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ADAPTIVE MULTILEVEL METHODS IN SPACE AND TIME
FOR PARABOLIC PROBLEMS—THE PERIODIC CASE

J. B. BURIE AND M. MARION

ABSTRACT. The aim of this paper is to display numerical results that show
the interest of some multilevel methods for problems of parabolic type. These
schemes are based on multilevel spatial splittings and the use of different time
steps for the various spatial components.

The spatial discretization we investigate is of spectral Fourier type, so the
approximate solution naturally splits into the sum of a low frequency compo-
nent and a high frequency one. The time discretization is of implicit/explicit
Euler type for each spatial component.

Based on a posteriori estimates, we introduce adaptive one-level and mul-
tilevel algorithms.

Two problems are considered: the heat equation and a nonlinear problem.

Numerical experiments are conducted for both problems using the one-level
and the multilevel algorithms. The multilevel method is up to 70% faster than
the one-level method.

1. INTRODUCTION

The aim of this paper is to present a posteriori error estimates and numerical
results that show the interest of some multilevel techniques for problems of parabolic
type. Our methods are based on multilevel spatial splittings and the use of different
time steps for the various spatial components.

The spatial discretization we consider is of Fourier type. Such a discretization
allows one to simply define a two-level spatial decomposition; but, the authors
believe that the general idea of the multilevel method extends to other types of
spatial discretization and, in particular, to finite element methods (see Marion and
Xu [11] for a first step in that direction, based on L? orthogonal decomposition).

Let T > 0. To compute an approximate solution of the problem on the time-
interval (0,T), we first design an adaptive classical (one-level) method. It is based
on an a posteriori analysis inspired by the work of C. Johnson and his coworkers
[5, 6, 7, 10] for finite element methods.

For time advancing, we use a variant of the discontinuous Galerkin method of
order 0 (see Eriksson, Johnson and Thomée [8]), in which the nonlinear term is
treated explicitly. It can also be viewed as a variant of the implicit/explicit Euler
scheme where the force function is integrated over time exactly.
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Let k,, be the time-step at iteration n, and t, = Y ;- k;. Denote by Su, the
space of trigonometric polynomials of degree less than or equal to M,/2 in each
variable. The solution is spatially approximated at time ¢,, by U, € Spr,. At every
iteration n, the adaptive method finds the discretization parameters k, and M,
such that an appropriate norm of the error is below a given tolerance.

The a posteriori error analysis and the adaptive algorithm are investigated for
two problems: a linear one (heat equation) and a nonlinear one. For nonlinear prob-
lems, it is well known that the approach developed by Johnson and his coworkers
leads to a posteriori estimates involving stability constants that are quite delicate
to compute (see [10] for a discussion of this question). This difficulty occurs here of
course, but it is not at all related to the possible introduction of a multilevel strat-
egy — the a posteriori estimates in the one-level and multilevel cases will involve
the same constants. Therefore, throughout this paper we choose to deal with some
model nonlinear equations for which the stability constants can be evaluated an-
alytically; these equations have some common features with the 2D Navier-Stokes
equations. Our analysis of the one-level (and multilevel) algorithm extends easily
to these equations, as well as to many other nonlinear problems.

Next, we consider multilevel decompositions. For each n > 1, let m,, and M,, be
two integers such that 1 < m,, < M,,. The two-level spatial decomposition of Sy,
can be written as

SMn = Smn @ (P]V[n - Pmn)SMn'
Based on this splitting, we look for an approximate solution in the form
Uy, =V, +W,, where V,, € S,.., Wy, € (Ppr1,, — P, )Swm,, -

The component V' is made up of the lower modes of U, whereas W is made up of
the higher ones. Again the temporal discretization for each of these components
is a variant of the discontinuous Galerkin method of order 0. But, V is integrated
with a time step k, whereas W is integrated with a time step K > k. Equations for
V and W are coupled through the previous set of modes of U and the (possible)
nonlinear term (see Sections 2.2 and 3.2 for a detailed definition of the multilevel
scheme). We derive an a posteriori error estimate for our scheme. Then, we design
an adaptive algorithm. For a nonnegative integer p given by the user, at every
iteration n, the algorithm finds discretization parameters k,, m, and M,, and K,
is set equal to pk,, so that the error is below a given tolerance.

