1 i -1 — 1 i

Note that in setting n, = €(4°~)/4 (modulo P§), we have
Xq (@) = exp(2jami/4),

where

2 .

TV =ni (mod ()} € {0,1,2,3}.

Of course, we use the binary representation of (¢ — 1)/4 to efficiently compute

a(’=1/4 modulo the ideal (g) of L. To compute x(P) we determine a generator
a of P whih is known to be principal in L, and we compute x(P) = x((a)) =
v(a)x2(a)xq(c). Numerical computations yield Table 3. We also computed several
relative class numbers for ¢ large:

If g=2-10° + 3, then hy, = 851 290 664 450 = 2 - (652 415)2.

If ¢ = 107 + 19, then hy, = 66 361 628 315 682 =2 (5 760 279)2.

jo = min{j > 0; o
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Remark 15. In Proposition 3 we choose v = 1/(16q), which yields Z = Ag, = (1)
and

= _quL\/ﬁ Z Xo(zx + yaV/2) exp(4mzi/16q).
zx+yrv2(mod(4gv/2))
We used this formula to check numerically that all these Artin root numbers W, are
indeed equal to —1. Even checking this result yields a faster and more satisfactory
method than the one used in [Lou2]. Note also that Shintani’s method (see [Okal])

is less efficient than the method developed here, for it would require us to compute
> ¢? terms in some finite sum to compute the exact value of h;,q. Indeed, set

1 1

Bley) = 3@+ —a—y+3)+ (- 53,

let (z) denote the fractional part of the real number 2z, set

oo =100 {gg) oo (5 )+ (1)) 2

and notice that Z[v/2] 3 a,p = b+ av/2 (mod (4gv/2)). Now, hn, = L0, x)1?/8,
and Shintani’s method yields

(24) L(0,x) = ifﬁ (b+av2)B <<4a1;q3b>’<1271>>'

a=1 b=1
b odd

5. HECKE L-FUNCTIONS OVER TOTALLY REAL CUBIC FIELDS

All the cases hitherto given refer to real quadratic fields L. Therefore, we would
like to finally use Theorem 2 on a simple example of a totally real cubic field L.
We choose L = QF(¢7) = Q(cos(2m/7)) and set N = KL, where K denotes the
imaginary cyclic quartic field Q(¢s). Therefore, N is an imaginary cyclic field of
degree 12, Qn = 1, wn = 10, NT = L(V5), di. = 7%, dx = 5%, dyy = 5% - 74,
dn = ddf = 5% 7% and Fn L = 001002003(5) (for 5 is inert in L), and we must
have dn = df, Np/q(F~ /L)- Using [Wa], we can easily get by = 1. We now want to
compute hy by using our technique for computing Hecke L-functions over totally
real cubic fields at s = 1. We let x be either of the two conjugate quartic Hecke
characters of conductor F1, associated with the cyclic quartic extension N/L.

We have A, = /7% -53/7% and
7.5

Py = o (LX),

Moreover, as 5 is inert in L/Q, then (AL /(5))* is a cyclic group of order 124 and
there are two characters of order 4 on this group, say xo and x3. Let o be any of
the generators of the cyclic Galois group Gal(L/Q) of order three. Then xg o o is
necessarily equal to xo or x3. But xo00 = x§ would yield xo = xo00® = x3" = X3,
which is impossible. Therefore, xo © ¢ = Xo; and since for any integral ideal Z of
Ay we have (Ny/q(2)) = ZZ°TI°" and since the narrow class number of L is equal
to one, we get

X(Z) = xo(NrL/q(2))
and
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Lemma 16. We have asm(x) =0, and if p # 5 then

Xo'(p) ifp=T1,

w () = L IR W) fp=E1 (nod 7) (and p £7)
0 ifp#Z £l (mod7) and3 [m (and p #7),
X5 (p) ifp#Z+l (mod7) and3|m (andp #7).

