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UNIFORM hp CONVERGENCE RESULTS 
FOR THE MORTAR FINITE ELEMENT METHOD 

PADMANABHAN SESHAIYER AND MANIL SURI 

ABSTRACT. The mortar finite element is an example of a non-conforming 
method which can be used to decompose and re-compose a domain into sub- 
domains without requiring compatibility between the meshes on the separate 
components. We obtain stability and convergence results for this method that 
are uniform in terms of both the degree and the mesh used, without assum- 
ing quasiuniformity for the meshes. Our results establish that the method is 
optimal when non-quasiuniform h or hp methods are used. Such methods are 
essential in practice for good rates of convergence when the interface passes 
through a corner of the domain. We also give an error estimate for when the 
p version is used. Numerical results for h,p and hp mortar FEMs show that 
these methods behave as well as conforming FEMs. An hp extension theorem 
is also proved. 

1. INTRODUCTION 

With rapidly growing computational capability, finite element analysis is being 
carried out on increasingly complicated domains incorporating several fine details 
and features. Often such analysis, particularly the labor-intensive meshing phase, 
may be accomplished by dividing the task among several users. For instance, the 
domain Q may be decomposed into components Qi that are meshed separately, or 
for which previously constructed meshes (or stiffness matrices) are available. It is 
often too cumbersome, or even infeasible, to coordinate the meshes over separate 
components so that they conform at the interfaces. The use of non-conforming 
methods (at the subdomain level), which we consider in this paper, can help in this 
regard. 

In such methods, the meshes do not have to match at the interfaces. The inter- 
domain continuity between Qi and Qj is enforced only in a weak sense, usually with 
the help of one or more auxiliary interface spaces. For instance, in the mortar 
finite element method (see e.g. [7, 8, 10] and the references therein), which we 
consider in this paper, the jumps ui -u on the interface must be orthogonal to an 
interface space of piecewise polynomials. We call this a two-field method, the two 
fields being the interior solution variable and a Lagrange multiplier corresponding 
to the interface space. Other examples of two-field non-conforming methods (some 
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defined only at the inter-element, rather than the inter-subdomain level) may be 
found e.g. in [18, 14, 23]. 

There are also three-field methods in the literature, where an additional space, 
corresponding to the trace of the true solution u, is defined on the interface. This 
forms the third field. Now the jumps ui - u and uj - u are respectively made 
orthogonal to two separate Lagrange multiplier spaces. Such methods have been 
proposed, for example in [1, 9]. In fact, a variant of the method in [1] is currently 
being implemented in the commercial hp program MSC-NASTRAN, which is one of 
the motivations for the investigations (albeit on a two-field method) in this paper. 
For a non-conforming method to be viable in the context of such hp implementations 
(among others), the optimal rates of convergence afforded by conforming h,p and 
hp discretizations should be preserved when the non-conforming method is used 
instead (or at least the deterioration should be minor). 

Since the subdivision into subdomains is usually done manually, there is a ten- 
dency in practical situations to make the division along physically natural inter- 
faces. Such interfaces may pass through corners, where the solution is singular. 
In conforming methods, special care is often taken to approximate such singular- 
ities, by using highly non-quasiuniform "geometrical" and "radical" meshes (see 
e.g. [5]). To preserve such approximation, similar care must be taken in the non- 
conforming method as well - in particular, the meshes at the interfaces must be 
non-quasiuniformly refined towards the singularity. 

So far, however, the available results in the literature (both computational and 
theoretical) have only dealt with quasiuniform meshes at the interfaces. For in- 
stance, the available analysis for the mortar finite element method [7, 8] only treats 
it as an h-version method, showing that the optimal rate of convergence in h in the 
presence of quasiuniform meshes is preserved.1 

Our goal in this paper is to extend these results for the mortar finite element 
method to h, p and hp discretizations over general meshes. Specifically, we establish 
optimality for the following: 

1. Non-quasiuniform h discretizations that include, among others, radical and 
geometric meshes needed for the treatment of singularities (see e.g. [5]). 

2. The p version, where the degree p is allowed to increase, while the mesh is 
kept fixed (We show this is optimal up to O(p4).) 

3. The hp version over geometric meshes, which leads to exponential convergence. 
The combination of our results demonstrates that the mortar finite element method 
is an excellent candidate for hp implementation. 

Let us mention that such non-conforming methods can be used for other ap- 
plications as well. For instance, the discretization can be selectively increased in 
localized regions (such as those around corners or other features) which contribute 
most to the error (see [1]). Moreover, different variational problems in different 
subdomains can be combined. See [8] for other contexts. 

The plan of our paper is as follows. In Section 2, we describe the mortar element 
method for a model problem. We consider only the two-dimensional case. Section 3 
contains our main results. A number of ingredients needed for the proof carry over 
from [8]. The two new results needed are (1) the stability of an L2-ty'e projection 
operator in terms of both h and p, over arbitrary meshes satisfying some weak 

'In [8], a second method, without mesh refinement, but with degree increase, is also analyzed; 
this is called the mortar spectral element method and is not discussed here. 
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restrictions (Section 4) and (2) an hp "lifting" or "extension" theorem (Section 
5). In Section 6, we present numerical experiments using various non-quasiuniform 
meshes. 

Let us mention that the result in Section 4 showing the p-dependence of L2-type 
projections is interesting on its own, since it extends the results of [12]. Similarly, 
the hp lifting theorem in Section 5 is expected to be useful in the context of other 
hp analyses. 

2. THE MODEL PROBLEM AND ITS NON-CONFORMING DISCRETIZATION 

2.1. The model problem. For simplicity, we consider here Poisson's equation, 
though our results will also hold for e.g. linear elasticity. Given Q a bounded 
polygonal domain in JR2 with boundary &Q =QD U &QN (&QD n OQN= 0), we 
wish to solve 

(2.1) -Auf, u = 0 on QD, 
a 

9 on &QN. 

Defining H1 (Q) {U H(Q) Iu = 0 on &QD},2 we put (2.1) in variational form: 
Find u E H} (Q) satisfying, for all v E H (Q), 

def [def (2.2) a(u, v) Vu - VVdx = fv dx + gvds d F(v). 
JQ JQ JA 

Problem (2.2) will have a unique solution (assuming, for simplicity, that 0QD # 0). 

2.2. Subdomains and meshes. We assume that Q is partitioned into non-over- 
lapping polygonal subdomains {fQ,JK . This partition can be geometrically con- 
forming or non-conforming. In the former case, if p is a point in Fij = 0Qi n0%Q (i # 
j), then either p is a vertex, or the entire edge containing p lies in riT. Our ex- 
position here is presented for the geometrically conforming case, but following the 
arguments of Section 3 of [7], the results can be extended to the non-conforming 
case as well. 

