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CAN A FINITE ELEMENT METHOD 
PERFORM ARBITRARILY BADLY? 

IVO BABUSKA AND JOHN E. OSBORN 

ABSTRACT. In this paper we construct elliptic boundary value problems whose 
standard finite element approximations converge arbitrarily slowly in the en- 
ergy norm, and show that adaptive procedures cannot improve this slow con- 
vergence. We also show that the L2-norm and the nodal point errors converge 
arbitrarily slowly. With the L2-norm two cases need to be distinguished, and 
the usual duality principle does not characterize the error completely. The 
constructed elliptic problems are one dimensional. 

1. INTRODUCTION 

The classical finite element method approximates the exact solution u of an el- 
liptic boundary value problem by piecewise polynomials (or pull-back polynomials 
when curvilinear elements are used). Denoting by UN the finite element approx- 
imation with N degrees of freedom (i.e., the approximate solution for which N 
unknowns have to be determined), for reasonable meshes we have IU - UN IE 

-- 0 

(11 IIE denotes the energy norm) as N -- oo, provided u E H1. If u has additional 
smoothness, then typically Iu - UN IIE < CN', where ,u depends on the smooth- 
ness of u and the degree of the elements, and n is the dimension of the problem. If 
the solution u has additional properties, e.g., u is the solution of Laplace's equation 
in a polygonal or polyhedral domain and is singular at the corners or edges, and the 
mesh is properly selected a priori or by an adaptive procedure, then we typically 
have ||U - UNE < CNn, where p is the degree of the elements. 

Hence the question arises whether that there are problems for which the classical 
finite element method converges arbitrarily slowly. We show that there are such 
problems, and furthermore that the convergence cannot be improved with adaptiv- 
ity. Specifically, we show that given a sequence of nonincreasing positive numbers 
XN, with X1 = 1, that converges to 0, there is a problem with solution u E H1 such 
that 

* there are constants Ci and C2, independent of {XN }, such that 

C1XN <_ U - UNIE < C2XN, for all N 

(briefly, the energy norm error is of order XN); 

* there is a sequence 1 < N1 < N2 < ... such that U - UNi IIL2 is the order 
of 2, provided XN converges to 0 "very slowly" (in a sense to be made 
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more precise later); the usual duality principle does not characterize the error 
completely; and 

* the nodal point errors are the order of XN. 

These results are proved for a family of uniform meshes. We also show that the 
errors behave in the same way for adaptively constructed meshes. 

The example we construct is a one-dimensional boundary value problem, with a 
homogeneous differential equation, a homogeneous Dirichlet condition at one end, 
and a non-homogeneous Neumann condition at the other end. The differential 
equation has a rough coefficient a(x), satisfying 0 < a < a(x) < /, which is 
constructed in terms of the sequence {XN}. We expect that the results we obtain 
also hold for general boundary value problems: boundary value problems in one or 
more dimensions, with general Dirichlet, Neumann, or mixed Dirichlet/Neumann 
boundary conditions. 

Problems with rough coefficients are typical in problems with heterogeneous 
materials. The example we construct shows that finite element methods based on 
piecewise polynomial elements lead to unacceptable results when applied to these 
problems. In addition, it shows that the comparison of results computed with 
coarser and finer meshes cannot be used as a basis for assessing the accuracy of the 
results. This example also shows the importance of developing special methods for 
these problems; the special element method introduced and analyzed in [2], [5] is 
an example of such a method. 

Section 2 describes the specific boundary value problem we consider. In Section 
3 we construct the specific coefficient a(x), and state and prove the estimates for 
the energy norm of the error. The estimates for the nodal point errors are proved 
in Section 4. In Section 5, the L2-error is analyzed. Remark 7, in Section 5, 
discusses the relation of the L2-error to L2-error estimates proved with the usual 
duality argument. Remark 8, in Section 5, discusses the error in the LO-norm and 
superconvergence at the nodes. Section 6 discusses adaptively constructed meshes 
for our example. Section 7 summarizes our conclusions. 

2. A MODEL BOUNDARY VALUE PROBLEM 

AND ITS FINITE ELEMENT APPROXIMATION 

We consider the specific model boundary value problem 
d du 

(2.1) -. ~~(a(x)- )=0, O <x <1 (2.1) { dxt (dx) 
u(0) = 0, au'(1) = 1, 

where a(x) is a measurable function on I = (0,1) satisfying 

(2.2) 0 < a < a(x) <? 

The solution u(x) of (2.1) can be interpreted as the longitudinal displacement of 
a heterogeneous bar with (local) modulus of elasticity a(x) that is subject to no 
longitudinal load, with left end fixed, and with the stress at the right end equal 
to 1. 