Let us now motivate this multilevel strategy. For 2D Navier-Stokes equations
(see Foias, Manley and Temam [9]), as well as for many other parabolic problems,
it can be shown that the energy carried in the higher modes of the solution is much
smaller than that carried in the lower modes. Consequently, the contribution to the
error of the higher modes should be small. Therefore, it seems natural to integrate
them with a larger time step and hope not to spoil the overall accuracy. This does
not contradict the fact that the higher modes may evolve faster than the lower
ones; nor the fact that the stability of the scheme may require a smaller time step
for the higher modes, since we only aim to compute the solution with some given
accuracy.

Moreover, the interest of the multilevel strategy has been shown in Burie & Mar-
ion [2], thanks to a stability analysis and a priori error estimates for a nonadaptive
version of the multilevel method; so have earlier computational studies for the 2D
Navier-Stokes equations in Debussche, Dubois and Temam [4]. Nevertheless, in
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[4], no a posteriori analysis is carried out and therefore the adaptive criteria are
different; also the numerical performances of the algorithm are not compared to
those of a ‘classical’ (one-level) adaptive method.

For both problems, our numerical results show the stability of the method and
the interest of adaptivity. In computing time, the multilevel method is clearly
superior; we have a gain of up to 70%. Moreover, we observe that the smaller the
tolerance is, the more important the gain in computing time is.

The paper is organized as follows. Section 2 focuses on the linear problem. Both,
for the one-level and the multilevel methods, we give an a posteriori error estimate
and introduce an adaptive algorithm. Then, we discuss some implementation issues
and present some numerical tests. Section 3 adresses similar questions for the
nonlinear equation. The theoretical results are only presented in these sections.
Since the corresponding proofs are long and technical, we only give the main steps
in the Appendix in the (more difficult) case of the nonlinear equations. The reader
is referred to Burie [1] for more details concerning the proofs.

2. A LINEAR PROBLEM

Let Q@ = (0,2m)? and T > 0. In this section, we consider the following heat
equation.
Find u :  x [0,7] — R? such that

O (a,) — B, 1) = f(a,), (o, 1) € 2 % (0,7,
(2.1) u(.,t) is Q-periodic, Vt € (0,7,

u(z,0) = up(z), Vz € Q,

where ug :  — R? and f: Q x (0,T) — R? are given data.
This problem is a vectorial one in analogy with the nonlinear system considered
in Section 3.

2.1. An adaptive method in space and time. We aim to derive an adaptive
code for the integration of (2.1). Our techniques will be inspired by the work of C.
Johnson et al. (see [5, 6] in particular).

The spatial discretization is based on the space Sps of trigonometric polynomials
with values in R? of degree < M/2 in each variable. We denote by Pys the L?(£2)
projection onto Sys. We also set

(2.2) Qu =1- Py.

The time discretization we use is a discontinuous Galerkin method of order zero
(see Eriksson, Johnson and Thomée [8]). We let N € N* and introduce the following
decomposition of (0,T):

O=t<t1 < ---<ty=T.
We denote by I, = (tn—1,tn)n=1,..,n the N subintervals of (0,7), and set k, =
tn — tn_1.

On each time interval I,,, the exact solution u of problem (2.1) is approximated
by U, € Su,,. So, the approximate solution U belongs to the following space £
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Modes
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FI1GURE 1. Description of approximation space &,

(see also Figure 1):
(2.3) En={U;Vne{l,...,NLU®)|;, =Un € Sm, }-

Then, the sequence (U,), is given by the following recursive formula:

(2.4a) Un — Py, Up—1 — kn AU, = / Py fdt, n=1,... N,
I,

where

(2.412)) Uo = Ug.

This scheme is a variant of the backward Euler scheme, where f is integrated over
time exactly.

We now aim to give an a posteriori error estimate for this scheme. We need some
additional notation. We denote by lHI;(Q) the space of functions which belong to
HJ, (R?)? and are Q-periodic. The space HY () is equipped with the usual L?-norm

u| = ( /Q u(z) -u(a:)dsc) v

[ully = sup fu(, ).
te(0,T)

)

We also set

The functions k and M are defined on (0,T) by:
k@)1, = kn, M(®)|1, = My, forn=1,...,N.