The interface set F is defined to be the union of the interfaces Fij = rji, i.e. 
F = Ui>j Fij. F can be decomposed into a set of disjoint straight line pieces mYi, i 
1 , 2, . .. , L. We denote Z = { 7l , ,. 17L }- 

Each Qi is assumed to be further subdivided into triangles and parallelograms 
by geometrically conforming, shape regular [11] families of meshes { 7hi}. The tri- 
angulations over different Qi are assumed independent of each other, with no com- 
patibility enforced across interfaces. The meshes do not have to be quasiuniform 
and can be quite general, with only a mild restriction (Condition (M)) which we 
will impose in Section 3. 

For K c Rin, let Pk(K) (Qk(K)) denote the set of polynomials of total degree 
(degree in each variable) < k on K. We assume we are given families of piecewise 
polynomial spaces {Vh,k} on the Qi, 

Vh,k = {U HE H(Qi) I U|K E Sk(K) for K c 7h, u = 0 on &Qi nOQD}. 

Here Sk (K) is Pk(K) for K a triangle, and Qk(K) for K a parallelogram. Note 
that Vhk are conforming on Q., i.e. they contain continuous functions that vanish 

2We use standard Sobolev space notation. Both II.IIk,A and 1I.IIHk(A) will be used to denote 

the norm of Hk (A). For I an interval, HJ20 (I) is the usual space obtained by interpolation between 
L2 (I) and Ho (I) 
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on &QD. For simplicity of notation, we let k be uniform over all Q, but the general 
case where k is different on different subdomains or elements poses no difficulty. 

We now define the space Vh,k by 

(2.3) Vh,k = {U E L2(Q) I UlQi E Vh,k}, 

and note that functions in Vh,k do not satisfy any continuity constraints across the 

interfaces Fi We will define a discrete norm over Vh,k + H1 (Q) by 

K 

(2.4) IIUI12 =E IUI1 
i=1 

which is equivalent to the H1(Q) norm for u E H1(Q). 

2.3. The mortar finite element method. Let ay E Z be such that Cy c Fr. 

Since the meshes Thi are not assumed to conform across interfaces, two separate 

trace meshes can be defined on -y, one from Qi and the other from Qj. We assume 

that one of the indices i,j, say i, has been designated to be the mortar index 

associated with -y, i = M(Qy). The other is then the non-mortar index, j = NM(-Y). 
We then denote the trace meshes by ETh and ETh with the corresponding 

M(y) NM(y)' 
trace spaces being VM(-y) and VNM(-Y), where e.g. 

V M () = 'vhM,k(7) = UlI U E Vh, k 

Given u E Vh,k, we denote the mortar and non-mortar traces of u on -y by um and 

uNMrespectively. 

We now restrict the space Vh,k by introducing constraints on the differences 

u-M _ u<NM. This "mortaring" is accomplished via Lagrange multiplier spaces S(-y) 

defined on the non-mortar trace meshes ETh Let the subintervals of this mesh 
NMQNM 

on -y be given by Ii, 0 < i < N; then we set S(y) = 
S'h,k(y), 

defined as 

S(-Y) = {X E C(7Y) I XI-ri E 'Pk(li)7i = 1,-...- ,N - XlIj E 'Pk-, (1j) ,; = 0O,N}, 
i.e. S(y) consists of piecewise continuous polynomials of degree < k on the mesh 

Eh which are one degree less on the first and last subinterval. NM Q-y) 

We now define Vh,k C Vh,k by 

(2.5) Vh,k = CU E Vh,k j(UM - UNM )xds = 0 VX E SNM(_Y),V_y E Z}. 

Then our discretization to (2.2) is defined as follows: Find Uh,k E Vh,k satisfying, 

for all v E Vh,k, 

K 

(2.6) ah,k(Uh,k,V) E j VUh,k Vv dx = F(v) 

Theorem 2.1 ([8]). Problem (2.6) has a unique solution. 

In particular, the proof of uniform Vh,k ellipticity in terms of the norm 1,d 

carries over. 

Remark 2.1. The problem (2.6) can also be put into a mixed form. Defining the 

Lagrange multiplier space 

Sh,k = Sh,k(F) = J S k(h ) 
~yZ 
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and the bilinear form bh,k on Vh,k X Sh,k by 

(2.7) bh,k(v`x) - E J(Vl -V7XM)x ds, 
-YZ 

we seek (iih,k, Ah,k) E fh,k X Sh,k satisfying, for all (v, X) E Vh,k X Sh,k, 

(2.8) ah,k (uh,k, v) + bh,k (v, Ah,k) + bh,k (iih,k, X) = F(v) 

It can be shown (as in [7]) that (2.8) has a unique solution and Uh,k = Uh,k. 
Let us also remark that the condition u = 0 on IQD (or u = g on OQD) could 

also be implemented by suitably modifying (2.7) to include appropriate boundary 
terms. For convergence results for the mixed method, see Remark 3.2. 

3. STABILITY AND CONVERGENCE ESTIMATES 

Let VONM(-y) denote functions in VNM (-Y) vanishing at the end points of -y. The 
stability and convergence of the approximate problem depends on the properties 
of the projection operator HI: L2(-Y) -> VoNM(-y) defined as follows: For u E 

L2Qty)ayEcZ, Hu u= H,ku E V6NM(y) satisfies, 

(3.1) j(Hh,kU) Xds = j Xds VX E SNM(_Y). 

In Section 4, we prove Theorem 3.1 below on the stability of the projections II,. 
For this, we will need to make a minor restriction on the spaces {Vh,k}. 

Condition (M). There exist constants aB, Co, ii, independent of the mesh param- 
eter h and degree k, such that for any trace mesh on 'y E Z, given by xo < xi < 

< XN+1, with hj j+l - xj, we have hj < Coali-ill where a satisfies 

1< ae < min{(k + 1)2, }I. 

Let us observe that almost any meshes used in the h, p or hp version will satisfy 
Condition (M), which essentially says that the refinement cannot be stronger than 
geometric. We then have the following theorem. 

Theorem 3.1. Let {Vh,k} be such that Condition (M) holds. Let {f-h,k,y Z} be 
defined by (3.1). Then there exists a constant C, independent of h, k (but depending 
on a, Co, K), such that 

(3.2) | <IITIkulo a Ck 2|ullo,,y Vu E L2Q(), 

(3.3) I|(E h,ku)f||o, a < Ck||u'|lo,_~ Vu E Hw(a) 

Remark 3.1. The stability of the projections HII has been analyzed in [7, 8] but only 
under the assumption that the meshes are quasiuniform. For non-quasiuniform 
meshes, the technique of [7, 8] does not work, since we no longer have a global 
inverse inequality. Moreover, the estimates in [7, 8] do not address the stability in 
terms of k, and good estimates for this k dependence cannot be obtained by the 
techniques used there. 

A second ingredient needed for the convergence proof is the existence of a 
bounded hp extension or lifting operator. Such operators have been given for the 
p version (e.g. [3, 4]), the h version (e.g. [25, 26]) and the hp version with quasi- 
uniform meshes (e.g. [4]), but not for the hp version with general non-quasiuniform 
meshes. For this, we have the following theorem. 