We will understand (2.1) in the weak or variational sense: 

ru E Ho"(C)) 

(2 . 3) /B(u v j (x)u'v'dx = v (1), Vv E H01/ 
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where 

H1(I) = {u: ||U2H1(I) = [(U/)2 + u2]dx < o} 

and 

Ho' (I) = {u H1 (I): u(O) = O}. 

(The superscript 1 indicates that the functions in Ho' (I) are required to be 0 at the 
left endpoint of the interval I.) The solution of (2.3), or (2.1), exists and is unique, 
and is given by 

(2.4) u(x) i ]a(t) 

Sometimes we will indicate the dependence of u on the coefficient a by writing Ua. 
On Ho' (I) we will also use the energy norm 

||U||E = [B(u, u)]1/2 = [ja(u1)2dx]1/2 

and the norm 

IUIH1(I) = [ (U)2 dx] 

IUIlE and IUIH1(I) are equivalent on Ho,: 

|aUlH1 < ||U||E < 3IUIH1- 

We will also use the L2(I)- and L,,(I)-norms. 
We are interested in the approximation of the solution of (2.3) by a usual (poly- 

nomial based) finite element method. Toward this end we let A = {0 = x4 < x1 < 

*--<XA = 1}, where N = NA is a positive integer, be an arbitrary mesh on I, 
and let I =1i =(xi3A)) j= 1... N, and h=hA =MaXl<j <N(x - x4 J. 
Further, let 

(2.5) VA = {u E Ho,(I): u I, E Pl(I)j)j = 1, ... NA}, 

where P1 (1i) is the set of polynomials of degree less than or equal to 1 (considered 
on ij'), be the associated finite element space. Then, as usual, the corresponding 
finite element approximation uA to the solution u of (2.3) is characterized by: 

(2.6) {B(uA,v) = v(1), Vv E VA. 

Clearly, u A exists and is unique. 
It is known that 

(2.7a) lim Ilu - uAIIE = ?, 

and hence that 

(2.7b) lim ||u - A|L2(1) = 0 and lim ||u - u A|L(I) = 0) 

provided a(x) satisfies (2.2), and furthermore that Iu - UA\IE = O(h') if a(x) is 
smooth. We are interested, however, in rough a(x), and in assessing the accuracy 
of uA for such a(x). We will see that essentially nothing beyond (2.7a,b) is true 
without additional assumptions on a(x). 
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Throughout most of the paper we will consider uniform, meshes. Specifically, 
consider the family of uniform meshes given by 

0 1 2 
=Ak = fXk,? = 2k =?<k,=2k<**<X, =2k =} k = 0, 1, .... 

and let 

Vk= V Ak. 

Then N - 
Ak 

= k.1 'k j Akk 
Then N = NC = 2k; Ij = Ik,j = = (Xk,j1l,Xk,j),j - 1 ...,2k; and h = 

hk = hAk = N-1 = 2-k. The corresponding finite element approximation Uk to u 
is characterized by 

(2.8) Uk E Vk, 
B(Uk,V) = v(1), Vv C Vk; 

cf. (2.6). Note that degrees of freedom = dimVk = N =2 

3. ANALYSIS OF THE ERROR IN THE ENERGY NORM 

Let u be the exact solution of the boundary value problem (2.3), or (2.1), and let 
Uk be the finite element approximation determined by the uniform mesh Ak with 
2k elements and hk - 2-k described in Section 2. In this section we assess the error 
in the energy norm. 

Theorem 1. Let {Xk}2% , with Xo = 1, be a sequence of nonincreasing positive 
numbers converging to 0. Then there is a coefficient a(x) satisfying (2.2) (with 
a = 0.9 and /3 = 1.1) such that 

(3.1) (3. 10-2)Xk < |U - UkIE < 1-9Xk, for allk. 

Remark 1. We have chosen to present the constants in our estimates as explicit 
(decimal) numbers. We have adopted this somewhat unusual practice in part to 
show that the constants are absolute, in particular that they do on not depend on 
the sequence {Xk}, and in part to make the proofs of the estimates easier to follow. 
The coefficient a(x) naturally depends on {Xk}- 

Remark 2. The sequence {Xk} is indexed by k and not by N = degrees of freedom. 
The result can, however, be recast in terms of N using the relation N 2k; cf. 
Section 1. The same is true for Theorems 2 and 3 below. 

