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COMPUTATIONAL SCALES OF SOBOLEV NORMS 
WITH APPLICATION TO PRECONDITIONING 

JAMES H. BRAMBLE, JOSEPH E. PASCIAK, AND PANAYOT S. VASSILEVSKI 

ABSTRACT. This paper provides a framework for developing computation- 
ally efficient multilevel preconditioners and representations for Sobolev norms. 
Specifically, given a Hilbert space V and a nested sequence of subspaces 
Vl C V2 C ... C V, we construct operators which are spectrally equiva- 
lent to those of the form A = Sk Lk(Qk-Qk- 1). Here bLk, k = 1, 2,. . ., are 
positive numbers and Qk is the orthogonal projector onto Vk with Qo = 0. We 
first present abstract results which show when A is spectrally equivalent to a 
similarly constructed operator A defined in terms of an approximation Qk Of 

Qk , for k = 1, 2,... 
We show that these results lead to efficient preconditioners for discretiza- 

tions of differential and pseudo-differential operators of positive and negative 
order. These results extend to sums of operators. For example, singularly per- 
turbed problems such as I - A can be preconditioned uniformly independently 
of the parameter e. We also show how to precondition an operator which re- 
sults from Tikhonov regularization of a problem with noisy data. Finally, we 
describe how the technique provides computationally efficient bounded discrete 
extensions which have applications to domain decomposition. 

1. INTRODUCTION 

Multilevel subspace decompositions provide tools for the construction of pre- 
conditioners. One of the first examples of such a construction was provided in 
[3], where a simple additive multilevel operator (BPX) was developed for precon- 
ditioning second order elliptic boundary value problems. This preconditioner was 
defined in terms of a nested sequence of multilevel piecewise linear and continuous 
approximation spaces V1 C V2 C ... C Vj. The analysis of the BPX preconditioner 
involves the verification of norm equivalences of the form 

J 

(1.1) ||U||2H1(Q) S h)I(Qk2-Qk-1)uII2j2(Q), for all u E Vj. 
k=1 

The above norms are those corresponding to the Sobolev space H1 (Q) and L2 (Q) 
respectively; Qk denotes the L2 (Q) orthogonal projection onto Vk and Qo = 0. 
The quantity hk is the approximation parameter associated with Vk. The original 
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results in [3] were sharpened by [13] and [20] to show that (1.1) holds with constants 
of equivalence independent of J. Practical preconditioners involve the replacement 
of the operator Qk - Qk-1 by easily computable operators, as discussed in [3]. 

In addition to the above application, there are other practical applications of 
multilevel decompositions. In particular, for boundary element methods, it is im- 
portant to have computationally simple operators which are equivalent to pseudo- 
differential operators of order one and minus one. In addition, multilevel decom- 
positions which provide norm equivalences for H1/2 (&Q) can be used to construct 
bounded extension operators used in nonoverlapping domain decomposition with 
inexact subdomain solves. 

The equivalence (1.1) is the starting point of the multilevel analysis. This in- 
equality is valid for J = oo, in which case we get a norm equivalence on H1 (Q). It 
follows from (1.1) that 

00 

|VHS (Q) E h11(Qk - Qk-)V L2 (Q), 
k=1 

for s E [0,1]. Here I IH'(Q) denotes the norm on the Sobolev space HS(Q) of order 
s. This means that the operator 

00 

(1.2) As = E h -2,(Qk - Qk-1) 
k=1 

can be used in preconditioning applications. However, A' is somewhat expensive to 
evaluate, since the evaluation of the projector Qk requires the solution of a Gram 
matrix problem. Thus, many researchers have sought computationally efficient 
operators which are equivalent to A'. 

Some techniques for constructing such operators based on wavelet or wavelet- 
like space decompositions are given by [5], [9], [10], [15], [16], [18], [19] and others. 
In the domain decomposition literature, extension operators that exploit multilevel 
decomposition were used in [4], [8], and [12]. 

In this paper, we construct simple multilevel decomposition preconditioning op- 
erators which can also be used to define norms equivalent to the usual norms on 
Sobolev spaces. Specifically, we develop computationally efficient operators which 
are uniformly equivalent to the more general operator 

J 

(1.3) Ai = E Pk(Qk - Qk-1), 
k=1 

where 1 < J < oo and {tk} are positive constants. We start by proving an abstract 
theorem. Let {Qk }, with Qk: VJ - Vk, be another sequence of linear operators. 
The theorem shows that the operators Aj and 

J 

(1.4) J = E[Pk(Q - Qk)(Qk - Qk-l) 
k=1 

are spectrally equivalent under appropriate assumptions on the space, Vk, the oper- 
ators Qk and the sequence {tk}. Here Q' is the adjoint of Qk. The abstract results 
are subsequently applied to develop efficient preconditioners when Qk is defined in 
terms of a simple averaging operator. Some partial results involving the operator 
used here were stated by Nepomnyaschikh [12]. 
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Because of the generality of the abstract results, they can be applied to pre- 
conditioning sums of operators. An example of this is the so-called "singularly 
perturbed" problem resulting from preconditioning parabolic time stepping prob- 
lems, which leads to 

[k = (6(h-2 + 1)-1 

Here e is the time step size. Our results give rise to preconditioned systems with 
uniformly bounded condition numbers independent of the parameter 6. 