Note that the restriction of x to the image of Z in (Ay/(5))* must be a quartic
character. Therefore, we may assume that this restriction is defined by the following
table, which enables us to compute xo(p) for any prime p # 5:

n 1 2 3 4
xo(n) |1 & —i -1
Now, as L is a totally real cubic field, the proof of Theorem 6 yields:

Theorem 17. Let v = 0.577 215 664 901 532 860 606 512 090--- denote Euler’s
constant and let B be positive. Set s1(0) = —v, s2(0) = n2/6, and for n > 1 set

"1 2 "1
n=-v+y 5 sl =p+) 5
k=1 . k=1
and for i € {1,2}, set an;(B) = An; — Bnlog B+ 4log2 B, where

Y 8 1251 (n)
T (2n+3-14)2  2n+3-—1i

+9(s1(n))* + 3s2(n)

and 5
Bn,i = ﬁ:}j—:— + 1281( )
We have the following power series expansions:
BQ)n+1
K31(B)=1 + Z an1( ———,—
= (2n +2)(n!)3
and
(_B2)n+1

Ks32(B)=7"2B + Y a,2(B

= )(2n+ 1)(n!)3"

Finally, we explain on this particular example a general strategy based on (12)
which enables us to compute W, efficiently. We use the results of Section 2: we set

S=>an(x)Hs(n/A)
n>1
and note that
H3(B) = —Kj (B BZh

n>0

with

B = 9(s1(n))? + 3s2(n) — 12s1(n) log B + 4log? B,
which enables us to compute numerical approximations of S as precisely as desired.
If we can deduce from them that S # 0, then on plugging x = 1 in (12) we get W, =
S/S, which enables us to use (10) for numerical computations. Note that if W, =
—1 then necessarily S = 0, so that this trick is useless for pure quaternion octic



RELATIVE CLASS NUMBER COMPUTATIONS 389

CM-fields. However, in our present situation, according to numerical computation,
we do have S # 0, and we computed

S =1.093107 - -- + 0.998977 - - - 4,

W, =0.089805--- 4+ 0.995959 - - -1,

L(1,x) =0.975462--- +0.230275---%

and hy = 1. Moreover, numerical computations suggest, and one can prove, that

Wi = (117 — 44i)/125 = (11 — 20)2/125.

6. FINAL REMARKS

We refer the reader to [Lou7] for an efficient technique for computing relative
class numbers of abelian CM-fields by using a technique similar to the one developed
here for evaluating L-series associated with Dirichlet characters at s = 1.

The reader will find in [Lou7] an extensive use of the technique introduced in
section 5 for computing Artin root numbers W, . We also point out that the example
dealt with in Section 5 is not satisfactory, and that it would be worth computing
relative class numbers of CM-fields of degree greater than six which would be neither
abelian nor abelian extension of real quadratic fields, but which would be abelian
extensions of totally real cubic fields.

Added in February 1999: We can now refer the reader to [S. Louboutin, Com-
putation of L(0,x) and of related class numbers of C M -fields, Preprint Univ. Caen
(1999), submitted] for more satisfactory examples. The reader will find there ex-
amples of computation of relative class numbers of non-abelian normal CM-fields
N of degree 24 and Galois group the special linear group over the finite field with
three elements by using evaluations of L(1, x) for Hecke L-functions associated with
quartic characters x on narrow ray class groups of non-normal totally real sextic
fields L.

We refer the reader to [LP] for an application of the technique developed here to
the computation of relative class numbers of dicyclic CM-fields of degree 4p. Let us
point out that, in contrast with dihedral CM-fields of degree 4p, where Artin root
numbers W,, are always equal to 41, Artin root numbers W, of dicyclic CM-fields
of degree 4p may depend on ¥.