Theorem 3.2. For each ay E Z and i such that ay c &Qi and i = NM(ay), there 
exists an extension operator Ri,-= V0NM (y) - Vj,k (Q%) satisfying, for all 
z C VoNM(Iy), and any e> 0, 

Ri,-z = z on r, Ri,z = O on aQi\y, 

(3.4) 1 IRi,-? zl |l,Qi <- Cl Izl I I+,y 

with C a constant independent of h, k, z but depending on e. Moreover, for h or 
k fixed, or for the case of quasiuniform meshes, we may take c = 0 if we replace 
Ilzl I i+e, by Ilz H I ) in (3.4). 

Proof. Extending z to &Qi by 0, we get (3.4) by Theorem 5.1, below. Using Lemmas 
5.1, 5.3, and the proof in [4] shows that we can take c = 0 in special cases. D 

Once the two ingredients in Theorems 3.1 and 3.2 are in place, we can prove our 
main theorem, using the argument used in [8], Theorem 2. In the theorem below, 
{Nj} denotes the set of all end points of the segments -y E Z. 

Theorem 3.3. Let {Vh,k} be such that Condition (M) holds. Then for any e> 0, 
there exists a constant C = C(c), independent of u, h and k, such that 

(3.5) 

IIU-Uh,klld < CE inf 11 a FII(H2( 

+ C inf I lu-vI 1,Qi 
VCVh,k I 

v(Nj )=u(Nj) 

+ :3 + E(lU-MI|I|1+e ty+ IIlU_VNM 11 1+e,y)} 

-YGZ 

Moreover, for h or k fixed, or for quasiuniform meshes, we may take c = 0 if we 
replace . 1 I I i +e,, by. HI y (, ) 

Proof. Using the second Strang lemma, we get 

(3.6) IIU-Uh,kH|l,d < C (inff |U-Vlll,d+eC(U)) 

where ec(u) is the consistency error, which is shown in [8] to satisfy, independently 
of the mesh, 

(3.7) ec(u) < C inf 11 a (H 2 

-Y b )ShlkQ-Y) an' (Qy) 

For the approximation error term in (3.6), suppose ii is any function in Vh,k 
matching u at the vertices of each Qi. Let -y E Z; then the jump iiuM- _iNM 
vanishes at the end points of -y. We define 

(M-iiNM) E VNM(_Y) 

so that 

(3.8) j(iM - (jNM + z)) Xds =O VX E S(y). 
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Now, if j = NM(Qy), i.e. Qj corresponds to the non-mortar domain, we use Theorem 
3.2 to extend za into Qj to obtain 

(3.9) w_ Rj a (r_(iiM -_ ifM)) E Vhk- 

We note that wa vanishes on &Qj\-y and extend it by zero to Q. Then, v 
ii + Wyh C Vh,k We have 

||U - VJ1,d <_ J ||- |llld + E: ||W-yll,d- 

-y 

By Theorem 3.2, 

(3.10) <IWayI1d ? C IILLY(i< _ )lNM + a - 

Interpolating between (3.2)-(3.3) and applying it to (3.10), we see that the result 
follows by the triangle inequality. D 

We now apply Theorem 3.3 to various situations. 

3.1. The h, p and hp versions on quasiuniform meshes. For quasiuniform 
meshes, Condition (M) obviously holds. Also, the approximation theory developed 
in [4, 22] easily shows that the infima in (3.5) may be bounded as in (3.11) below. 
The matching of u at vertices Nj causes no problem; see [4] (e = 0 here.) 

Theorem 3.4. Let the solution u of (2.1) satisfy u C H1(Q), 1 > 3 (1 > 7 if k 
varies). For the hp version with quasiuniform meshes {fh} on each Qi, 

(3.11) |U - Uh,kH|l,d ? Ch1'1k(l1)+3 ? IJuHlj,Q 

where t = min{l, k + 1} and C is a constant independent of h, k and u. 

Taking k =constant in (3.11), we get an optimal 0(h-1) estimate for the pure 
h version, proven in [8]. For h = constant, we have the p version estimate, 

(3.12) 4 
-Uh,k 1,d < U 

Estimate (3.12) gives a rate that is suboptimal by an amount 0(k0). This loss 
does not seem to appear in computations (see Section 6). In a forthcoming paper, 
we prove an improved estimate with only an 0(k6) suboptimality. 

For polygonal domains, the solution u can be decomposed into a smooth part 
and singularities at the vertices of Q of the form r' log' rf(0), where (r, 0) are polar 
coordinates at the vertex, ae > 0 and s = 0 or 1 [13]. Suppose ae0 is the smallest 
singular exponent (assume s = 0); then (3.12) is pessimistic. Rather, by the results 
of [3], we can show a convergence rate of 0(k-(2 -D)) instead. 

3.2. The h version on non-quasiuniform meshes. Suppose, as above, ca0 is the 
smallest singular exponent. Then the pure h version with quasiuniform meshes (and 
degree k > ao) will only give O(h?o) convergence, rather than O(hk) convergence. 
To recover the optimal rate, special mesh refinement is carried out near vertices 
or at points where the boundary condition changes, leading to nora-quasiuniform 
meshes. For these, we redefine h to be N- 2, where N is the number of degrees of 
freedom. 

The radical mesh, described in Section 4 of [5], is a mesh for which the refinement 
increases towards the vertex, and which leads to an optimal O(N- 2) approximation 
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rate for the function ro logs rf(0). A combination of radical mesh refinement in 
the vicinity of vertices, together with adequate refinement for smooth components 
in the interior, therefore, can lead to O(N- 2) convergence for the conforming h 
version. 

To obtain optimal convergence in the h version mortar finite element method, 
appropriate (radical) mesh refinement must be carried out in each subdomain near 
vertices (see the example in Section 6). The trace of such an interior mesh on the 
interface will be a one-dimensional radical mesh. The simplest example, given on 
[0, 11, is 

(3.13) xi= t) i0, 1,... , n 

k+ 1 
(where in 1-d, the optimal exponent is 3 = 2 for the function x' [15]). We note 

2 
that the refinement in (3.13) is weaker than the geometrical refinement allowed by 
Condition (M), so that this condition will be satisfied (see [20] for details). Hence 
Theorem 3.3 is applicable, and can be used to establish improved (up to optimal 
O(N-2 )) convergence for appropriately designed meshes [20]. 

3.3. The hp version on geometric meshes. As shown in [16], the conforming 
hp finite element method leads to exponential convergence when the mesh is refined 
geometrically in the vicinity of vertices. Theorem 3.3 allows us to prove this for the 
hp mortar finite element method as well. For notational convenience, we replace h 
by n here, where n is the number of layers of elements around each vertex. 