Proof. Let Uk be the approximate solution, as characterized by (2.8). Writing 

2k 

Uk ZUk,i4i, 

i=l1 
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where 01,... , 02 are the standard basis functions for Vk (ki E Vk, i /i(Xk,j) = 

ijiij = 1 ..., 2 k), we easily see from (2.8) that Ukj = Uk(xk,j) satisfy 

(3.2) 
-fIk,j adx k1?(k3adx ?',+ladx)U -" adxUk+ f k Uk,j-1 + f( hj + f,k,j+1 

)-Uk,j -f k'+-k,j+l d 
hkhhk hk = 0, 

hk 

j =1, ... ,2k 1 , 

f, adx f, adx 
k,2k 

Uk,2k-l + k1k 
2 

Uk,2k hk hk hk Uk2 

hk 

Letting ak,j = k and Zk,j = (Uk, hk equations (3.2) can be written 

Zk,j - Zk,j+l 0, j = .,..., 2k _ 1, Zk,2k 1. 

Hence Zk,j = 1 for j = 1,... , 2k, and equations (3.2) reduce to 

(Uk,j Uk,j-1) = aj j = 1. 2k 
hk 

and so, since Uk,O = 0, 

(3.3) Uk,j = Uk(Xk,j) = hk ak1 

Let 

(f dx\ 
ak,j = fik,j a 

FRom (2.4) we see that 

[Xk,j dx 
Uj= U(xk,j) =J a 

rxk j dx fXk,2 dx 
fXk,j 

dx 
f(O ~Xk, 1a ?.?Xkij-la~ 

(3.) = h {nh + ' + +x _ ~hihk ~ hk hkJ 

=hkEJ 
ak 1 

i=1 k,i 

We will define a(x) in terms of the following L2(I)-orthonormal sequence, which 
is closely related to the Haar basis (cf. [10]): 

go(x) = 1, 0 < x <1, 
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and, in general, 

1, 0 < x < 

-1, 2 < x < 22, 

1, 212 2<<1, 
91(X)= -1,23< X < 34 

-1, 22x 1. 

Let -y = 1/20. Then let 0 = lo < l1 < -. be inductively selected so that 4+i+ is the 
least index > 4i ? 1 such that 

(3.5a) ~ ~ ~ ~ ~ ~ 3 Xl+ < 4X 

It is immediate that 

We then define a(x) by 
00 

(3.6) a(x) = E 21 21) 
1=0 

where 
dl o= 1; 

anddl =0 forl#loi,li...t 

We see immediately that d1. < yiXo = 'f, and hence that 
00 00 

(3.8) a lil(x): d i gi (x) <.1 

i=l l-=l 

Hence the series defining a(x) converges uniformly and 

The series defining a(x) is of lacunary, or gap, type. 
If I < k, we see that gj (x) is constant on each Ik, , j - 1, . . .,2k* Hence, if we 

write 
k 00 

dix)= dogix)= jg(x 

(3.10) dlx = for i = 1 l2l(.. 

an l= 0 fo 4lo,+11,.. 

= q$k(X) ? '1k(X), 

we see that /k(X) = hk,t iS constant on each Ik,j,h = 1,...,2k rthermore, if 
1 > k, then 

(3.l1a) e(x)dx=0, for j= 1 .. ,2k; 

iflI < k, then 

(3.11b) gl(x)dx = hk, for j = 1,*,2k; 
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if 1, m > k, 1 7& m, then 

(3.11c) f gi(x)gm(x)dx=0, forj=1, ... ,2k; 
Ik,j 

and if 1 > 0, then 

(3.1ld) j 91(x)dx = hk, for j = 1... 2k 

FRom (3.10) and (3.11a,c,d) we see that 

(3.12a) 'j rk(x)dx = 0 
kfj 

and 
00 

(3.12b) / rpk(x)2dx = hk E d2 
Ik, j l=k+l 

We also have (cf. (3.8) and (3.9)) 

(3.13) Ce = 0.9 < bk(X) < 1.1 = 

and 

(3.14) k'qk(X)l < 0.1. 

From (3.10) and (3.12a), recalling that /k(X) = Ok,j is constant on each lk,j, we 
see that ak,j = qOk,j. Thus, from (2.4), (3.3), and (3.10), for x E Ik,j we have 

du duk 1 1 

dx dx a(x) ak,j 
1 1 

Ok,j + Qk (X) Ok,j 

(3.15) -?7k(X) 

2 1 ((,1\+ ~X' 
Ok,j ( Ok,j) 

=02 (-nk(x) + fb (k, j, )(), 

where, as a consequence of (3.13) and (3.14), 

(3.16) J/(k,j,x)j < 1.2. 