All our computations were programmed in Kida’s language Ubasic, which allows
fast arbitrary precision calculation on PC’s.
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7. TABLES

TABLE 1. Some Hilbert 2-class fields

dr P+ hu | Q 2n hy
776 2 2 | 5Z+ %ﬁz 8 L(1,%) = 2.215788 9 =32
1++/d L(1,%) = 2.386755 o
2005 5 4 |32+ %Lz 16 L{1.%?) = 1139895 49 =7
160++/dr, L(1, %) = 2.527962 o
1488392 | 2 36 | 8324+ —YLZ | 16 L1 ) = 2.390673 11543
97++/dr, L(1,v) = 1.637874 221 93521
2234773 | 5573 36 | 532+ —LZ 16 L(1,%3) = 1.002971 ~ 12
135++/d L(1,v) = 2.619148 175 81249
2331641 | 13 36 | 1092 + —3Y-LZ | 16 L(L%%) = 0535047 41932
L(1,%) = 4.124139
14+y/dg, L(1,43) = 0.986256 2
5249 29 8 | 2Z+4 —¢EZ 32 (1,95 = 0.741952 2209 = 47
L(1,%") = 0.686522
L(1,v) = 0.510605
3114+/dr L(1,v3) = 0.802548 2
2008841 | 228757 | 72 | 307TZ + —3+Z | 82 | | (1.45) = 0.807890 70 66769
L(1,%7) = 3.063943
L(1,v) = 2.852337
L(1,43) = 1.492483
L(1,4°%) = 1.433773
1++/d, L(1,97) = 2.964050 2
28981 7 16 | 5Z+ —%LZ 64 L(1$°) = 1.594397 26 07679
L(1,4'!) = 0.501012
L(1,4'3) = 0.442302
L(1,%'®%) = 1.706111
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TABLE 2. Some dihedral CM-fields of degree 4p

391

p |4p | dn | g xL(g) | M all W 2,41 =1and hy=1and hy =
3 |12 | 21 | 109 | +1 Q(V/=3,vV-7) L(1, ) = 1.422643 324 = 182
3 |12 |21 |23 | -1 Q(/=3,v/=-7) L(1,v) = 1.498242 16 = 4°
L(1,v) = 1.068576 5
5 (20|21 [101 ]| +1 QHW=3,v/=7) LEl,'ng‘) — 1.831487 72361 = 269
L(1, $) = 1.740963 2
5 (20|21 | 139 | —1 Q(V=3,V/=7) L21,¢3) — 1.048031 225625 = 475
L(1,v) = 0.818558
7 |28 |57 |43 | 41 Q(v=3,v/-19) L(1,4°) = 0,531292 247009 = 4972
L(1,4%) = 2.055108
L(1,¢) = 3.122215
7 | 28|69 |97 | -1 Q(v/=3,V/=23) L(1,4°) = 2.822641 2_11%1%563‘12:25641
L(1, %) = 1.943550 -
L(1, ¢g = 0.450594
L(1,4°) = 1.863407
11 | 44 | 209 | 23 | +1 Q(V—11,v/=19) | L(1,%°) = 4.914253 1_8163?%1499527001
L(1,¢7) = 1.324753 -
L(1,%°) = 0.589165
L(1, ¥) = 0.580602
L(1,4°) = 4.658983
11 | 44 | 209 | 263 | -1 Q(v/—11,v=19) | L(1,%°) = 0.502571 2 20826 952832
L(1,97) = 1.229407
L(1,4°) = 1.594568
L(1, ) = 1.541778
L(1,¢z) =1.115754
13 | 52 | 209 | 157 | +1 Q(V/~11,/=19) ég%; _ ngggégg 16 60602 247072
L(1,v°) = 0.391887
L(1,91) = 3.370253
L(1, ) = 0.885015
L(1,4°) = 0.381026
L(1, ¢i) = 3.457565
17 | 68 | 57 | 101 | —1 Q(V=3,v/—19) L1, 9 ) = 0.342002 74367 080892

L(1,4°) = 1.705920
L(1,9') = 0.553422
L(1,%'®) = 0.571116
L(1,4%) = 1.785428
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TABLE 3. The 50 pure quaternion octic CM-fields with ¢ < 1171.