Then we state the following
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Theorem 2.1. Ifug € HY(Q) and f, fi(= &) € L=(0, T; HO(Y)), then the follow-
ing error estimate holds:

(2.5)
max |u(ty,) — Uyl
n=0,...,
QMf QM Un—l
< 2 _ ek CONERA
< En{ 1Kl + e W= U 4| S| e max |t

where we set

1 tn
Ly _2+§n=1r11i%N log <E)’ Uy = ugp.

We refer to Burie [1] for the proof of Theorem 2.1. See also the Appendix for
the proof of analogous estimates for nonlinear equations.

The different terms arising in the a posteriori estimate (2.5) can be easily inter-
preted. Indeed the first two are due to the time discretization; in particular, since
|U,, — Up—1] =~ |kug|, we see that the scheme is of order one in time. The next two
terms are related to the spatial discretization. In particular, since M, > M,_;
implies @, Up—1 = 0, the term Qz‘,jn A[f[’;‘l of (2.5) may be viewed as an estimate
of the de-refining error. "

Let TOL be a given tolerance. Using the above a posteriori estimate, we aim to
devise an adaptive algorithm that computes an approximate solution U of problem
(2.1) satisfying

(2.6) |u(t,) — Un| < TOL, forn =1,...,N.

Of course, the discretization parameters should be chosen so that the computational
cost is optimal.
In view of (2.5), it is natural to introduce the following functions:
EStkn(knaMna Un) =L, {k»,21,||ft||1n + |Un - Un—ll} )

QMn Un—l
o M2

Estag, (kns Mn, Un) = AL {M;?HQMnntn t

Bst,, = Esty,, + Estar,,,

Estr = max Est,,
n=1,...,

b

where n € N*, L, =2+ 1/2max;—1, .. » /log (t;/k;), and [[ul 1, = supser, |u(.,t)[-
Clearly, Esty is equal to the right-hand side of the a posteriori estimate (2.5).
Therefore, in order to guarantee the error control (2.6) it is sufficient to find the
time steps k,, the numbers of modes M,, and the corresponding U,, such that for
eachn=1,...,N

(2.7) Esty,(kn, My, U,) < TOL.

At a typical time step, k., M, and U, are determined through an iterative
procedure. Let us denote by F, the function giving U, in terms of k,, M, and
U,—1 in (2.4); that is,

Un = Fn(kn’MnaUn—l) = PMnUn—l + knAUn +/ PMnfdt
I,
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Then, note that Esty, (resp. Estp,) depends mainly on k, (resp. M,). We
introduce a sequence (k%, MI,U?);>¢ that tends to (k,, M,,U,) satisfying
' 1

TOL
100’

(2.8)  Este, (kn, My, Us) = %TOL, Bt (kny M, Un) =
as follows. Suppose that (kn—1, My—1,U,—1) is known. We set

(k9 M) = (kn—1,My,_1) and Uy = F(ky, My, Up_1).
Next, for j > 1, k is given by
(2.99) ()°Ls {nftum-l + %} - 2oL,
where I3~ denotes the interval (t,t, + ki~!). Next, M] is the smallest M € N*
satisfying

(2.9b) AL, {M“QIIQMfllzg;—l 1 |2l

ki M2

1
< —

and UJ is given by

(2.9¢) Ul = Fp(k3, M2,U,_).

The procedure is reiterated until we reach the stopping condition
(2.94) Est,,(k}, MJ,U7) < TOL.

In this case, we then set (kn, M,,U,) = (ki, M3,UJ).

Thanks to the stopping condition (2.9d) and to (2.8), for each n € {1,...,N},
the error control (2.7) should be satisfied with near equality, which is necessary in
view of the reliability and efficiency of the algorithm.

Moreover, if TOL is small enough the discretization parameters should slightly
vary from one time step of the scheme to the next one. Therefore, the sequence
(k3, MJ7,UJ); should converge in very few iterations. We will check this property
numerically.