Let {7 i} denote the family of meshes on Qi. These will be assumed to be 
geometric in the following sense. For each vertex N1 of Qi such that N1 is also 
a vertex of Q, or a point where the boundary condition changes, we assume that 
in a neighborhood JVl of N1, the elements of the mesh are numbered by a 
double index 7,) with i = 1,... ,p(j), p(j) < po and j = 1,2,... ,n + 1. Let 

hni,j = diam(<(j)), and let dn,i,j denote the distance between (j) and Nl. Then, 

If N1 E<) thenj = land 

,3ql dni < ? $4q dn,ii j < hn,i,j < K2dn,i 

where the constants Cr and KIr are uniform for all the meshes. 
Outside the neighborhoods JV., we assume Tni consists of a conforming (quasi- 

uniform) mesh. We consider continuous piecewise polynomials of degree k on the 
elements in 7ni. Note that the interface meshes will be traces of the geometrical 
meshes in 7ni. These are easily seen to satisfy Condition (M). Hence, Theorem 3.3 
is applicable, giving the following. 

Theorem 3.5. Let u be the solution of (2.1) and Un,k C Vn,k the approximate 
solution (2.6), where fn' are geometric meshes and 1un < k < vn fqr 0 < i, v < oo. 
Then, with N the number of degrees of freedom, 

(3.14) IIU - Un,k|l,d <Ce N 

for some ry > 0. 
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Proof. We apply Theorem 3.3. In [16], the terms lu - vIII,Q are bounded as in 

(3.14). The terms in the H2+6(-y) norm may be bounded by Ce-7'N2 [6], and the 
k +6 loss is easily absorbed into this by adjusting the constant -yI. Finally, the 

terms in the (H2 (Qy))' norm can be bounded by Ce-7iN2 as well [6]. D 

Remark 3.2. The above error estimates also hold when the mixed form in Remark 
2.1 is used. Moreover, using the argument in [7], similar estimates can be derived 
for the error in the Lagrange multiplier (e.g. exponential convergence in the hp 
version). In particular, the argument in [7] shows that the inf-sup constant for 
the mixed method is independent of h for the h version on any mesh satisfying 
Condition (M), and behaves no worse than O(k-4 ) for the p version. 

4. AN hp STABILITY RESULT 

In this section, we prove Theorem 3.1. Our proof uses and extends the ideas of 
[12]. For convenience, we take y= = I= (0, 1) with mesh 0 = xo < xi <... , XN+I 
and denote VoNMQ() by Vh,k(Q), i.e., 

Vh,k(Q) = {X C C(0, 1); XII E Pk,j= 0, ... , N (N > 1); X(O) = X(1) = O} 

Then S/N"M(_) = Sh,k is defined by, 

Sh,k = { X E C(07 1); XIIj E 'Pk, j 1, .. * * N -1; X|I,, E 'Pk-,; XIIN E 'Pk-1} 

and HI = H-1h,k: L2(-Y) -- Vh,k(Q) is given by (3.1). Let us introduce the following 
subspaces of Vh,k and Sh,k (we omit the reference to -y and also to h, k as necessary): 

Vh,k = {X c Vh,k; X(Xi) = 0, i =1, . . ., N}, 

Sh,k = {X E Q(07 1); XlIjjEP?I) v***vN1 

X|0 cPk-1(IO);XIIN c Pk-1(IN)} 

where, for any interval I, 

PkR(I) = {xI X c Pk; X vanishes at the right end point of I}, 

Pk (I) = {xI X c Pk; X vanishes at the left end point of I}, 

Pk (I1) = PkR (I) n Pk (I) - 

In the sequel, we will use 1 12 and . loo to denote the usual 12 or lo norm of any 
vector or square matrix. Also, the norm of a function in Hk(I) will be denoted by 
II-Ilk k 

Lemma 4.1. There exist subspaces V1h,k C Vh,k and Sh,k C Sh,k such that 

(4.1) Vh,k = Vk?hVl k V kI nOV k= 

(4.2) Sh,k = SI k + S2 k v Shlk n Sh,k 0, 
1 

(4.3) v xdx=0O V EVVkv X C Sk 

(4.4) v X dx = 0 , V VEC Vk,XESk- 
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1 1. . . . . . . . 

0.8- 
0.5 

0.6- 

0.2 Lv ~ ~~~~ ~~~~~~02 ....... 

0.4 - 1 
Vh,2 Sh,2 

-0.5- 
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0 -1 
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0.2 h2 0.2 -h,2 

0- 0. 
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 

FIGURE 1. The spaces Sh 2 and Vh, 2 for i = 1, 2 

Proof. We note by (4.1) and (4.2) that functions in Vl,k and S1,k must be com- 
pletely specified by their values at the interior nodes, so each space has dimension 
N. Let us first define Vl,k as the span of N nodal basis functions fj, 1 < j < N, 
such that (4.3) is satisfied. These basis functions will be defined in terms of the 
following canonical polynomials of degree k on the standard interval I = [-1, 1]: 

(-I)k1I 1 dklI 

2k (k! I) 1-X dXk_ 

(4.6) ~2k(k!) (1-x)(1 +x) dXk-I ( )( ) ] 

It may be verified that 

(4.7) A (-1) = 07 i A(1) = 1, j fA q dx = 0 V q c Pk-(I), 

(4.8) fB(-1) = 0, /B(1) = 1, j fB q dx = 0 V q C Pko(I). 



UNIFORM hp CONVERGENCE RESULTS FOR THE MORTAR FEM 531 

We then set, for 2 < j < N - 1, 

B 2x-xji -xj ) Ij 

(4.9) fj(x) = B Xj +Xj+xI-2x on 

0 otherwise, 

A 2x - xo-x 

(4.10) fbI(x)= 
|lB 

xI 
+X2 -2x) on I1 

0 otherwise, 

2x - xN-I - XN 
IFB V 

hNI 
on IN-1, 

(4.11) X)AN(X) XNl 
XN( N + on IN, 

0 otherwise. 

Clearly, with Vlk = Span {b1,... ,)N}, (4.1) is satisfied. Moreover, by (4.5), 
(4.6) and the definition of Sh,k, one can easily verify (4.3). Turning to the space 
SIk, we define qi = ibj fori=2,... ,N-1, and 

f ho_ b x nl 
(4.12) qi1(x)= (x X)f1(x) onI0, 

fb1 (x) otherwise, 

(4.13) ON(X) = (XN+1 - X) N(X) on 'N, 

F/N 
(X) otherwise, 

and set S,k = Span {01, 2,... , ON-1, q$N} Then (4.2) and (4.4) can be easily 
verified. (An illustration of these spaces for k = 2 is in Figure 1.) C 

Using (4.1), we may write 

(4.14) = 1+ 12, 

where for any u c Ho (f) we have Hiu c Vh,k, i = 1, 2. It is easily seen by Lemma 
4.1 that HIi: Ho (0, 1) - + 

Vhi,k is defined by 

(4.15) jITIu Xdx = ju Xdx VX C Shk,i = 1,2. 