From (3.9) and (3.15) we have 

r du dUk 2 11/2 
[ a (x) -- d a U-UIHl1kj 

[k, / dx dx) dxJ > aIu-uklH1(I 

(3-17) > 02 [( k(x)dx) _ ( 2(k, j, x)(x)dx)1/ 

Using (3.13), (3.14), and (3.16), we see that 
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Thus from (3.12b), (3.13), and (3.16) we have 

[,,a(x)(- - 1)dx1 2 ? 0.6( 2i(x)dx) 0-06h 1/2( S 
2 

[k,j (x d) (k,j )1(=k+l) 

and hence 
/0 \1/2 

(3.18) IIu-Uk|E?> 06( 5 d2) ,for all k. 
I=k+l 

For k = 0,1, ... let i be such that 1i < k < 1i+j - 1. Then, using (3.7), we have 

00 00 00 

(3.19) di= E dim = ̂  E Xim > -Y xii > -Y Xk- 

1=k+l m=i+l m=i 

Combining this estimate with (3.18), we get 

(3.20) |-Uk|E > -.6YXk > (3 * 102 )Xk, 

which is the first estimate in (3.1). 

Remark 3. It follows from the definitions of a(x), the mesh family {Ak}, and the 
finite element approximation Uk that 

U1 = = Ull-1,U11 = = U12-1, .. . , 
Ui = U = Ul(i+l)-11 .... 

By a similar argument we get an upper estimate. In fact, we get 

(f./a(x) (du dUk )dx) < /3|U-UkIHl(Ik,j) 

Ik,j dx dx 2 / 

V76 [(f 2 1/2 ___ X,4 / 
* 

k2 L [J 7k,j dx) (k, j, )dx 

(3.21) 
kj -k,j 

1/2k 
kj 

? 1.8(j 2 x)dx)2 

=1.8h1j2( d *k (E 1 
1=k+l 

Now, with 1i < k < 1(i+1) - 1, using (3.5a), (3.5b), and (3.7), we have 

00 00 00 2 2 2 2 

(3.22) 5 d2 = 2, 2 < oY2X2 x E 52m - '7 Xii X(i(i) 1< Xk 

1=k+l m=i m=0 

Combining this estimate with (3.21), we get 

(3.23) |U-Uk|E < 1*8Xk < l.9Xk, for all k, 
1 j-'2- 

which is the second estimate in (3.1). 

Remark 4. It is possible to base Theorem 1 on a standard result in approximation 
theory. It is known [8], [16] that given any sequence {Xk}, there is a u E Ho',(I) 
such that infv,k IU 

- OH1 = Xk for all k, i.e., there is a function u with specified 
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approximation properties. Now, we are interested in a solution u that corresponds 
to a coefficient a(x): U = Ua. It immediate from (2.1) that a(x) must be given by 

(3.24) a(x)= d= ( )d 

It is clear that a(x), defined by (3.24), satisfies (2.2) if and only if du(x)/dx is 
bounded away from 0 and oo. Now, it is not clear that the function u constructed 
in [16] is in Lo, but with an alternate construction by P. Oswald [13], this is 
clear. Then by considering ii(x) = u(x) + cx, for an appropriate value for c, we 
get a solution ii(x) that has specified approximations properties, and such that 
the corresponding a(x) satisfies (2.1). In this way we obtain an alternate proof of 
Theorem 1. 

We have chosen to prove Theorem 1 as we did, however, because it leads naturally 
to the proofs of Theorems 2 and 3 below. We thank Peter Oswald for pointing out 
the approximation theory result [8], [16] and the construction [13] mentioned above. 

Remark 5. With Xk = 2-2k, Theorem 1 shows that IIu - ukIlE is of order xk = 

2-2k = hU. This might seem to contradict the well known result that the highest 
possible rate of convergence with piecewise linear elements is 0(h), which is proved 
using the theory of N-widths (see, e.g., [14]) and a saturation theorem (see, e.g., 
[9]). But the theory of N-widths is concerned with the worst possible case, and 
saturation theorems assume sufficient smoothness, so there is no contradiction. 

4. ANALYSIS OF THE ERROR AT THE NODAL POINTS 

We again let u be the solution of (2.3) and let Uk be the finite element ap- 
proximation determined by Ak. In this section we assess the error at the nodal 
points. 

Theorem 2. Let {Xk} I'%o, with Xo = 1, be a sequence of nonincreasing positive 
numbers converging to 0. Assume that the coefficient a(x) is defined by (3.5a), 
(3.6), and (3.7). Then 

(4.1) (1.5. 10O3)2xk2 < (U - Uk) (xk,j) I< 1.7y Xk, j-1,2,... , 2k, for all k. 

Proof. We begin with a refinement of equation (3.15): For x E Ik,j, 

du duk _ -97k(X) 

(4.2) dx dx 2 _+ 

=7k (-(x) +'q 
(X) _(k, j, X) qk (X) ) 

kj_ Ok,jx 

k,3 where 
'/ 

satisfies (3.16). Thus, using (3.12a), we have 

/ du dUk\d 1 r 2 fk,.j k(k,j,x)r(x)dx (4.3) 1 
uk ) - 

= 
03 [J k r_(x) dx- _ 

k\ dx dx k, JIkj 1*k, 
Now, using (3.13), (3.14), and (3.16), we have 

f, Ij(k, j, X)3 (x)dx <0.14 X N(x)dx. 