Remark 2.2. It could seem more natural to ask for
Est, (kn, My, U,) ~ TOL/2, Estas, (kn, My, Up) ~ TOL/2

instead of (2.8). But, since the parameter M, is discrete, this choice would lead
to Estg,, (kn, My, U,) < TOL/2; so the estimated error would often be about half
the tolerance, which implies a loss of efficiency for the algorithm.

2.2. A multi-level adaptive method. The strategy of the multi-level method
we will introduce consists in freezing the higher modes of the approximate solution
during several iterations of the lower modes. As explained in the introduction, we
expect that integrating the higher modes with a larger time-step will not spoil the
overall accuracy of the method.

As in Section 2.1, we denote by U the approximate solution of (2.1) and use the
decomposition of (0,7) in N subintervals I, = (tn—1,tn) with k, = t, — tp_1.

Now, concerning the spatial discretization, on each interval I,, we are given two
integers m,, and M,, such that 1 < m,, < M,,. The integer m,, is called the cut-
off mode. The approximate solution splits into a sum of two components, a low
frequency one V,, and a high frequency one W,:

U,=V,+W,, VnepmnSMn and Wne(PMn—‘Pmn)SM

n*
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Modes

A

MQ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
W,
l'IlQ ______________________________________
M,
W
M|
Voo % | ¥

m, W . e

Vi V1Y

Vi ¥
t, t, ot t, t, t, tys by, By, by time

FI1GURE 2. Description of approximation space Fp,

For each ¢ = 1,...,Q, let p; be a nonnegative integer. The component W, is
kept constant over p, successive intervals I,,. We denote by J; the union of these
intervals, and by K the length of J;. Obviously, we have

K= 3 k.
n»InCJq

Since the parameters m,,, M,, and W,, are kept constant over J,, they are denoted
by mg, My and W,.
The approximate solution U of problem (2.1) lies in the space, (see also Figure 2),

(2.10) Fp = {U; Vge {1,...,Q}, Yne{1,...,N} such that I, C Jg,

Ul (t) = Up =V, + Wy, where V,, € Sy, and W, € (P, — qu)SMq}.

For g € {1,...,Q}, we denote by n, the index of the first interval I,, contained in
Jg; that is,

(2.11) Vg=1,...,Q, ng =min{n € {1,..., N} such that I,, C Jg}.
The sequences (V,,), and (W), are given by the following recursive formulas:
(2.12a) Voo = Py Un—1 — kn AV, = / P, fdt, n=1,...,N,
In
(2.12b)

Wy — (Pat, = Pn,)Un,—1 — K, AW, =/ (Pu, — Pn)fdt,  q=1,...,Q,
Ja

where

(2.12C) UO = UgQ.
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Note that the component V,, is computed with the time-step k,, whereas W, is
computed with the time-step K,. The equations (2.12a) and (2.12b) are coupled
through the projection of U,,_; on the new set of lower (resp. higher) modes.

‘We now give an a posteriori error estimate for this multilevel scheme. Let k, K,
m and M be the functions defined on (0,T) by

k)1, = kns K(B)]s, = Kqp m(8)]s, = mg, M(t)|s, = Mq.

The following theorem is proved in Burie [1]; see also the Appendix for nonlinear
equations.

Theorem 2.3. If ug € H}(Q) and f, fy € L®(0, T;H)(Q)), then the following
error estimate holds:

(2.13)
jmax [w(tn) — Unl
Quf Qm,Un,—1
< 9 U Mg Zng—1
_LN{Hk Filly+ meax  [Un — U 1|+4| e ||, T B | Tk 02

+ ||+ K2)(Pyr — Pm)ft||T+2q:1§1§;<Q |(Py, = Prm,)(Un, — Unq_1)|},

where ng is given by (2.11) and

1 tn _
LN_2+§n=nll,f.a}.(,N log<?n—), Up = ug.