(Note that for k = 1, H = H1.) 
We will prove Theorem 3.1 by deriving estimates for H1 and H2 separately. We 

begin by obtaining an explicit matrix characterization of HI1. 
N 

Suppose w = IHIu = Zwj'bi. We can then write 
i=l1 

N 

(4.16) Ewi(fbi,q$j)=(u,q$j) =uj, j=1, ... , N. 
i=l1 
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In matrix form, this becomes 

(4.17) GW = U, 

where Gij = (f q5 j), Wj = wj and Ui = ui. We will need to compute the non-zero 
elements of G, which we note is tridiagonal. We begin with a preliminary lemma. 

Lemma 4.2. Let Lk(t) be the Legendre polynomial of degree k, k = 0,1,.... Then 

2k(k +1) 
(4.18) ( (1- t2)(LI(t))2 dt = i-i ~~~k2k + 1 

(4.19) j(LI(t))2 dt = k(k + 1). 

Proof. Let P(') be the Jacobi polynomial with index (oa, 3) and degree k. Then 
the following relation holds: 

LI(t) = 2(k + I)P(l1) 

Therefore, using a property of Jacobi polynomials, 

(I - t2) (L'(t))2dt = (k + 1)2 J(1- t2)(P(ll)(t))2 dt 

- I(k + 1)2 8 F(k + 1)F(k + 1) 
4 2k +1 F(k)F(k + 2) 

_ 2k(k + 1) 

2k+1 
7 

which proves (4.18). The proof of (4.19) is given in [17], Proposition 4.4. D 

Lemma 4.3. 

(4.20) W((i 0j) = k1i i) = 2)(hjI + hj), j =2,. .. ,N -1, 

(4.21) (W/j j1) = (?b ?1) = (W( l)(k1 hj, j = 1,... ,N- 1, 

ho__ hi_ hN1 + hN 2 ) h +k(k + 1 + (N, N) = + 2) k(k + 1)' 

(4.23) 
jj__b_112_ho_ hi__ 2 _ hN l1 hN 

0 
(k?+ )(k + 1) + k(k + 2) 1lfNIo = k(k 2 + k k 

1,12 2h0 hi___ 2 hNl1 2hN (4.24) 4~1 0 k(k+l) + k(k+2) N 0 k(k? 2 + 2hk(k+ 

Proof. Equations (4.20) and (4.21) are proved in Lemma 2 of [12].! Let us prove 
(4.22). Using the properties of Legendre polynomials, we have 

(4.25) 
t 

Lk(x) dx= (i k dkI t2)kj i-i ~~2k (k!)dtk-l {lt } 



UNIFORM hp CONVERGENCE RESULTS FOR THE MORTAR FEM 533 

Using (4.5) and (4.25), we get 

(4.26) 'OA(t) =Lk(x) dx. 

Next, integrating the governing differential equation for Legendre polynomials, we 
may show that 

(4.27) X Lk(x) dx =- I L' (t) 

Substituting (4.27) in (4.26), we obtain 

(4.28) f/A(t) = k(kt 1) (1 + t) LI(t) . 

Hence, using Lemma 4.2, and the fact that t[L'(t)]2 is an odd function, we have 

A 

1 tdt= (I( +)2 ( t) [L' (t)]2 dt= k(+ 

Then (4.22) follows by a transformation of variables. 
Next, let us prove (4.23). By (4.28) we have 

j fb(t) dt= k2(k 1)2 (1 + t2) [LI(t)]2 dt, 

where we have again used the fact that t [L' (t)]2 is an odd function. Hence, 

j f (t) dt = 2( +l, 2 [LI (t)]2 dt - (I (1-t2 ) [L' (t)]2 dt}. 

Using Lemma 4.2, we therefore obtain 

f ~b~(t = k2(k +k 1) 
) 

AM k2k 1)2 2k(k+1 k+ 1 (k?+1)(2k +1) j fA(t)= t 
~~{2k(k+1 - 2k(k+1)}4 

from which (4.23) follows by a transformation of variables. Equation (4.24) is 
proved similarly. D 

Let us now introduce the diagonal matrix D with the same diagonal elements as 
G7, 

(4.29) di = (Ci, i), i= 1,... ,N. 
We can then write G in the form 

G = D(I + K), 

where K is a tridiagonal matrix with diagonal elements zero and bidiagonal entries 

(4.30) K1,2 = (k + 2)ho + (k + 1)hl' 

(4.31) KN,N-1 
_1)k-lhN-1 

(k ? 2)hN ? (k ? 1)hN-1 

(4.32) Kj,j_ (_k____ 
-I hj v j = 2,... ,N- 1 

(4.33) Kjj k + _l k-I 
hh ' j = 2, .h.2. N-1. 
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Then equation (4.17) becomes 

(4.34) (I + K)W = D-1U. 

Lemma 4.4. Let {Vh,k (I) } be a sequence of finite element trace spaces such that 
Condition (M) holds. Let the matrices D and K be defined by (4.29) - (4.33). Then 
the matrices (I + D 

' 
KD )- 1 and (I + D- 

1 
KD )1 exist and are bounded in 

the 12 norm independently of k and the mesh. 

Proof. We note that all terms of K are of the same sign, so that the same holds for 
K' for any integer 1 > 1. Also, K' will be min(21 + 1, 2N - 1) diagonal. Hence, 

ID K'D-112 < max IK' . 
ji-jj<minf1,N-1}= Tj dj 

Here, by (4.20), (4.22) and Condition (M), 

(di) < 3 (hi-1 + h) < 3 
C02Tl + 1 for ji-jTl<r 

~dj- 2(hj-1+hj) 
- 2 

Since K' is (2T, + 1)-diagonal, we also have 

IK' 12 < CTl2 1K'Ioo < CT111lKIl < k )' 
-0 (k + 1)'' 

where we have used (4.30)-(4.33) to obtain 

IK cO= maxZlkij=k 
j 

l k+ 

Finally, 
00 

(I?D~~KDK)1 2? 1?Z 2D -D112 |(I + D-lKD-2 )-112 < 1I+ Ejl(D1K1D-1)-l 
1=1 

<1 (2) K ) 

Similarly I(I + DK-2KD)-112 can be shown to have a bounded inverse. D 

Lemma 4.5. There exists a constant C, independent of k and the mesh, such that, 
for any u C L2(0, 1), 

IHlul o ? Cllullo 

Proof. We first note that since /'i has support over only 2 intervals, 
N N N 

(4.35) H l = Zw 0b 2 < 3 w2 3 Zw 2di 31D2W 
i=1 i=1 i=1 

Next, we note that, using (4.34), 

D2(I+K)D-DlW = D-U, 

so that, by Lemma 4.4, 

(4.36) ID W12 = j(I?+DKD-)-1DKU2 < CIDK1U12 



UNIFORM hp CONVERGENCE RESULTS FOR THE MORTAR FEM 535 

Finally, using Lemma 4.3, 

I (D-lU)il= I(u, i)) < c u o,j- c/$j o,i - + u o,ki oi) 
(+i - 2 I\ 2 /j0i | 0,i-uIi I 10i I 10,ii-luIi 

Therefore, 

(4.37) |(D 2U)iI ? C (I uIIo,ji_ + IuIIo0,1%)7 

so that 

(4.38) ID- 2 U12 < Cl |UI 0. 