Note that an L2-stable local basis for the spaces {Range(Qk -Qk-1)} is provided 
in [16]. With such a construction it is possible to obtain preconditioners for the 
applications considered in this paper. However, our approach is somewhat simpler 
to implement. In addition, our abstract framework allows for easy application to 
other situations such as function spaces which are piecewise quadratic. 

An outline of the remainder of the paper is as follows. Section 2 gives an ab- 
stract framework for norm approximation in a Hilbert space setting, along with an 
abstract theorem which provides equivalence estimates comparing (1.3) and (1.4). 
In Section 3 we give an example of a sequence {Qk} of computationally efficient 
operators in the case of polygonal domains, and verify that they satisfy the hy- 
potheses required for application of the abstract theory. In Section 4 we discuss 
some applications. Finally, the results of numerical experiments which illustrate 
the effectiveness of the preconditioners are reported in Section 5. 

2. A NORM EQUIVALENCE THEOREM 

In this section, we provide abstract conditions which imply the spectral equiva- 
lence of (1.3) and (1.4). We start by introducing the multilevel spaces. Let V be 
a Hilbert space with inner product (., .). We assume that we are given a nested 
sequence of approximation subspaces, 

V1 C V2 C ... C V, 

and that this sequence is dense in V. Let Oj, j = 1, 2,..., be a non-decreasing 
sequence of positive real numbers. Define H to be the subspace of V such that the 
norm 

0 o 1/2 

HI}VIIH = (toE j (Qj _Qj_)vII2) 
j=l 

is finite. Here . * denotes the norm in V, Qj for j > 0 denotes the orthogonal 
projection onto Vj, and Qo = 0. Clearly, H is a Hilbert space and {Vk} is dense in 
H. 

The following properties are obvious from the construction. 
1. The "inverse inequality" holds for Vj, i.e., 

(2.1) !HvW <o i2 lvfl, for all v Vj. 

2. The "approximation property" holds for Vj, i.e., 

(2.2) II(Qj - Qj_y)V < O-1/211VI l, for all v E H. 

As discussed in the introduction, the abstract results will be stated in terms of 
an additional sequence of "approximation" operators, Qk: V -> Vk for k > 0 and 

Qo = 0. These operators are assumed to satisfy the following three conditions, for 
k = 1,2,.... 
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1. An "approximation property": There exists a constant CA such that 

(2.3) II(Qk - Qk)Vj < CAO-1 2IIVII, for all v E H. k 

2. Uniform coercivity of Qk: There exists a 6 > 0 such that 

(2.4) 1flVkfl < (QkVk,vVk) for all Vk E Vk. 

3. The range of Qt, the adjoint of Qk, is contained in Vk. This condition is 
equivalent to 

(2.5) QkQk = QkQk- 

Remark 2.1. Let {?$i}i1 be a basis for Vk. It is not difficult to see that there exists 
{fiI with fi E V such that 

m 

QkV =(V, fi) Xi for all v E V. 
i-1 

Then 
m 

Qw =(w,q$i) fi for all w E Vk. 
i=l1 

Thus Condition 3 above holds if and only if fi E Vk, for i = 1,... ,m. 

The purpose of this section is to provide abstract conditions which guarantee 
that the symmetric operators Aj and A>j, defined respectively by (1.3) and (1.4), 
are spectrally equivalent. Let L = (fk,j) be the lower triangular (infinite) matrix 
with nonzero entries 

tO[tk 1/2 

(2.6) k k > j 
We assume that ? has bounded 12 norm, i.e., 

E E 4ik,j (k(j 
(2.7) tek}, t ( E ) ( E )k=1j<k (2.7) ~~I2HCeI2 SUP 1 2 1 Ci2 

The above condition implies that 

[ik < COk 

for C = CLy, /01. Thus, (AJv, v) < oo for all v E H. 
We introduce one final condition: There exists a constant a such that 

(2.8) Pk + [k+1 ?< a[k, for k = 1, 2)... 

We can now state the main abstract theorem. 

Theorem 2.1. Assume that conditions (2.3)-(2.5), (2.7), and (2.8) are satisfied. 
Then the operator AJ defined by (1.4), with 1 < J < oo, satisfies 

[3(1 + a62 CACL2)]1 (AJv, v) < (Ajv, v) 

< 3(1 + aCACL2) (Ajv, v), for all v E H. 

Remark 2.2. If W is the completion of H under the norm JIvIIA =(A,, V,V) /2, 
then the estimate of Theorem 2.1 extends to all of W by density. 
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For the purpose of proving the theorem, we now prove the following lemma. 