It is interesting to compare estimate (2.13) with the corresponding one for the
scheme (2.4). The first two lines in the right-hand side of (2.13) are similar to the
estimate (2.5); in particular, we emphasize that the constants are the same ones.
The other terms of (2.13) are clearly due to the multilevel strategy. They vanish
if m= M. Also, if m is close to M, these terms are small in comparison with the
previous ones. Indeed, in this case we have

[k + K*)(Par = Pr) fol | < (|62 fe]|
similarly, provided & and K are ‘small enough’,

2_max, |(Prt, = Prny)(Uny = Uny—1)| = 2[| K (Py = Pr)uell

<« max |(Up — Up—1)| = ||kuel| 7 -

n=1,...,

We now aim to define an adaptive algorithm that yields an approximate solution
U of problem (2.1) such that

(2.14) lu(tn) — Un| < TOL, forn=1,...,N,
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where TOL is some given tolerance. Recalling (2.13), for n € {1,...,N} and
g€ {1,...,Q} we introduce the following functions:

Esty, = Ln {k‘?l“ft”In +|Un — Un—ll} )

_ Qn,Un,—1
Estar, = 4Ly § M7 2@, fll, + | ¢
konq
EStMLq = 2"K§(PM4 - qu)ft"Jq + 2I(PMq - qu)(Unq - Unq—1)|7
EStq - n suchltr%gz(fnCJq EStkn * ESth * EStMan

Estr = max Estg,
q=1,...,
where ng is given by (2.11), U,, = V,+ W, and L,, = 2+1/2max;—1, .., \/log (t;/k;)
(the dependence of L,, upon J, is neglected).
Thus defined, Esty is greater than or equal to the right-hand side of (2.13).
So, in order to guarantee the error control (2.14), it is sufficient to find for each

ge{l,...,Q}
K,, Mgy, mq, and k, for all n such that I,, C Jg,
and the corresponding approximations W, and (Vy,)n, 1, cJ, such that
Estq(kn, Kq, Mg, mq, Vi, + Wy) < TOL.

At a typical time step g, by analogy with the one-level method, we use an iterative
procedure that converges to parameters and corresponding approximate solutions
satisfying

Esty, (kn, Kq,--.) < TOLy,  Estag, (kn, Kq,...) < TOL,

EStMLq (kn,Kq, .. ) < TOLsg,

with TOL; 4+ TOLy + TOL3 =TOL.

Here, Esty, and Esty, will allow us to define the time step k, (for the lower
modes) and the number of modes M;,. Then the other term Est L, should allow us
to find the time step K, (for the higher modes) and the cut-off mode m,. However,
this quantity does not seem to be sufficient to yield both parameters (especially
if fi = 0). Therefore one needs to introduce a supplementary condition. Here we
choose to fix the number of iterations of V' during which W is frozen. That is, the
ratio K, /k, is kept constant; we set

%’ =peN,

where the value of p is chosen a priori. In practice, during the iterative procedure,
once the parameter k7, is given by Esty,, (k]) ~ TOL, we set K7 = pkl, and m] is
given by condition Esty, (K3, m) ~ TOLs.

This procedure is rather natural, since Estasz, (K, m,) < TOL3 always has the
trivial solution mq = M,. Clearly, if the algorithm gives m, < M, this will show
that the higher modes of U can indeed be integrated with a larger time step without
any loss in accuracy.

Remark 2.4. The above method involves two levels, but the principle can easily be
extended to several levels. Indeed, let N be some number of levels and let m; be
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N integers such that 1 < m; < --- < my. The approximate solution can be split
into the sum

U=V+Ws+-+ Wy,

where V € S,,, and W; € (Pp; — Prm;_,)Smy- The component V' is then integrated
with a time step k, and each W; with a time step p;k, where the p; are integers
satisfying 1 < po < --- < pn. The p; are chosen a priori; for instance a natural
choice is p; = 2¢~!. Then, the adaptive algorithm gives the values of the different
cut-off modes m;.

We now introduce the algorithm. Let € > 0 be a small parameter. We set

9TOL TOL
TOL; = (1-&)—=; TOLz=(1- s)—loo—; TOL; = ¢TOL.
This choice will provide values of k and M close to those in the one-level method, so
that it will be possible to compare the numerical performances of the two schemes.
For the numerical tests, we set € = 1/25.
The algorithm is composed of two steps. At a typical time step ¢, we recall that

ng is defined by
ng = min{n € {1,..., N} such that I,, C J,}.