The lemma now follows from (4.35), (4.36), and (4.38). D 

Lemma 4.6. Let u c Ho (0, 1) be such that ul A c Ho (Ii), for i = O,... , N. Then, 

1(HIu)' lo?< Ck ( hi2 IuI 12 

where C is a constant independent of u, k and the mesh. 

Proof. We first note that (with fbo = fLN+1 = 0) 
N N 

II(HIU)1 I= Z1 EW,s>1 Z J (W12< + Wi?iE?+1)2 dx 
i=O i=O Ii 

N 

(4.39) < 2 J ((wiib)2 + (wi+1ib+j)2) dx 
i=O I 

N N 

= 2EwV21VbI12 < Ck2Ew2 (h211 + h-1), 
i=1 i=1 

where we have used Lemma 4.3 and the local inverse inequality, 

jj1f'j Ioj < Ck2h-111|billoj| 

(this can be verified to be sharp for the functions fi). Next, 

(h-1 +h-11)(hi+hhi-) = 2+h-11hi+h-lhi-l < 2(l+Cooa). 

Hence, 

(4.40) (h71? +h21ll) ? C(hi +?hi-,)- < Ck2d-1 

by the definition of di as in (4.29). Hence, (4.39) gives 

(4.41) II(IIlu)' lo < CIDK1W2. 

Next, we see by (4.34) that 

D- (I+K)D2D- W = D-U, 

so that by Lemma 4.4, 

(4.42) ID- 2 W12 < CID-LJ2 

Finally, we note that 

dT-1 k2(hi + hi-,)-' < k2h-117, k2hh-71 

Hence, using (4.37), 

(4.43) (D-3U)il < k2 (h-1 IuIIo,ji_1 + h 1IIuI o,1), 



536 P. SESHAIYER AND M. SURI 

so that by (4.41)-(4.43) we have 

N 2 

(H)I lo < Ck2Z h-22 U 12 

Lemma 4.7. There exists a constant C, independent of k, such that, for any u c 
L2(0, I),y 

(4.44) 1|H2uIo,Ii <K C||U|OIji i1,... ,N-1, 

(4.45) | 1H2u1 Uo,Ii < Ck 2 |u|| I,oj, i = O, N. 

Proof. Equation (4.44) follows immediately from (4.15) by taking X H12uII and 
using the Schwarz inequality. 

To prove (4.45), we note that for the interval Io, (4.15) gives 

(4.46) jl2uXds = u Xds VlX EpR l(Io) 

Suppose first that Io = [-1, 1]. Then we can write 

00 k 

(4.47) u = cpp (x)L 12u = Eapp (x)L 
p=0 p=0 

Substituting (4.47) in (4.46) and taking X = Lm - Lo for m = 1,... , k -1, we 
obtain the following (k - 1) equations: 

(4.48) am-(2m + 1)ao = cm-(2m + 1)co, m = 1, ... ., k-1. 

Also, the conditions H2u(?1) = 0 give, 

k k 

(4.49) Z am = 0, E am = ? 
m=0 m=0 

where ' (>") denotes summation over odd (even) m's. 
Assume k is even (say). Then equations (4.48),(4.49) have the explicit solution 

_ 22m 1)k-i 
(4.50) am =cm 2kk2 ) Cm, m=O,1,... ,k-1, k 2m=l 

(4.51) ak = E (-1)m+lCm - k2 +k E Cm. 
m=0 m=1 

Let us note that by the Schwarz inequality 

1 1 
k-i k-I c2 2 k-I 2 

A = cm < E (2 + 1) < Ck | |u |jo, 
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k-i 

and that E (-1)m?lcm is similarly bounded. Hence, 
m=O 

k 2 k-I 22 

H12U o= 2+=Z II2llo= E2m+ I 2m + I 
+ 2k + I m=O m=O 

k-1 2 k-1 

?C( ii CM ? q A 2)?Clklul 12 

m=< 0 2m + 1 0 ( 

< Ck Iu lo . 

A similar estimate holds when k is odd, so that 

11|H2UI 10 < Ck 2 1 Jul lo. 

By scaling, the same result holds for Io = [O, ho], proving (4.45) for i = 0. The case 
i = N is similarly established. D 

Lemma 4.8. Let u c Ho' (O, 1) be such that uI I C Hol (IA) for i = O,.. , N. Then 

(4.52) ||(H2U)' 10ji < Ck u 1 U loj|, i = 0o ... , N. 

Proof. Let us first consider Io, and assume it is [-1, 1]. Since u, ]1-2u both vanish 
at the end points of Io, we may write 

k-2 00 

(4.53) Il2U = E ap(Lp+2 -Lp), u =cp(Lp+2-Lp) 
p=0 p=0 

Substituting (4.53) in (4.46) and taking X = Lm - Lo, m = 1,.. , k - 1, we get the 
following system of equations: 

(4.54) Aa=Bc, 

where a = [ao a1 ... ak-2T, 5 [co c1 ... Ck-lT, the (k - 1) x (k - 1) matrix 
A is given by 

A = C+D, 

(4.55) Cil =2i+l1, Cij =0, j 1, 

Dj,j-j = 1, Dj,j+j =-1, Dij 0 otherwise, 

and the (k - 1) x k matrix B is given by 

(4.56) B = [A e], [ O ... O . 1T 

Then (4.54) can be explicitly solved to give 

(4.57) a = C + XCk-1, 

where, for 1 < i < k - 1, 

(4.58) Xi = (A-lej =-k + 1)'C i 
k(k + 1)'1C 

=C- 

Now, using the fact that 

LI+-LI = (2p + 3)Lp+l, 
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we obtain from (4.53), (4.57) that 

k-2 kk-2 k-2 

1H2U)' 0 = 2 Z ap(2p + 3) < 4 (2p + 3) + c x(2p + ) 
P=o p=o p=O 

The first term may be bounded by CHJu'111, using (4.53). For the second term, we 
note, using (4.58), that 

k-2 k-2 

c2_ - 1 2 4(2p + 3) < c_Z1 (2p + 3) < Ck||u' H1 

p=o p=o 

so that (4.52) follows for Io = [0, ho] by a scaling argument. The proof for IN can 
be done in exactly the same way. 

Next, let 1 < j < N - 1 and assume Ij = [-1,1]. Then, taking X = Lm+2 - 

Lm, m 0,... -, -2, in (4.15), we get a system analogous to (4.54), with a, C as 
before, and the matrices A, B given by 

Aj,j = 4i + 2, Ai,i+2= -(2i - 1), Ai+2,i= - (2i + 3), Aij = 0 otherwise, 

(4.59) B - [A ei e2 ], 

with 

(4-60) e- = [0 0 ... 0 - (2k - 5) 0]T e [0 0 ... 0 0 - (2k - 3)] T. 