Ok,j 77~~~~~k, 
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Thus, from (3.12b) and (3.14) we have 

j 

du 
~I d)kdx ? 0.6j 2(x)dx Xj(dx dx ) -* k jk 

(4.4) 00 

=0.6hk E d2, for all k. 
1=k+l 

Hence 
fXkll {du dUk 

(U - Uk)(Xk,1) = (U - Uk) (Xk,O) + I (d d dx 

?>O.6(_3 dld)hk 
l=k+l 

00 

= 0.6( S d2h)xk,, 
I=k+1 

(U- Uk) (Xk,2) = (U -Uk)(Xk,1) + i: (~ du _ 1k)dx 

00 

I=k+l 

= 0.6( 5 dl2)xk,2, 
1=k+1 

(4.5) (u-uk)(xk,J)?O .6( 5 dl )Xk,j, j ,... k forali k. 
I=k+l 

Combining (3.19) and (4.5), we get 

(4.6) (u- Uk) (xk,J) ? O.6'y 22k, = (1.5. 103)Xxk,kj, 

which is the first estimate in (4.1). 
A similar argument yields 

00 

(U-kUk)(Xk,J) < 1.6j( S d 2)xk fr 
1kk+l 

Combining this estimate with (3.22) yields 

(4.u - Uk) (Xj)> xkJ) ? 1.7x5xkXj 

which is the second estimate in (4.1). 

Remark 6. irom the usual finite element error analysis, we know that the nodal 
point errors are 0 if a(x) = constant, and are 0(h2) if a(x) is smoXth. We note 
that neither of these results applies to our example. Note that we obtained ar- 
bitrarily low rates of convergence by appropriately selecting the sequence Xk; the 
corresponding coefficient a(x) is nearly constant (cf. (3.9)), but is not smooth. 
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5. ANALYSIS OF THE ERROR IN THE L2-NORM 

The usual duality argument [1], [11], [12] shows that 

(5.la) U - Uk L2(I) < T7(h) |U -Uk 11E, 

where 

(5.1b) rT(h) = sup inf'EVk IWb 
-T IJE 

OEL2(I) 11X1 L2(I) 

wo being the solution of 

- dx dx= 

Wk(0) 0, aw(l) = 0. 

If a(x) is smooth, specifically if a(x) E C1[0, 1], then Tj(h) < Ch, and thus 

(5.2) |U|-Uk1jL2(I) < Chllu-UkIlE 

and 

(5.3) flU - UkHL2(I) ? CEU -Uk ,. 

Estimate (5.3) follows from (5.2) and the estimate |IU - Uk|E > Ch, which is valid 
under a mild hypothesis on u (in addition to smoothness) [6]. But if a(x) is rough, 
if we are assuming it is merely measurable, then, although limh,O r1(h) = 0, no 
estimate of the form rT(h) < ChP with p > 0 may hold. In this situation, we may 
know [5], [15] only that 

(5.4) |U - UkflL2(I) = o(||U - Uk HE). 

In this section we derive estimates on the L2 (I)-error. Following their derivation, 
we discuss their relation with L2-estimates derived via duality. We will also state 
estimates on the LOO-error, and discuss their relation with superconvergence at the 
nodes. 

Theorem 3. Let {Xk}k=o, with Xo = 1, be a sequence of nonincreasing positive 
numbers converging to 0. Assume that the coefficient a(x) is defined by (3.5a) and 
(3.6), and (3.7). Then 

max{(1.4 10-3)Xl lhli_i, (0.53. 1-3)X2i -036Xji-jhji-j} 
(5.5) < ||U-Uli -11L2(l) 

< 1.7X2]1 + 0.5Xij-jhji-ji, for all i > 2. 

Proof. Using (4.2) with k = li - 1, for x E Il-I1,j we have 

(U - Uji-1)(x) = (u - uli-1)(xii-1j-1) + [U'(t) - U-1(t)]dt 
xli-l.j-i 

= (U -Ui-1 )U(xii-i.j-1) - q2 f 7 i-i(t)dt 
(5.6) i-l'i li_l,j_ 

+ q3 T rii_I (t)dt 

i- J ~l~ - 1, j t)T- _ ,(tdt 
_ 4 1 X f(il ,tr1i_ ()dt. 

li - 1j ili-,i-1 
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FRom (5.6) and the definition of qji-i(x) (equation (3.10)) we get 

I U - Uji-i IIL2(I1i 1,j) 