Lemma 2.1. Assume that conditions (2.3)-(2.5), and (2.7) are satisfied. Then, 
for all u E H, 

J 

(2.9) [kII(Qk - Qk)U12 < CACL (AJu,u) 
k=1 

and 
J 

(2.10) ZkII(Q Qk)U112 < 6-2C2C2 (Aju U). 
k=1 

Proof. By (2.5), for all u E H, 
J J 

51k!!(Qk - Qk)UlI2 = SPk ((Qk - Qk)QkU, (Qk -Qk)U) 
k=1 k=1 

(2.11) k=l J k 

= E Pk ((Qk -Qk)(Qj - Q3-l)U, (Qk - Qk)U)- 
k=1 j=l 

In addition, by (2.4) and (2.5), 

(2.12) 
J J 

51k11(Qk -Qk)u1 < 6 5k (Qk(Qk-Qk)U, (Qk-Qk)U) 
k=1 k=1 

J 

= 6-1 E Zk ((Qk - Qk)QkU, (Qk - Qk)U) 

k=1 

J k 

= 6-1 E55 k ((Qk - Qk)(Qj - Qj-1)U, (Qk - Qk)U) 

k=1 j=l 

The quantities on the right hand side of (2.11) and of (2.12) can be written as 
J k 

(2.13) E E 5 
Pk ((Qk - 

Qk)Vj, (Qk - Qk)U) 
k=1 j=1 

by setting vj equal to (Qj - Qj))u and (Qj - Qj))u, respectively. Using (2.1) 
and (2.3), the quantity (2.13) is bounded by 

J k 

EE Pk ((Qk -Qk)Vj, (Qk - Qk)U) 
k=1 j=1 

J k 

? CA 5 kOk |v| II (Qk - Qk)UII 

(2.14) k=1 j=1 
J k 

? CA 5 S 1 k (Oj /0k) /2 | Vj || || (Qk Qk)Uj| 
k=1 j=1 

J k 

=CA E E k,j (j 1>2IIvjII)(P1/2 II(Qk - Qk)UD) . 
k=1 j=1 
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It immediately follows from (2.7) that 

J k 

Z IEk ((Qk - Qk)Vj, (Qk - Qk)U) 

(2.15) k=lj=1 

/J \1/2, J \1/2 

< CACL [EPk lVk ) (12 E[k |(Qk- Qk)uH1) 
k=1 ~~k=1/ 

Combining (2.11) and (2.15) gives 

J 

ZIkII(Qk - Qk)U2 

k=1 

J 1/2 J )1/2 
? CACL I:Pkfl(Qk -Qk-1 )uW)1/2 (? [Pk 1(Qk - Q k) U1)1/2 

The inequality (2.9) follows by obvious manipulations, and (2.10) follows in a similar 
manner. E 

Proof of Theorem 2.1. Note that 

(Qk - Qk-1) = (Qk - Qk-1) - (Qk - Qk) + (Qk-1 - Qk-l)- 

Thus, for v E H, 

J 

(AJv,v)= S Pk | (Qk - Qk-1)V || 

k=1 
J J 

< 3(:kI(Qk 
- 

Qk-1)VH2 + Z(&k + [k+?1)H(Qk -k)V ) 
k=1 k=1 

< 3(1 + CA2CC2) (AJv, v). 

We used (2.8) and Lemma 2.1 for the last inequality above. The proof for the other 

inequality is essentially the same. This completes the proof of the theorem. E 

2.1. Development of preconditioners. The above results can be applied to the 

development of preconditioners. Indeed, consider preconditioning an operator on 

VJ which is spectrally equivalent to 

J 

(2.16) Li= L 1(Qk - Qk-l). 
k=1 

Our preconditioner BJ is to be spectrally equivalent to the operator 

J 

AJ = 
LJ1 

= E /k(Qk - Qk-l)- 
k=1 

Let 

J 

(2.17) BJ = E Ik(Qk - Qk-l)'(Qk - Qk-l). 
k=1 

Then BJ and AJ are spectrally equivalent provided that {tk} and {Qk} satisfy the 

hypothesis of the theorem. It follows that BJLJ is well conditioned. 
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2.2. Preconditioning sums of operators. We next consider the case of pre- 
conditioning sums of operators. Suppose {/k} is another sequence which satisfies 
conditions (2.7) and (2.8). Then the operator 

J 

(2.18) LJ= ZIAk(Qk - Qk-1) 
k=1 

can be preconditioned by the operator defined by replacing Pk by Ak in (2.17) 
above. The following corollary shows that the result can be extended to non- 
negative combinations of LJ and Lj. 

Corollary 2.1. Assume that conditions (2.3)-(2.5) are satisfied and that (2.7) and 
(2.8) hold for both {[tk} and {/k}. For nonnegative C1, C2 with ci + C2 > 0 define 

J 

(2.19) BJ = Z(clk + C2Ik) (Qk - Qk-I) (Qk - Qk-1). 
k=I 

Then, for 1 < J < oo, 

[3(1 + 4.36-2CACL2)]-1((ciLj + c2LJ)-v, v) < (Bjv, v) 
<3(1 + 4aCACC2) ((c,Lj + C2LJ-1v), for all v E H. 

The above corollary shows that BJ is spectrally equivalent to (cILJ + C2LJ)-1 
and hence provides a uniform preconditioner for c1Lj + C2LJ. Moreover, the result- 
ing condition number (for the preconditioned system) is bounded independently of 
the parameters c1 and c2. 