Then (4.54) can be explicitly solved to give 

(4.61) a = C+ XICk-1 + X2Ck, 

where cj = ci-I as before and, for 1 < i < k-1, 

-I _i_ 
i(i_+_1) 

xpi=(A e1)- 4n2+6 n+2 foriodd, x1i=0 forieven 

X2i =(AY2)i=- (i-1)(i-2) forieven, x1i= 0foriodd. 
4n2 +1iOn + 6 

Then, since Ixpij < 1 and JX2ij < 1, we obtain (4.52) analogously to the case 
j =0. 

For any u E H1(I), we now define the interpolant Ih,kU E Vh,k by 

(4.62) (Ih,kU)(Xi) -U(Xi), i = 0, ... , N, 

(4.63) j (1h,kU)/'v dx = U'V' dx V Po (Ii). 

Then from [4] we have, for 0 < s < 1, 

(4.64) U- Ih,kUjj,Ii < Ch1sk (1s)||UI|l,i 

Using Lemmas (4.5)-(4.8) and the interpolant Ih,ku, we are now ready to prove 
our main theorem. 

Proof of Theorem 3.1. Estimate (3.2) follows immediately from (4.14) and Lemmas 
4.5 and 4.7. To prove (3.3), we write 

HlU = - (U_Ihku) + 112(U - Ih,kU) + Ih,kU 
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Since u-Ih,ku E we may apply Lemmas 4.6 and 4.8 to it, to obtain 

I (Hut)'l o ? C (i' ( h2H - l-IhkUH Io,) + k~ ( u - IhkU)fl lol) ~) 

+ H l (I hvku)f~l. / 

The first two terms on the right hand side are estimated using (4.64), and the last 
term can be estimated using (4.62), (4.63). These then give (3.3) by the Poincare 
inequality. LI 

Remark 4.1. The powers k2 and k in (3.2)-(3.3) seem to be sharp, as has been 
verified computationally via an eigenvalue analysis in [20, 21]. 

5. AN hp EXTENSION THEOREM 

In this section, we prove the following slightly more general form of Theorem 
3.2. 

Theorem 5.1. Let Qo be a polygonal domain and let {Th} be a shape regular family 
of meshes on Qo, consisting of parallelograms and triangles, with Th (F) denoting the 
trace mesh on F = &Qo. Let Vh,k(Qo) be the set of continuous piecewise polynomials 
of degree < k on Th (for parallelograms, degree < k in each variable) and let Sh,k (F) 
be the corresponding trace space on Th(F). Then, given Z E Sh,k(F), there exists 
V E Vh,k(QO) satisfying, for any e > 0, 

(5.1) v =z on r, |HvHi ?< Cllzlli+,pr, 

with C a constant independent of z, h, k but depending on e. 

We start with a technical lemma whose proof is adapted from Section 3.2.2 of 

[26]. 

Lemma 5.1. Let z E Sh,k(F). Then there exists v E Vh,k(Qo) satisfying, 

(5.2) v = z on F, 1HVH|1,Q < CHzH4-, 

where C is a constant independent of h but depending on k. 

Proof. Let V be the extension of z satisfying 

(5.3) -AV+ V = 0 in Qo, V=z on F. 

Then by a standard regularity estimate, for 0 < e < E0 ( E0 > 0 depending on Q0), 

(5.4) I|Vl 1+E,Qo < C| zll 2+,r- 

Define v E Vh,k(Qo) to be a discrete extension of z satisfying 

(5.5) (VV, VW)QO + (V, W)QO = 0 Vw E Vhok = Vh,k n HoH(Qo), v = z on F . 

Now let IHkV E Vh,k(Qo) be an (averaging) interpolant of V that satisfies 

(5.6) IlkV = z on F, 11IkHVlHl,Qo < C(k)HjVH1j,Q0- 

Such interpolants have been established in [19] for shape regular (not necessarily 

quasiuniform) meshes. Then by (5.5), since v- I]V E 1h7k, we have 

(Vv, V(v -k HV))Qo + (v, v - HkV)Qo = 0, 
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from which we get 

(5 7) | VII,1QO < CJ| HkVjjIlQo. 

The lemma follows if we use (5.6) and (5.4) (with e = 0) to bound (5.7). D 

The proof of the following lemma follows easily using the construction of V in 
the proof above. 

Lemma 5.2. Let z E Sh,k(F), and let z- E Sh,l(F) be its piecewise linear inter- 
polant. Then, for any 6> 0, there exists a constant C(e) such that, 

Lz 1,r < C(6) lZ+e,I . 

Proof. Let V be as in (5.3) and define V to be its piecewise linear interpolant at 
mesh points of Th. Then (using shape regularity) the following interpolation result 
holds for any e > 0: 

/ \ ~~~~~~~~1 
||V- V|1,QO < C(e) 

( 
KE hKlK) 1 

KETh 

so that 

(5.8) 1VH1,QO < C(6)JJVJl+'E,QO 

Now V Jr z-, so that, by a standard embedding theorem, 

(5.9) -11 ,= IIVII l, < CH1VH1i,QO - 

The result follows by combining (5.9) with (5.8) and using (5.4). 0 

Lemma 5.1 is useful for the case of the pure h version over arbitrary meshes but 
njot for the hp version, since the constant C depends on the degree. For the pure p 
version over a fixed mesh, the following lemma gives the same result. 

Lemma 5.3. [4, 2] Let Qo be a triangle (parallelogram). Let z E c(F) be such that 
for any side -y of F, ZJa E Pk (7). Then there exists v E Pk (Qo) (Qk (Qo)) satisfying 
(5.2) (with C a constant depending on Qo). 

In order to prove our main result, we need one more lemma. 

Lemma 5.4. For any 0 < e < 12 there exists a constant C(e) such that for all 
2~~~~~-2 z EE Hl+E(-T)I,T= [0,1], 

inf llz-pl2+e,Z_ < C(6) zl 2+e 

Proof. The proof is similar to that of Theorem 3.1.1 in [11], where the lemma is 
established for e =. For e < 2 , we use the following definitions [24], 

JuJ2i =~ j j Ju(x)-u(Y) dxdy 

I IUI I12 +eZ = U| |o + IU 12+ 

Because IuI 1 +e0z = O implies u E PO(T), the proof then follows exactly as the proof 
for e 1 in Theorem 3.1.1 of [11]. 0 2 
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Proof of Theorem 5.1. Let {Ni} be the nodes of Th on F, and let Ii = [Ni1, Ni] 
have length hi. Denote by z- the linear interpolant of z on F. We use Lemma 5.1 
to find a v- E Vh,1(Qo) satisfying 

v z on F, HIVI|, ?< CIIZII l,r < CIHZI H+?,rp 

where we have used Lemma 5.2 for the last inequality. 
Next, let Ti be the element whose side coincides with Ii. Define ( E C(&Ti) by 

= z- on Ii, O on &Ti\Ii. 

Assume Ti is a triangle (the parallelogram case follows similarly). Let 

T = {(x,y) I 0 < x < 1, 0 < y <1 -x} 

be the reference triangle and denote I {(x, 0) I 0 < x < 1}. We map T onto Ti 
affinely so that I is mapped onto Ii. 