= || (uj-ul_)(xii_1,j_1) - y2 i gi, (t) dt 
liljXti-1,j- 

+ i g (t) dt 

li-l,j Mili-j,j-1 
1 - 1,j,t) dt 1(t)dt 

> Qji 1, j glijt)dt_ Xl- , (u- uli_i)(xi_i,_i) 
L(113 

- 1> j dim||t -JX g9tm(t)dtL2li 

rx 
1 i() _ 1 jlt) (t)(dt 

5.7)j 1i-1,j.1 L2(Ilil 

The graph of 01% (x) on the interval il_, is shown in Figure 1. 
A direct calculation shows that 

Ij 1i-1'j-1 ~ ~ ~ li- 

(5.8) 1101%IIlL2(-It~..,) = 

Now 

d IG g(x) m cl2dx 

iS minimized by 

f j G1%(x)dx 
C = D = 

We illestmat eah o th tems n he ih._d, f 57 iun 
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\Gij(X) 

(h,_ )/2}_ 

x 

xij-1, j-1 1j-1'j iI-l X j_ i 

FIGURE 1 

Thus, another direct calculation yields 

[j |Gl%(x) - (u' (- ui_i)(xti_i,j_)| d~x]/ 
i2 2 12 

> Ij [Gt X) - cj2dx 
~~~ 1 k li Ilj _ d,j 

h3/2 

Hence, using (3.7) and (3.13), we have 

A = Xli (t)dt - (u - Uj _l)(x1i-1 j-1) 

(k j [dJ- G(x) - (u - ui2)(xi_i,-il) ldxlj 

> (5.9 
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GI(x) and G1 (x) 

(hl-1))/2 

A > xx 

1j -1, j-1 
< 

I 1j-,j Xl 1., j 

lIi~~~~~~~~~~(+ 1) 

.i 

h 
I._1 

FIGURE 2 

The graphs of Gi% (x) and Gl%+1 (x) on the interval Ii,-ij are shown in Figure 2. 
Another direct calculation shows that 

c 12 _h i+1h 1 hi,-1 
ljGi?+1 L2(Ili-1,j) 12 hi,+1i 

11G% L(I +)( l) 

= JIG1i L2(Ii-1,j)( 

and, in general, 

1 1 1 
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So, using (3.5a), (3.7), and (5.8), we have 

m dim ] 1 (t)dtL2(Ii j) 
= E dl,jlGlI IL (Il 

< CjGi IlL2(Ili.1,j) E 2m-i 
m=i+1 

2M- ? j|Glj IL2(Ili_,;) EY ; lS m=i+ 1 

- ~)/2 h3~2 0 < I|Gtii 1L2(Ili-1 'j) 2 
i- 

E (2 

72 3/2 

2V\3(2 - a i-iXi- 

Hence 

(5.lOa) B < (4.6. 10-4)h 312ix1. 

In a similar way we get 

(5. lOb) 
I 00 

px32 

B' - 12 jdim gi m (t)dt < (2. 10-2)h/2ixii ; 

this estimate will be used later. 
Using (3.5a), (3.7), and (3.12b), we have 

J j J rli-1 (t)dt dx < j 2i_ 1(t)dt dx Ili_l,; Xli-l,j-l Ili_,j Ii_l,j 

?fl2~~~ 

(5.11) =< 
2 

((t)Zdt hi,I 
Tn-, 

li-1( Im 

m=i 
oo 

(5.12) C <li_1 (3.5. 7 xm-1 
M=i 

< h 3i _ 4 x4 ( 2 (m -i)) 

M=i 

( r2 2 3 4 

=(1 )2 3 X4 

Hence 

(5.12) C < (3.5 1-3 )l32lxli_ i 
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Using (3.14), (3.16), and (5.11), we get 

j tJX +(i- 1, j,t)>3i_ (t)dt dx 
Ii,i xli-1,j--1 

< (0.12) 
2 (t)dt dx 

0.12)24 
3 ?99 )h3i -lXIi -1. 

Hence 

(5.13) D < (4.6 . 10-4 )h3/2Xi1. 

Finally, combining (5.7), (5.9), (5.10a), (5.12), and (5.13), we get 

(5.14) ||U - Ul_1 L2(Ili_l j) > (1.4 .10 )h3/2 

where in the last inequality we have used the fact that li-i < i -1, which implies 
Xli_- > Xii-1. It follows immediately from (5.14) that 

(5.15) ||u - UlI1flL2(I) > (1.4 10 )hi-iXi-i. 

We now prove another lower bound. FRom (5.6) we have 

|| U i-Uli 11 L2 (Ili - 1,j) 

> K|(U -Ui-1 )(Xdi-l,j-1J) L2(I1i_1,j) 

-1 g1E di g 9 (t)dt 
li 1 i m=j l 

Ix _ 3 1 X l_lj _(t)dt 
li -,j Xli-,j-1 

1 S i 
From (4.6) with-1 kj =li - - 1 we hae )73 _(t)dt 

(5.17) A' ? (5 1 IL2(Ili0- ,j) 

(5.16) wtk= -wea 

B5.+7C ?' D (15 (2.4. 1 1lO3<(2.4.o h*/' 1x1 . 0xh 

From 3.5b) (5.1b),(.12) a d (5.13 wedav 
(5.18) ~ ~ ~ i-1i = 

(2 4 102)h3/2Xl 2a 02h3/1yXi1<05l_xi 
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Combining (5.16), (5.17), and (5.18), we have 

- tyi- || L2(1 1) > [(1-5 103)xii,-ix i - 0-5hji-xli-X ] hli-1. 

Now consider intervals Il%-1,j such that xii,-,ijl > 1/2, i.e., consider j's satis- 
fying 21i-2 + 1 < j < 21i-1. There are 21i-2 such j's if i > 2, and for each of them 
we have 