Proof. Note that 
J 

(ciLj + C2LJ) = Z(cik + C2Ik ) (Qk - Qk-1). 
k=1 

To apply the theorem to this operator, we simply must check the conditions on the 
sequence Ik = (Cl Pk 1+ C2fk-1)- . The corresponding lower triangular matrix has 
entries 

(01k~1/2 _ O( 1 ??2t)1/2 
(1), =\Okj) k Oj(Ci j1 + C231)) 

(0 (8 8 )91/2 1/2 1/2 

0 k ,UPj A ljOA 

Since 0 < (1)k,J < (LC + 4)k,j, for every pair k, j, it follows that 3~ 3 

1L1H12 < lLC + Cl2 < 2Cz . 

Because (2.8) holds for both {/k} and {Akk}, it clearly holds for {[k}. The corollary 
follows by application of the theorem. 

3. A SIMPLE APPROXIMATION OPERATOR Qk 

In this section, we define and analyze a simple approximation operator Qk. Our 
applications involve Sobolev spaces with possibly mixed boundary conditions. 

Let Q be a polygonal domain in R2 with boundary &Q =FD UFN, where 1D and 
FN are essentially disjoint. Dirichlet boundary conditions are imposed on FD. We 
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consider domains in R2 for convenience. Generalizations of the results to domains 
in Rd, with d > 2, at least for rectangular parallelepipeds, are straightforward. 

For non-negative integers s, let HS(Q) denote the Sobolev space of order s on Q 
(see, e.g. [6],[7]). The corresponding norm and semi-norm are denoted 11 IIHS(Q) 
and Hs(Q) respectively. The space HL(Q) is defined to be the functions in H1(Q) 
which vanish on FD, and, for s > 1, Hh(Q) = HS(Q) n H'(Q). For positive 
non-integers s, the spaces HS(Q) and Hs (Q) are defined by interpolation between 
the neighboring integers using the real method of Lions and Peetre (cf. [7]). For 
negative s, HS(Q) is defined to be the space of linear functionals for which the norm 

||U||HS(Q) - SUP (u, b) 
q5CH-9(Q) kIIH`S(Q) 

is finite. Here (,.) denotes the duality pairing. Clearly, for s < 0 we have L2(Q) C 
HS(Q) if we identify u E L2(Q) with the functional (u, b) _ (u, b). 

3.1. Some basic approximation properties. Let T be a locally quasi-uniform 
triangulation of Q, and let T be a closed triangle in T with diameter hT. Let F 
be the subset of the triangles in T whose boundaries intersect T, and define VT 
to be the finite element approximation subspace consisting of functions which are 
continuous on F and piecewise linear with respect to the triangles of 7. Note that 
there are no boundary conditions imposed on the elements of V;. We restrict the 
discussion in this paper to piecewise linear subspaces. Extensions to more general 
nodal finite element subspaces pose no significant additional difficulties. 

The following facts are well known. 

1. Given u E H1 (), there exists a constant iu such that 

(3.1) ||U-U<Hsi) ?Ch" |U|H1(i), S = 0, 1. 

2. Given u H H2(7), there exists a linear function i such that 

(3.2) <U-UIHsT) ? Ch 2UsH2QT), S = 0, 1, 2. 

The best constants satisfying the above inequalities clearly depend on the shape 
of the domain F. However, under the assumption that the triangulation is locally 
quasi-uniform, it is possible to show that the above inequalities hold with constants 
only depending on s and on the quasi-uniformity constants. 

For the purpose of analyzing our multilevel example we define the following local 
approximation operator Q: L2(Q) -> V;. Let Xi, i = 1,2,... , m, be the nodal 

basis for V;. The operator QT is given by 

(3.3) QFu = E 

with (, ) the inner product in L2(F). For u, v E L2(F) we have 

(Q~u )~ = (u, Fi (v, Xi) 
F 

(Q~:U, V); 

and hence it immediately follows that QF is symmetric on L2 (F). Moreover, QF is 
positive definite when restricted to VT (see Lemma 3.4). The next lemma provides 

a basic approximation property for Q;. 
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Lemma 3.1. Let T be in T. Then for s = 0,1, there exists a constant C, indepen- 
dent of T, such that 

(3.4) ||U - QUuL2(f) < Chr U jHs(iz), for all u E HS(F). 

Proof. A simple computation shows that 

1Q1U|IL2(f) 
< Cjju 1L2(F)j 

from which (3.4) immediately follows for s = 0. For s = 1, let ii be the constant 

function satisfying (3.1). Using the previous estimate, since Qui = i, we have 

IIU-Q UIIL2(f) ?< IU-UiiL2ff) + 1Q4(-U) 
- 

L2(F) < C|U|-UiiL2ff). 

Combining the above inequalities and (3.1) completes the proof of (3.4) for s 
1. LI 

3.2. Approximation properties: the multilevel case. We provide stronger 
approximation properties in the case when the mesh results from a multilevel re- 
finement strategy. Again we describe the case of d = 2. The analogous constructions 
for d > 2, at least for the case of rectangular parallelepipeds, are straightforward 
generalizations. Assume that an initial coarse triangulation El of Q has been pro- 
vided with FD aligning with the mesh fT. By this we mean that any edge of E1 on 
OQ is either contained in FD or intersects FD at most at the endpoints of the edge. 
Multilevel triangulations are defined recursively. For k > 1, the triangulation Tk is 
defined by breaking each triangle in Tk-l into four, by connecting the centers of the 
edges. The finite element space Vk consists of the functions which are continuous 
on Q, piecewise linear with respect to Tk and vanish on FD. Let hk = maxTE-k hT. 