All W, = —1 and

case | q L(1,x) h;Iq = 2(h1§q)2 case | q L(1,x) h;lq = 2(h;,q)2
1 3 0.822467 | 2 26 | 523 | 0.693514 | 43218 = 2 - 1472
2 11 | 0.672927 | 18 =232 27 547 | 0.825474 | 66978 = 2 - 1832
3 19 | 0.909042 | 98 =272 28 | 563 | 0.714363 | 53138 = 2- 1632
4 43 | 0.516432 | 162 = 2 - 92 29 | 571 | 0.635215 | 43218 = 2 - 1472
5 59 | 0.878227 | 882 = 2212 30 | 587 | 1.021428 | 118098 = 2 - 2432
6 67 | 0.994325 | 1458 = 2. 272 31 619 | 0.777291 | 76050 = 2 - 1952
7 83 | 0.743193 | 1250 = 2 - 252 32 | 643 | 0.732929 | 72962 = 2 - 1912
8 107 | 1.176050 | 5202 = 2 - 512 33 659 | 0.677692 | 65522 = 2 - 1812
9 131 | 0.960591 | 5202 = 2512 34 683 | 1.304146 | 260642 = 2 - 3612
10 | 139 | 0.940807 | 5618 = 2 - 532 35 | 691 | 0.789139 | 97682 = 2. 2212
11 163 | 0.560084 | 2738 = 2 - 372 36 | 739 | 0.724527 | 94178 = 2. 2172
12 | 179 | 1.171670 | 14450 = 2 - 852 37 | 787 | 0.868449 | 153458 = 2. 2772
13 | 211 | 1.321404 | 25538 = 21132 38 | 811 | 1.104397 | 263538 = 2 - 3632
14 | 227 | 0.923916 | 14450 = 2 - 852 39 | 827 | 1.202373 | 324818 = 2 - 4032
15 | 251 | 0.756931 | 11858 = 2. 772 40 | 859 | 0.692251 | 116162 = 2-2412 |
16 | 283 | 0.898029 | 21218 = 2 - 1032 41 | 883 | 1.193182 | 364658 = 2 - 4272
17 | 307 | 0.892122 | 24642 = 2.1112 42 | 907 | 1.341156 | 486098 = 2 - 4932
18 331 | 0.618713 | 13778 = 2- 832 43 947 | 0.612290 | 110450 = 2 - 2352
19 | 347 | 0.604406 | 14450 = 2 - 852 44 | 971 | 0.663225 | 136242 = 2 - 2612
20 | 379 | 0.761704 | 27378 = 21172 45 | 1019 | 1.324502 | 598418 = 2 - 5472
21 | 419 | 0.818541 | 38642 = 2 - 1392 46 | 1051 | 0.903852 | 296450 = 2 - 3852
22 | 443 | 1.019265 | 66978 = 2 - 1832 47 | 1091 | 0.915946 | 328050 = 2 - 4052
23 | 467 | 0.966883 | 66978 = 2 - 1832 48 | 1123 | 0.845903 | 296450 = 2 - 3852
24 | 491 | 1.211086 | 116162 = 2 - 2412 49 | 1163 | 1.232639 | 675122 = 2 - 5812
25 | 499 | 1.152113 | 108578 = 2 - 2332 50 | 1171 | 1.262146 | 717602 = 2 - 5992

8. ADDED AFTER POSTING

In the statement after Theorem 17, the sentence that reads
“Note that if W, = —1 then necessarily ...”

should read

“Note that if S is real and W, = —1 then necessarily ...”.




[Cox]

RELATIVE CLASS NUMBER COMPUTATIONS 393

REFERENCES
D. A. Cox. Primes of the form x2 + ny?. John Wiley&Sons, 1989. MR 90m:11016

[FQ =+ A. Frohlich and J. Queyrut. On the functional equation of the Artin L-function for char-

[Fro]
[Hid]
[Lef]

[Loul]

[Lou2]

[Lous]
[Loud]
[Lous]
[Lous]
[Lou7]
[LO]

[LOO]

[LP]
[LPL]
[Mar]
[Mey]
[Okal]
[Oka2]
[Shi]
[Sie]
[Wa)