Suppose that (knq_l,Kq_l,Mq_l,mq_l) and Uy, 1 = Vo -1 + W1 are known.
First, we compute parameters k,_, Ky, My, m, and the corresponding components
Vi, and W, of Uy, given by (2.12a) and (2.12b). Next, for all n such that I, C J,,
since Kq, My, m4 and W, are known and fixed, we only have to compute parameters
k, and the corresponding component V,, of U,, = V,, + W, given by (2.12a).

More precisely, we first introduce a sequence

(kgbq’ ng Mtg’ mfp Urqu = Viq + Wg)jZ(Jv
where V,{q and W] are computed in terms of k), , K3, M} ,m} and Up,_; thanks
to (2.12a) and (2.12b). It is defined as follows. We set (kgq,Kg,Mg,mg) =
(kny—1,Kq—1,My_1,m,_1) and compute the corresponding qu = qu +Wg. Next,
for j > 1, k%q is given by

9 |U7Jl;1 — Unq—ll
(2.15a) (k)" Lng el g2 + e = TOLy,
where If;q__ll denotes the interval (t,,t, + kj,_'). Then,
(2.15b) K} = pk}, ,
and M is the smallest M € N* satisfying
— QMUn -1
(2.15¢) 4Ly, {M 2N@nfll g+ + _kz—_l—]\q/[—z < TOLs.

Finally, mg is the smallest m < Mg satisfying
(2.15d)
2L, {(KD?|(Ppgg = Pm)fill g1 + (Pyggs = P)(U3, " = Un, 1)l } < TOL,

and we compute the corresponding U, =V + W/ given by (2.12a) and (2.12b).
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This first procedure is reiterated until we reach the stopping condition
(2.15¢) (Estw,,, + Estar, + Bstarr,) (K, , K3, M],m], U} ) < TOL.

In this case, we set (kn,, Kq, Mg, mq,Up,) = (k,jlq,Kg,Mg,mg,U,{q) )

Next, we perform the remaining iterations of V,,. For this, we introduce a new
variable Sumk, and set Sumk = k,,. As long as Sumk < K, for each n, the
parameter k,_; and U,,_1 = V,,_1 + W, being known, we determine k,, and V,, as
follows. We set k9 = k,_; and compute the corresponding component V,2 thanks
to (2.12a). Next, for j > 1, kJ, is given by

[UZ" = Un-al

CRE } o

(2.15f) (k1)L {Ilftllzz:l +

and we compute U = V7 + W,, where VJ is given by (2.12a).
This procedure is reiterated until the stopping condition

(2.15g) Esty, (K}, U3) < TOL,

is satisfied. In this case, we set (k,,U,) = (k%,U?) and Sumk =Sumk + k,, and
perform the next iteration of V;,.

2.3. Numerical tests. We first give some indications on the practical implemen-
tation of the one-level adaptive algorithm, which easily extend to the multilevel
algorithm. To allow Fast Fourier Transform (FFT) algorithms, the levels of modes
M belong to

(2.16) Gu = {M € N; M =2%3%5°, a,b,c € N with a > 2 and 4 < M < Myax},

where Mmax = 128. Then, assuming M < Mmn,x, We approximate ug by Py, .. to.

According to the scheme (2.4), at each iteration n, we need to compute the
quantity Pys, U,—1, where U,_1 € Sy, _,. If M, > M,,_1, Py, Up—_1 is obtained
by padding U,,_1 with zeroes. On the contrary, if M,, < M,,_1, Pa,,U,,—1 is simply
obtained by truncation. Next, the quantities |U,, — U,_1| and |Qns, U, —1] for the a
posteriori estimate Est,, are obtained using the Fourier coefficients of U,, and U,_;
and the Parseval equality.

The first solution of (2.1) we consider is defined by f =0 and

(uo)1 (1, 22) = (ug)2(x1,22) = 5exp(—5((z1 — m)° + (z2 — m)?)).

The initial condition ug is a smooth ‘approximation’ of a é-function at (x1,z2) =
(m,m) (see Figure 3).