Clearly, hk = 2-k+lhl. 
We now define a sequence of approximation operators Qk: L2 (Q) -> Vk. Let qi, 

i = 1, ... . m, be the nodal basis for Vk. We define Qk by 

(3.5) QkU = S j X) bi- 

Remark 3.1. Let T be a triangle of Tk. It is easy to see that Q;,u and Qku agree 
on r as long as r n rD = 0. 

In the multilevel case, we have the following stronger version of Lemma 3.1. 

Lemma 3.2. Let s be in [0,3/2). There exists a constant Cs, not depending on 
hk, -such that 

||U - kU|L2(Q) < Cshkl u lHs(Q), for all u C HD(Q). 

For the proof of the lemma we will use the following lemma, which is a slight 

modification of Lemma 6.1 of [1]. Its proof is contained in the proof of Lemma 6.1 

of [1]. 

Lemma 3.3. Let Q7 denote the strip {x C Q I dist(x, &Q) < q}, and let 0 < s < 
1/2. Then, for all v C H1+s(Q), 

(3.6) |IVIIHI(Q77) < C71sllVIIH1+-(Q). 

In addition, let QD denote the strip {x C Q I dist(x, FD) < j}. Then, for all v in 

H(D (Q) 

(3.7) |IVIIL2(Qq7) < C7 1 |V11H1(Q7)- 
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Proof of Lemma 3.2. The proof for s = 0 is trivial (see Lemma 3.1). For positive s, 
we consider two cases. First we examine triangles whose boundaries do not intersect 
the boundary of any triangle in TI. We shall denote this set by T 01n = 0 and the 
remaining set of triangles by T 1n T, 0. 

Let qi be the nodal basis function in the space Vk associated with the node xi. 

Assume that xi does not lie on the boundary of any triangle T C 1T. Because of the 
multilevel construction, the mesh Tk is symmetric with respect to reflection through 
the point xi. It follows that the nodal basis function qi, restricted to a line passing 
through xi, is an even function with respect to xi. Let xi = (P1,P2). Then, both 
of the functions x - P1 and y- P2 are odd on each such line. Consequently, 

(x-pI,q5i) = (y-P2,q5i) = 0. 

Thus, it follows from Remark 3.1 that Qki(xL) = U(Xi) for any linear function u. 
Let T be a triangle whose boundary does not intersect the boundary of any 

triangle of T1. Applying the above argument to each node of T shows that Qkii = U 
on T for any linear function ul. Let F be as in Lemma 3.1. Given u C H2 (), let ui 
be the linear function satisfying (3.2). As in the proof of Lemma 3.1, we get 

|u - QkUIJL2(r) = |UQ-UIJL2(r) ? C||U - 
UiiL2f) < Ch' 1U IHsQf) 

for s = 0,1, 2. Summing the above inequality and interpolating gives 

1/2 
(3.8) ( II - |Qku 1L2Q7) 1 1/2 Ch1 IIUIIH(Q) 

-rTns=0 

for s C [0, 2]. 
We next consider the case when T intersects an edge in the triangulation TI. 

Suppose that T intersects FD* We clearly have that 

(3*9) 11 kU||L2 (-) `< C|| U ||L2 f) . 

Thus, 

U - QkUJIL2(r) < Cj U 1L2(T). 

Summing the above inequality and applying (3.7) gives 

1/2 

(3.10) ( 1 1-QkUI L2C()) 1 Chk IU|IH1 (Q2hk). 
-rnrD i0 

Finally, we consider the case when T intersects an edge in the triangulation TX 
and does not intersect FD. By Remark 3.1 and Lemma 3.1, 

IIU - QkUlIL2(T) < ChkIIUIIH1(T)- 

Summing the above inequality and using (3.10) gives 

1 /2 
(3.11) (z IIU - uQkU1L2(T)) 1< Chk11UI1H1(E2hk). 

TnTlioo 

Here E2hk denotes the strip of width (9(2hk) around all element edges from the 
initial triangulation T1. 
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The lemma for s = 1 follows by combining (3.8) and (3.11). The result for 
s E (0,1) follows by interpolation. For 1 < s < 3/2, (3.6) and (3.11) imply 

1/2 

U - 
||U-QkU (r) < Ch'J uflHs(Q) 

,rnf -i0 

The lemma for 1 < s < 3/2 follows by combining the above inequality with (3.8). 
This completes the proof of the lemma. O 

Remark 3.2. We can extend these arguments to the case when Vk consists of piece- 
wise quadratic functions with respect to the k'th triangulation. Again {q$k} denotes 
the nodal basis for Vk. Then Qk defined by (3.5) satisfies Lemma 3.2. The proof is 
identical to the case of linears. 

3.3. The coercivity estimate. We next show that the coercivity estimate (2.4) 
holds for Qk. Actually, we only require that the triangulation Th be locally quasi- 
uniform. We assume that TD aligns with this triangulation and let Vh be the 
functions which are piecewise linear with respect to this triangulation, continuous 
on Q and vanish on J'D* We consider the linear operator Qh defined analogously 
to Qk in (3.5) and show that 

lVI12 2< C(QhV,v), for all v E Vh. 