[Zag]

acters of real representations. Inventiones math. 20 (1973), 125-138. MR 48:253

A. Frohlich. Artin root numbers and normal integral bases for quaternion fields. Invent.
math. 17 (1972), 143-166. MR 48:2115

H. Hida. Elementary theory of L-functions and Fisenstein series. London Mathematical
Society, Student Texts 26, Cambridge University Press, 1993. MR 94j:11044

Y. Lefeuvre. Corps diédraux & multiplication complexe principaux. Preprint Univ. Caen
(1997)

S. Louboutin. Minoration au point 1 des fonctions L et détermination des corps sex-
tiques abéliens totalement imaginaires principaux. Acta Arith. 72 (1992), 109-124. MR
93h:11100

S. Louboutin. Calcul des nombres de classes relatifs : application aux corps octiques
quaternioniques & multiplication complexe. C. R. Acad. Sci. Paris 317 (1993), 643-646.
MR 94j:11111

S. Louboutin. Calcul des nombres de classes relatifs de certains corps de classes de Hilbert.
C. R. Acad. Sci. Paris 319 (1994), 321-325. MR 95g:11111

S. Louboutin. Calcul du nombre de classes des corps de nombres. Pacific J. Math. 17 1
(1995), 455-467. MR 97a:11176

S. Louboutin. Determination of all quaternion octic CM-fields with class number 2. J.
London Math. Soc. 54 (1996), 227-238. MR 97g:11122

S. Louboutin. Computation of relative class numbers of CM-fields. Math. Comp. 66
(1997), 1185-1194. MR 97k:11157

S. Louboutin. Computation of relative class numbers of imaginary abelian number fields.
Exp. Math. 7 (1998), 293-303.

S. Louboutin and R. Okazaki. The class number one problem for some non-abelian normal
CM-fields of 2-power degees. Proc. London Math. Soc. (3) 76 (1998), 523-548. CMP 98:11
S. Louboutin, R. Okazaki and M. Olivier. The class number one problem for some
non-abelian normal CM-fields. Trans. Amer. Math. Soc. 349 (1997), 3657-3678. MR
97k:11149

S. Louboutin and Y.-H. Park. Class number problems for dicyclic CM-fields. Acta Arith.,
to appear.

S. Louboutin, Y.-H. Park and Y. Lefeuvre. Construction of the real dihedral number fields
of degree 2p. Applications. Acta Arith. (to appear).

J. Martinet. Sur Parithmétique des extensions & groupe de Galois diédral d’ordre 2p.. Ann.
Inst. Fourier (Grenoble) 19 (1969), 1-80. MR 41:6820

C. Meyer. Die Berechnung der Klassenzahl abelscher Koérper uber quadratischen
Zahlkérpern. Akademie-Verlag. Berlin, 1957. MR 19:531f

R. Okazaki. On evaluation of L-functions over real quadratic fields. J. Math. Kyoto Univ.
31 (1991), 1125-1153. MR 93b:11154

R. Okazaki. An elementary proof for a theorem of Thomas and Vasquez. J. Nb Th. 55
(1995), 197-208. MR 96m:11099

T. Shintani. On evaluation of zeta functions of totally real algebraic number fields at
non-positive integers. J. Fac. Sci. Univ. Tokyo 23 (1976), 393-417. MR 55:266

C. L. Siegel. Lectures on Advanced Analytic Number Theory. Tata Institute of Fundamen-
tal Research, Bombay, 1965. MR 41:6760

L.C. Washington. Introduction to Cyclotomic Fields. Springer-Verlag, Grad.Texts Math.
83, 1982; 2nd ed., 1997. MR 85g:11001; MR 97h:11130

D. Zagier. A Kronecker limit formula for real quadratic fields. Math. Ann. 213 (1975),153-
184. MR 51:3123

UNIVERSITE DE CAEN, CAMPUS 2, DEPARTEMENT DE MATHEMATIQUES, 14032 CAEN
CEDEX, FRANCE
E-mail address: louboutimath.unicaen.fr



	Cit r360_c369: 