For any function v defined on Ti (or Ii), we denote by v the corresponding image 
on T (or I). For any e > 0, an imbedding result gives 

(5.10) 
1|| I I C I - 2 ? C( ) - 

Defining Hl1 to be the linear interpolation operator on the interval X, we obtain, for 
any 'p E (), 

I - 
- 2+I' 1 - P) -II (-P) II 

(5.11) ? 2|-P l2+,1I-H1l (H2+e(Z) H2?E(I)) 

Since HHIII 1t (2? +E (I)H) II21 +T)) 
is bounded, we may use (5.10), (5.11) and Lemma 

5.4 to obtain 

(5.12) HK,a < C(E)I +e,Z 

Applying Lemma 5.3 to (, we find v^i E Pk(T) (Qk(T) for Ti, Tparallelograms) 
satisfying 

(5.13) 6= on 0T, L11^i H, < Ci , < C(E)WPI+,. 

Then we may use a standard scaling argument to obtain 

Vi =eon &Ti, IIvi I I,- < Ch Iz?1 +,1_ 

Defining v E Vh,k to be vi on elements adjacent to F and 0 otherwise, we see that 

I1,I I2XQ0 < 
I 
IV,I 12)Ti < C(E) 

I 
ZI 12+eIi < C(E) IIZI 12e 

T t r ow ying vi= v + v. 
2 

The theorem follows by taking v =- F] ~ 
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A 

0~~~~~~~ 

Fig(a) Fig(b) 

FIGURE 2. (a) L-shaped domain; (b) Tensor product mesh for 
m = n = 2 

6. NUMERICAL EXPERIMENTS 

In this section, we perform calculations for problem (2.1) on the L-shaped domain 
shown in Figure 2, which is divided into two rectangular subdomains Q, and Q2, 

2 
by the interface AO. This domain will result in a strong singularity of the form r3 
at the reentrant corner 0, and to obtain good convergence, the subdomain meshing 
must be suitably refined around 0. In order to be able to numerically calculate the 
error, we take 0QN 0 and choose f so that the exact solution is 

u(x,y)=(1- x2)(1 -_y2)r2 sin (3) 
where (r, 0) are polar coordinates with origin at 0. We now show that the mortar 
FEM is stable and performs as well as the conforming FEM, even for high p and for 
strongly non-quasiuniform meshes. (Additional experiments, including the case of 
Neumann boundary conditions, which works just as well, may be found in [20, 21].) 

For programming convenience, we use the mixed form described in Remark 2.1. 
Also, we consider tensor product meshes, where Q2 is divided into n2 rectangles 
and Q, is divided into 2m2 rectangles (see Figure 2). Since the mesh on Q, is 
symmetric about y = 0, in the sequel we only describe the mesh on the top half. 
We remark that although the radical and geometrical families of meshes described 
below are not shape regular as m, n -- oo, our numerical results still turn out to be 
in excellent agreement with the theorems developed in this paper. Note that the 
optimal versions of these meshes (see e.g. [16]) are, in fact, shape regular - we use 
tensor product meshes here strictly for ease of implementation. 

First, we consider the h version on radical meshes, by taking the n grid points 
given by (3.13) along both the x and y axes for Q2, and similarly for Q,, but with 
m points instead of n. We consider the combinations (m, n) E {(2, 3), (4, 6),.... 
(14,21)} to get incompatible meshes. (We could also take m rn and different 
3, which gives similar results). Since our mesh is a tensor product one, it does 

not fit exactly into the optimized 2-d radical mesh framework described in [5]. We 
therefore determine 3 experimentally - it is found that for k = 1, 0 2 is optimal, 
and for k = 2, 3 the optimal value 3 3. For 3 1, we get a uniform mesh on 
each Qi. 

In Figure 3 we show the results for the case k 2, where the percentage relative 
error in the discrete H1 (Q) norm (2.4) is plotted vs N, the degrees of freedom. For 
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the choices of (m, n) above and = 1, our mortar FEM results agree well with the 
theoretical rate of O(N-3), while for 3 3, we observe a rate of about O(N-1), 
as predicted in Section 3. Moreover, for this case, we have also plotted the choice 
m = n, for which the mortar FEM (2.6) simply reduces to the usual conforming 
FEM in this particular case. We see clearly that the mortar FEM performs as 
well as the conforming FEM (the slightly better result observed for the conforming 
FEM is to be expected, since in the above experiment, the mortar FEM cannot have 
better approximation properties overall than the min{m, n} mesh over Q1 and Q2)- 

(Let us remark that for k = 3, we were only able to get O(N-1) convergence, both 
for the conforming and non-conforming radical mesh cases. This non-optimality is 
possibly due to the use of non-optimized tensor product meshes). 

Next, we turn to the p and hp mortar FEM on geometric meshes. We now take 
m= n, and along the x and y axes, take the grid points, 

xo = 01 Xj = 
n i j-1 ,n 

where cxi is the geometric ratio used on Qi. The optimal value is 0.15 ([15]), but 
we take a, = 0.17 and C2 = 0.13 to make the method non-conforming. 

In Figure 4, we plot the results of increasing the degree k for various n. We see 
typical p convergence - initial exponential convergence, followed by the flattened 
algebraic rate of O(k-2a) (ca = 2 here). Let us note that Theorem 3.4 suggested 3 
a possible loss of O(k4 ) in the asymptotic rate due to the projection FLY not being 
completely stable. For our problem, at least, this loss is not visible, as seen from 
Figure 5. Here, we have plotted the case a,1 0.17, 2 = 0.13 for n = 4 together 
with the conforming cases u,1 =2= 0.13 and 0.17. The results indicate that the 
p version mortar FEM behaves almost identically to the conforming FEM. 

101 

........ beta=1 (mortar) 
beta=3(mortar) 

--- beta=3(conforming) 

w~~~~ 
W 10 o?.; E 

U) 0 

U)! \ bSX slope=-0.3276 

p 10 - s lope=-0.9863 

10 102 103 104 

Degrees of freedom 

FIGURE 3. The relative error in the energy norm in dependence 
on h for radical meshes (k = 2) 
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10? o10 10= 103 104 
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FIGURE 4. The relative error in the energy norm in dependence 
on N for geometric meshes (Ui1 = 0.17, u2 =0.13) 

0.17:0.13 
+ + 0.17:0.17 
* * 0.13:0.13 

10 

1002 

.-~ + * 

10 1 02 io302 103 104 

Degrees of freedom 

FIGURE 5. Comparison of the p version mortar and conforming 
FEMs for n = 4 
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FIGUREin 6. Exponential convergence ofC-for The repamorta FeMgtN rte 

than N3~ here is that we have a tensor product mesh which contains extra degrees 
of freedom compared to the optimal geometric mesh described in Section 3. In 
Figure 6, we plot log(relative error) vs Nt, which gives a straight line, showing the 
exponential rate (the curve vs N3~ is also plotted). 
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