The constant C above only depends on the quasi-uniformity constant (or minimal 
angle). 

Let {xi} for i = 1, . . . , m be the nodes of the triangulation and {qi} the corre- 
sponding nodal basis functions. The mesh is quasi-uniform, so for each Xi, there is 
a parameter hi such that 

(3.12) h, hi 

for all triangles T which have the node xi as a vertex. Here we define a - b to mean 
that 

a < Cb and b < Ca 

with constant C independent of the triangulation. It is well known that 

(3.13) (v,v) E h2 E v(x)2, for all v C Vh. 
-EGTh Xi ET 

It follows from (3.12) that 

m 

(3.14) (v,v) h Zh2 v(xi)2, for all v E Vh. 
i=l 

We can now prove the coercivity estimate. This result was essentially given in [3] 
for the case of a globally quasi-uniform triangulation. 

Lemma 3.4. Assume that the mesh Th is locally quasi-uniform. There is a con- 
stant C, depending only on the quasi-uniformity condition, such that 

C-1(V,V) < (QhV V) < C (v, v for all v C Vh. 
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Proof. Let G be the Gram matrix, i.e. 

Gij = (Oi,l5j), i,j = 1,... , 

and let D be the diagonal matrix with entries Dii = h 2. Let v be in Vh, and let w 
be the coefficient vector satisfying 

m 
V = EWii. 

Note that (3.14) can be rewritten as 

C-1((Gw,w)) < ((Dw,w)) < C((Gw,w)), for all w C Rm. 

Here ((,.)) denotes the inner product on Rm. This is equivalent to 

C0((D Gw,Gw)) < ((Gw,w)) < C((D-1Gw,Gw)), for all w C Rm. 

Since 

(1, Xi) -hiI 
it follows that 

(QhV, V) = E ( i = E (I 
G 

); 

((D Gw,Gw)) - ((Gw,w)) = (v,v). 

This completes the proof of the lemma. F 

4. APPLICATIONS 

In this section, we apply some of the above results. As we have seen in the 
previous section, the operator Qk satisfies the approximation and coercivity esti- 
mates required for application of the abstract results. Throughout this section, we 
assume that V1 C V2 c ... is a sequence of nested piecewise linear and continuous 
multilevel spaces, as described earlier. We take V = L2(Q), and (., ) is the corre- 
sponding inner product. With a slight abuse of notation we also use (,.) to denote 
the obvious duality pairing. 

Remark 4.1. Since Vk c H5(Q), for 0 < s < 3/2, Qk and Qk extend naturally to 
all of H-5(Q). Let -3/2 < s < 3/2 and define AS as in (1.2). It is known that the 
norm (Asu, u) 1/2 is equivalent to I I * I I Hs (Q); cf. [14]. 

Fix -y < 3/2. By Lemma 3.2, the triangle inequality and well known properties 
Of Qk 

JI(Qk - Qk)U JL2(Q) < CO1/2U 

where ok h h-2y. Let s < -y and set Pkk h-2s. Then, 

k,j hj) 

decays exponentially as a function of k - j. An elementary computation gives that 

The next theorem immediately follows from Remark 4.1, Remark 2.2 and Theo- 
rem 2.1. 
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Theorem 4.1. Let -3/2 < s < 3/2. Then (A(s)u, u)I/2 provides a norm on 
H'(Q) which is equivalent to the u-sual Sobolev normn. Here 

00 

(s)U=-E h-2s (Qk - Qk-1 )2U. 

k=1 

4.1. A preconditioning example. We consider applying the earlier results to 
develop a preconditioner for an example involving a pseudo-differential operator of 
order minus one. The canonical example of such an application is associated with 
a form 

V(u, v) j u(SI)V(S2) ds,ds2. 

For this application, FD is empty and we seek preconditioners for the problem: 
Find U C Vj satisfying 

V(U, 0) = F(q) for all X C Vj. 

Here F is a given functional. It is shown in [2] that 

(4.1) V(u,u) H -UI-1/2(Q) for all u C Vj. 

It is convenient to consider the problem of preconditioning in terms of operators. 
Specifically, let V: Vj -- Vj be defined by 

(Vv, w) = V(v, w) for all v, w C Vj. 

We shall see that Ai defined by 

J 
-(1/2) = Eh-1(Qk- Qk-1) 

k=1 

provides a computationally efficient preconditioner for V. Indeed, by Theorem 2.1, 

(Q1/2)UU) (A1l2UU) for all u C Vj. 

Applying Remark 4.1 and (4.1) gives us 

(VA112u, A'/2u) (A-1/2A1/2u, A'/2U) = (U A/2U) 

for all u C Vj. Thus, Ai V has a bounded spectral condition number. 
It is easy to evaluate the action of A(1/2) in a preconditioned iteration procedure. 