II? - Uli-1 1|L2(Ili1,j>) ? 2 xi - l 0.5hji-Xi-l] hTQ1. 

Suppose (0.75. 10-3)Xli _- 0.5hli_l > 0. Then 

IIU - Ujii L2(I) ? IU-U li I2(1/2,O) 

= U - ||Uy-Uli- L2(Ili l-J) 

21i 2+1<j<2'i -1 

> [(0.75. 10-3)x i- 0.5hji,jiXj] hi_12li-2 

= 2 [(0.75. 10-3)X2i -0.5hlijlxlXl]2, for i > 2. 

Hence 

(5.19) U-U-1 L2(I) > (0.53. 103)X2i -0.36hi-lXii-1. 

We easily see that (5.19) is valid without the assumption that (0.75. 10-3)Xli_l- 
0.5hl%_1 > 0. Estimates (5.15) and (5.19) prove the first estimate in (5.5). 

Now we prove the second estimate in (5.5). FRom (5.6) we have 

(5.20) IIU - Uli-IL2(Ili -1J) < A'+ B' + C + D. 

Estimate (4.7) with k = 1i - 1 yields 

(5.21) A' < 1.7x2ihT12i 

Combining (5.18), (5.20), and (5.21) yields 

1l -Uli- 11L2(Ili_1,j) < [i.7Xl4 ? 0 Sx', _lhl 11 hlj1_ 

Thus 

U - Uli-I 1L2(I) < 1.7xi_ ? 0.5Xi-1hi-1, 

which is the second estimate in (5.5). D 

Remark 7. It is informative to consider the following two cases: 
Case 1. The sequence Xk converges rapidly to 0; 
Case 2. The sequence Xk converges slowly to 0 
Suppose we are in Case 1. Then the li's are not so large (we could, e.g., have 

1i = i), and Xl%-1 << hi,- 1. Thus from (5.5) we see that Iu - Uli-I JIL2(I) is of order 

hli%-Xli,-. Combining this result with (3.1) shows that 

(5.22) ||u - uli 1L2(I) is of order hi,1- lu - uij1 E. 

Suppose next we are in Case 2, which we are mainly interested in.' Then the li's 
are very large, so Xi,-, > h1i,-. Thus (5.5) shows that IJu - Ulil IL2(I) is of order 
Xi_1 Combining this result with (3.1) shows that 

(5.23) -u&1 L2(I) is of order Iu - ui_1 112 
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We can relate these results to estimates (5.2), (5.3), and (5.6). We see that in 
Case 1, an estimate of type (5.2) holds, but not (5.3). In Case 2, an estimate of 
type (5.3) holds, but not (5.2). The duality argument used to prove (5.2) and (5.3) 
is, of course, not valid for our example, since it is not smooth. We have given direct 
alternate proofs of (5.22) and (5.23). 

Although (5.3) is proved only for smooth problems, if it is formally considered 
for a rough problem, it is similar to (5.4) in that the upper bound is a quantity 
that goes to zero-possibly very slowly times IJu - UklIE. In this sense (5.23) is 
compatible with (5.4). 

Finally we note that although our example is rough in both case, Case 1 does 
have the following "smoothness": The series defining a(x) is "less lacunary", so 
a(x), and hence u(x), is "smooth". 

Remark 8. With an analysis similar that used in the proof of Theorem 3, one can 
obtain bounds for the LOO-error. These bounds have the same form as those in 
(5.5). Specifically, one can show that 

max{ Cl Xi - I hi, - l, C2X2_ - C3Xi-lhi-l} < I UlU i - HlII L(I) 

? C4lij _? + C5Xi-1 hli-1. 

In Case 1 (see Remark 7), (4.1) and (5.24) show that the LOO-error is of order 
hl -1I iX -1, and that the nodal point errors are of the higher order X2 -1' establishing 
superconvergence at the nodes. This is the error-behavior we expect with a smooth 
problem. In Case 2, the nodal point errors and the LOO-error are of order X 2 

showing that there is no superconvergence at the nodes. This is the error-behavior 
we expect with a rough problem. 

Remark 9. The same coefficient a(x) is used in all three theorems. To be precise, 
with -y = 1/20 and with a(x) defined in (3.5a), (3.6), and (3.7), estimates (3.1), 
(4.1), and (5.5) for the energy-norm error, the nodal point errors, and the L2-error, 
respectively, hold simultaneously. 

6. ADAPTIVITY 