We choose T' = 1.5 and TOL= 0.001. The results are given in Figure 5 for the
one-level method, and in Figure 6 for the multilevel one, where p = 3. In Figure 5
are displayed versus time:

e upper-left quadrant: time-steps k,

e upper-right quadrant: number of modes M, and jnax (points), the maxi-
mum number of iterations needed by the algorithm to find the discretization
parameters,

e lower-left quadrant: L?-norms of real (continuous line) and estimated error
(points),

e lower-right quadrant: L2-norm of the solution u of (2.1).
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Figure 6 is similar to Figure 5 except for the upper-right quadrant, where we
display the total number of modes M, and the cut-off mode m (dashed line).

As expected, we first notice that the discretization parameters k and M given
by both algorithms are roughly equal. Therefore, further displayed tests will only
concern the multilevel method.

Next, in Figure 5 we find that jma.x is equal to one most often, i.e. the search
for discretization parameters loop converges in one single iteration. This allows us
to minimize the cost of the adaptive algorithm.

Defining the efficiency index by

flu - U“T
K

2.1 =
(2.17) Eff sty

for all performed tests, we found that Eff~ 0.2. For solution 1, we computed it for
several values of TOL, and, checked that it does not depend on TOL:

| TOL [[10~" [ 51072 [ 1072 | 5.107° | 107% [ 5.10~" |
[ Ef J020] 019 [o022] 022 [023] 021 |

Concerning computing time, the following table compares both methods for vari-
ous tolerances and values of p. All computations were performed on a HP 9000/715
work station.

| Solution 1 (T=1.5) | 1level [ p=3[p=5]p=T7]p=9]p=10|
TOL | CPU time (seconds) 78s 65s | 63s | 64s | — —
=10"% | M-L time / 1-L time 1 0.83 | 0.81 | 0.82

TOL | CPU time (seconds) || 189s || 139s | 140s | 135s | 134s | 136s
=5.10"* | M-L time / 1-L 1 074 | 074 | 0.71 | 0.71 | 0.72

In this case, the gain in computing time allowed by the multilevel strategy reaches
30%. We notice that the smaller TOL is, the better the gain is. Actually, this fact
is general, as we will show later.

The second solution we consider is defined by (see Figure 4)

(uo)1 (1, x2) = (ug)2(z1, z2) = (—871/15 + 4n2x3 — 4na + x3)/100,
Fi(@1,32) = fo(@1,22) = exp(—0.1(|z1 — 7[> + |z2 — 71|*)) (cos (wt/2))°.

We choose T' = 8 and TOL= 0.01. The result of the multilevel method is shown
in Figure 7.

With T = 120 (i.e. 30 periods of f), we check the stability of the multilevel
method for TOL=0.05 (see Figure 8).

Concerning computing time, we have the following table.

| Solution 2 (T=8) [1llevel | p=3]p=5]p=7]p=9]
TOL | CPU time (seconds) || 29s | 185s| 17s | 17s | —
=10"2 | M-L time/ 1-L time 1 064 | 059 | 0.59 | —

TOL | CPU time (seconds) || 1250 s || 685s | 576 s | 498 s | 520 s
=10"% | M-L time/ 1-L time 1 0.55 | 0.46 | 0.40 | 0.42
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For this solution, the gain in computing time reaches 60%, and, again increases
when TOL decreases.

Indeed, as shown on Figure 9, p being a constant, as TOL decreases the total
number of modes M increases since a finer refinement is needed, while the cut-off
value m given by the algorithm does not change. More precisely, there exists a
function me(t), which does not depend on TOL, such that if M(¢) > mc(t) then
m(t) ~ me(t).

Therefore, compared with the one-level method, the smaller TOL is, the larger
the number of modes integrated with a time-step pk > k is, and finally, the greater
the gain is.