For k =1, 2,. . ., J, let {ik } denote the nodal basis for Vk. In typical precondi- 
tioning applications, one is required to evaluate the action of the preconditioner on 
a function v where only the quantities {(v, q5')} are known. One could, of course, 
compute v from {(v, q5)}, but this would require solving a Gram matrix problem. 
Our preconditioner avoids the Gram matrix problem. To evaluate the action of Qk, 

for 1 < k < J, one is only required to take linear combinations of the quantities 
{(v, q5k)}. Note that (v, q5k) is a simple linear combination of {(v, 5k+1 )}. Thus, we 
see that all of the Qk 's can be computed efficiently (with work proportional to the 
number of unknowns on the finest level J) by a V-cycle-like algorithm. 
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4.2. Examples involving sums of operators. We next consider preconditioning 
a sum of operators. The first example involves preconditioning the discrete systems 
which result from time stepping a parabolic initial value problem. The second 
example considers a Tikhonov regularization of a problem with noisy data. 

F'ully discrete time stepping schemes for parabolic problems often lead to prob- 
lems of the form: Find u C Sh satisfying 

(4.2) (u, 0) + eD(u, 0) = F(q) for all X C Sh. 

Here D(., ) denotes the Dirichlet form on Q and Sh is the finite element approxi- 
mation. The parameter e is related to the time step size and is often small. Assume 
that Sh = Vj, where Vj is a multilevel approximation space as developed earlier. 
Let [Lk -1 and Ak = h2k for k = 1, 2 .... For convenience, we assume that FD iS 
non-empty, so that D(v, v) ||v | for all v C H'(Q). Then for LJ and LJ defined 
respectively by (2.16) and (2.18), we have 

(L Jv, v) (v, v) and (L Jv, v) D(v, v) 

for all v C VJ. Applying Corollary 2.1 we see that the operator 
J 

(4.3) BJ Z,('k1 + CAk1) l(Qk - Qk-1)2 
k=1 

provides a uniform preconditioner for the discrete operator associated with (4.2). 
The resulting condition number for the preconditioned system can be bounded 
independently of the time step size 6 and the number of levels J. 

We next consider an example which results from Tikhonov regularization of a 
problem with noisy data. We consider approximating the solution of the problem 

Tv = f, 

where T denotes the inverse of the Laplacian and f C L2 (Q). This is replaced by 
the discrete problem 

ThV = fh, 

where Th is the Galerkin solution operator, i.e., Thv = w, where w C VJ satisfies 

D(w,0) = (v,0) for all 0 VJ 

and fh is the L2(Q) orthogonal projection onto Vj. If it is known that v is smooth 
but f is noisy, better approximations result from regularization [11], [17]. We 
consider the regularized solution iw C VJ satisfying 

(4.4) (Th + alAh)i = fh- 

Here Ah : Vj Vj is defined by 

(AhV, w) = D(v, w) for all v, w C Vj. 

The regularization parameter ae is often small (see [17]), and can be chosen optimally 
in terms of the magnitude of the noise in f. 

Preconditioners for the sum in (4.4) of the form of (4.3) result from the appli- 
cation of Corollary 2.1. In this case, Ik = h-2 , Ak = h2k. The condition numbers 
for the resulting preconditioned systems can be bounded independently of the reg- 
ularization parameter ae. 

Preconditioners for systems like (4.4) are generally not easily developed. The 
problem is that the operator applied to the higher frequencies (depending on the 
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size of a) behaves like a differential operator, while on the lower frequencies it 
behaves like the inverse of a differential operator. This causes difficulty in most 
multilevel methods. 

4.3. H1(Q) bounded extensions. As a final application, we consider the con- 
struction of H1 (Q) bounded extensions. Such extensions are useful in development 
of domain decomposition preconditioners with inexact subdomain solves. The con- 
struction given here is essentially the same as that in [12]. We include it here in 
detail as an application of Theorem 4.1. 

With {Vj} as above, let Vk (for k = 1, 2, ... , J) be the functions defined on OQ 
which are restrictions of those in Vk. This gives a multilevel structure on the finest 
space VJ. These spaces inherit a nodal basis from the original nodal basis on Vk. 
The nodal basis function associated with a boundary node xi is just the restriction 
of the basis function for Vk associated with xi. Denoting this basis by { k}, we 
define 

qk(f) - S 

The above sum is taken over the nodal basis elements for Vk, and (,.) denotes the 
L2 (&Q) inner product. We note that it is known [14] that 

J 

HI0/| 1/2(aQ) Ehkj11(qk - qk-1)OIIL2(IQ), 

k=I 

where qk denotes the L2-projection onto Vk. It is easy to see that Theorem 4.1 
holds for these spaces. Thus 

(4-5) -. E ~~~ h-11 (~ik 
k_) 

12 (4.5) | |0 
|H112(aQ) E k -qk-1)O L2 

(Q)' 
k=I 

with qjO = 0 and O0 = 0. 
Now, given a function 0 C VJ, we define EjO c Vj by EjO = k=l Wk, with Wk 

defined as follows. Let 0 be the mean value of 0 on 9Q. Then w1 is the function in 
VI satisfying 

w(xi) f (xi) if xi is a node of VI on OQ, 
0 if xi is a node of V1 in the interior of Q. 

For J > k > 1, Wk is the function in Vk satisfying 

Wk(Xi) f f l[Va - qk-101(xi) if xi is a node of Vk on OQ, 
0 if xi is a node of Vk in the interior of Q. 