So far we have worked with uniform meshes. Consider now a family of meshes 
with nodes of the form j2k, with j taking on a sequence of N + Ivalues between 0 
and 2k, inclusive. Such mesh families are often constructed by adaptive procedures, 
and in most practical situations these adaptive procedures produce mesh families 
and associated approximate solutions whose rate of convergence, measured in the 
energy norm, is O(1/N). Suppose we use the following, typical, adaptive procedure. 
Starting from a uniform mesh, we consider the energy norm error on each subin- 
terval of the mesh. We then refine, by dividing in two equal parts, each subinterval 
whose error is greater than or equal to 6 x (maximum subinterval error), where 
0 < 6 < 1 is a specified parameter. Following this refinement, we repeat the pro- 
cess. The resulting mesh will in general depend on the solution u(x), and thus on 
the coefficient a(x). We denote the meshes by /\N This approach is based on the 
equilibrium principle, which tries to make the errors in the elements approximately 
equal. This principle is used in all adaptive approaches. For an analysis of this and 
similar approaches, we refer to [4], [7]. 

We examine this adaptive process for our boundary value problem, (2.1), with 
the coefficient a(x) defined by (3.5a), (3.6), and (3.7). We claim that if 6 < 2, and 
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we start with the uniform mesh /\o = {0, 1}, then the adaptive procedure produces 
a uniform mesh family. To prove this, suppose that at some stage we have the 
uniform mesh /\k = {0, 2-k, ** , 1}. It follows from (2.4), (3.3), (3.9), (3.10), and 
(3.13) that 

a|(u-Uk)'12dX = j akj- a(x)2 dx 
Iks; Ik j ~~~a(x)ak 

2 

< (0.9)-3 J ak,j- a(x) 12dx 
Ik,j 

= (0.9)-s I k (X)- a(x) 2dx 
Iki 

= (0.9)-3 j LIk(X)12dX 

and 

al(u -Uk)' 2dx > (I .1) 3 j ak,i- a(x) 2dx 
Ik,i Iki 

= (1.1Y-3j Tlk(X) 2dx. 
Ik,i 

Now, it follows from (3.12b) that 

J Tlkk(X) 2dx = 1 lk(X) dx. 

Hence, 

j aj(u - Uk)' 2dx < (j.) j aj(u -U k)j2 dx < 2j al(u -Uk) l dx 

for any two subintervals Ik,j and Ik,i Of \k. Thus, if 6 < every subinteral 
is subdivided, and the refined mesh is \k+1 So, starting with Ao, the adaptive 
procedure produces Al, \2, . - - - 

Since the adaptive procedure will produce only uniform meshes, we see that the 
error in the energy norm, the nodal point errors, and the error in L2 are as indicated 
in Theorems 1, 2 and 3. 

7. CONCLUSIONS 

a) We have shown that there are problems whose finite element approximations 
converge arbitrarily slowly, and that adaptivity cannot improve this situation. 
Specifically, if Xk converges to 0, with Xo = 1, then there is a problem such 
that 

* the energy norm error is of order Xk; 

* the nodal point errors are of order X2; and 

* Iu - Uli-1IL2(I) is of order hli-Xtixi- if Xk converges rapidly to 0, and 
is of order X 2i-_ if Xk converges slowly. 

Adaptivity does not improve the convergence. 
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b) The cases Xk -) 0 rapidly (Case 1) and Xk -- 0 slowly (Case 2) need to 
be distinguished; they lead to different behaviors. The relation between the 
L2 (1)-error and the energy norm error is compatible with the smooth problem 
estimate, 

U - UkIlL2(I) < hklU - UkIlE 

in Case 1, and it is compatible with the smooth problem estimate 
I ~~~~~~~~~~~12 U - Uk IL2(I) < CU - Uk E 

in Case 2. 
c) We have shown that we have superconvergence at the nodes in Case 1, but 

not in Case 2. 
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