Note that EjO = 0 on &Q, so that EJ is an extension operator. 
Recall that I IHI(Q) denotes the semi-norm on H1(Q). Then 

EJ0I HI(Q) = IEJO -0 H(Q) = EJ(0- 0)I H(Q) ? I EJ(0- 0)IIHI(Q). 

We now use the following well known multilevel characterization of the H1 (Q) norm 
on Vj: 

J 

HIV (Q) 
'inf E hk IlVk=L2(Q) 

k=I 
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where the infimum is taken over all splittings v = Vk with Vk C Vk. Applying 
this with v = Ej(0 - 0) = (i -0) + Zk2Wk and using (4.5), we conclude that 

J 
E CE hk (qk - qk 1)(h -0)I L2(&Q) 0i0-0 H1/2(Q) ?002 

k=l ~ k= 

k=1 

where I IH1/2(aQ) denotes the H1/2 (&Q) semi-norm. Thus we see that 

IEJOH1(Q) < CIOIH1/2(aQ). 

This type of bounded extension operator is precisely what is required for the devel- 
opment of non-overlapping domain decomposition algorithms which do not involve 
the exact solution of subproblems. 

5. NUMERICAL RESULTS 

We present the results of some numerical experiments using the operator Aj 
defined by (1.4) applied as a preconditioner for various discrete differential and 
pseudo-differential operators. The first example is a standard one and involves pre- 
conditioning the finite element discretization of a second order problem. Although 
there are many methods available for this problem, we consider it here since it is 
the best-studied problem. The second problem involves using (4.3) to precondition 
a sum of operators similar to (4.4). 

We start with preconditioning the Laplace operator with Neumann boundary 
conditions. To make this problem definite, we consider both the finite element 
operator and the preconditioner on the L2-orthogonal complement of the one di- 
mensional subspace of constants. The finite element space Vk consists of piecewise 
linear functions defined with respect to a uniform triangulation of the square which 
results when an equally spaced nk X nk mesh of smaller squares is partitioned into 
triangles by connecting the lower left and upper right hand vertices. Here we take 
nk - 2k and define Vk to be the functions in Vk which are orthogonal to constants. 
Let Qk be defined as in (3.5) with respect to the space Vk. 

The BPX-like preconditioner 
J 

= Z hkQk 
k=O 

provides a uniform preconditioner for the Galerkin discretization of the problem 
u-?Au = f in Q, 

9Ou -= O on OQ, 
On 

using the approximation subspace VJ. Here n denotes the outward normal direction 
on &Q. Let Qj denote the L2(Q)-orthogonal projector onto VJ. The operator QJBJ 
is symmetric and positive definite on Vj and is a uniform preconditioner for the 
Galerkin approximation Ah to 

-A\u=f in Q, 
(5.1) Au 
basedontheapprximatio subspa= e on VQ, On 

based on the approximation subspace VJ. 
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TABLE 1. Condition numbers for BPX and BJ applied to (5.1). 

hj K(BPX) K(BJ) 
1/8 9.8 5.9 

1/16 11.3 7.3 
1/32 12.1 8.4 
1/64 12.9 9.1 
1/128 13.4 9.6 
1/256 13.7 10.1 
1/512 13.9 10.4 

Table 1 reports the condition number of QjBj as a function of hj for both the 
BPX preconditioner and the preconditioner defined by 

J 
BJ= h 2(Qk- Qk-1)2. 

k=2 

Note that BJ annihilates constants, since we have omitted the k = 1 term in the 
above sum. We see that in this simple case, the new preconditioner is somewhat 
better than the BPX-like preconditioner although it is slightly more complicated 
to apply. 

The second example illustrates the performance of a preconditioner of the form 
of (2.19) applied to the problem agAh + Th. Specifically, 

J 
(5.2) B= Z(ah-2 + h2)-1(Q- Qk- )2. 

k=2 

The operator Th used here is an operator which is spectrally very close to A-1. It 
is defined to be the solution operator of the problem: Find w C Vj satisfying 

D(w, 0) = (v, 0)* for all X C Vj, 

i.e., Thv = w. The inner product (., .)*. is a minor perturbation of (,.) which makes 
the computation of Th feasible via the fast Fourier transform. 

We report the condition numbers for hj between 1/8 and 1/512 and for ae = hj, 
0y = O, 1, 2, 4 (see Table 2). Although there are some values of -y for which agAh +Th 
can be preconditioned by other methods, (5.2) provides good preconditioning for 
all choices of the parameter as guaranteed by Corollary 2.1. Note in particular the 
examples -y = 1 and -y = 2. For these cases, the operator behaves like a differential 
operator on the higher frequencies and like a pseudo-differential operator of negative 
order on the lower frequencies. As far as we know, methods for preconditioning such 
an operator are not available in the literature. 

TABLE 2. Condition numbers when preconditioning h7jAh + Th. 

hj a=0 l = a 2 a 4 
1/8 5.9 12.0 21.6 14.9 

1/16 7.2 17.6 35.8 15.5 
1/32 8.1 24.3 43.2 16.4 
1/64 8.9 34.2 46.8 16.9 

1/128 9.5 45.9 50.8 17.1 
1/256 10.0 55.2 54.5 17.3 
1/512 10.4 61.1 57.6 17.4 
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