We heuristically justify this behaviour. At a typical time-step n, let us first
assume that

k2 ft(tn)| > |Un — Up—1l,
and, also,
[P?k2(Prs — Pr) fe(tn)] > [(Pyr = Pn)(Un, — Uny=1)|-

Then, due to the a posteriori estimate (2.13) and to the construction of the multi-
level algorithm, we have

9TOL
2 ~ I

and so, dividing the former term by the latter one, we see that

2I(PM — Pp) fi(tn)] - i

2% |k2(Par — P filtn)| =~ ——,

Next, assume that
k2 fe (tn)| < |Un — Up—1]
and
[Un = Un—1] = kn|us(tn)],
and also
|(Pat = Pr)(Uny = Uny—1)| 2= |(Pag = Pon)(Wy = Wor1)| = pholus(t)]
As before, we then obtain

|(Prvr — Pr)ue(tn)] o1
|we ()] T 45

So, in both cases, we have found an ‘equation’ that does not depend on TOL,
linking p and m. These two equations explain the existence of mc(t). (Of course,
this behaviour is strongly related to the fact that, for the multilevel algorithm, p is
a constant given by the user.)

In conclusion, we have checked that the multilevel method allows a significant
gain in computing time, compared with an optimal adaptive one-level method.
Moreover, we have shown that the smaller the required accuracy is, the greater the
gain is.
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3. A NONLINEAR PROBLEM

Let Q = (0,27)%2 and T > 0. In this part, we consider the following nonlinear

problem.
Find (u = (Z; ), p) such that

Ouq Ouy  Op .
—a? A’ul—l-ul—a;-l-a—x—fl, anX(O,T),
811,2 Bp . .
Bt Aug + —6y = fa, in 2 x (0,7),

divu:Oand/u(x,t)dx=0, in Qx(0,7T),
Q

u(.,t) and p(.,t) are Q-periodic, t € (0,T),

. ’ult:o = UQ.

To simplify the notation, hereafter the following abstract formulation of (3.1) in
the space of divergence-free functions will be considered:
ut + Au+ B(u) = f,
(3.2)
u(0) = uyp,
where A denotes the Stokes operator and B(u) the projection of the nonlinearity
on the space of divergence-free functions. Note that problem (3.1) satisfies the
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classical property of the Navier-Stokes equations
/ B(u) -udz = 0.
Q
Hereafter, we will need the following functional spaces:

H= {u € Hg(ﬂ), / w(z)dz =0 and div u = O} ,
Q

V= {u € H},(Q), / w(z)dz =0 and div u = O} .
Q

We also recall that D(A) = H NHZ(€2). In the sequel, we assume that
(3.3) ug € D(A) and f, f; € L*™(0,T; H),
which is sufficient to ensure that the solution u of (3.1) belongs to

(3.4)
E={u:Qx[0,T] > R? veC([0,T];V)NL*(0,T;D(A)) and u; € L*(0,T; H)} .

3.1. An adaptive method in space and time. We use notation analogous to
that of Section 2.1 for the heat equation. In particular, Sy, still denotes the
space of trigonometric polynomials with values in R? of degree < M, /2 in each
variable, but supplemented with a divergence-free condition. Also, Py, denotes
the projection on this space. Taking this difference into account, the approximate
solution U lies in space &}, defined by (2.3). The sequence (U, ), is advanced in
time thanks to the following scheme:

(353) U, — PMnUn—l + k, AU, + knPMnB(Un—l) = / PMnfdt, n=1,...,N,
In

with
(3.5b) Uy = ug.

This scheme is a variant of the discontinuous Galerkin method, in which the
nonlinear term is computed explicitly, for implementation convenience.

The techniques for the a posteriori analysis of problem (3.1) are inspired by the
work of C. Johnson et al. (see [7, 10] in particular). For a general nonlinear problem,
this analysis requires the introduction of stability constants, whose computation is a
nontrivial difficulty. Indeed, they are defined through the solution of an associated
linear problem that depends on the solution u and its approximation U. Usually,
this dual problem has to be solved numerically.

However in the case of problem (3.1), these stability constants can be estimated
from above with realistic and explicit bounds. This would not be true for the
Navier-Stokes equations, for which the corresponding bounds involve terms like
exp (cT||Vulls), where |.||o denotes the L°°(0,T; L>(§))-norm. Such a bound
cannot be used numerically, since this would lead to over-refined discretizations.

Here, the stability constants are defined through the solution (y,q) of the fol-
lowing associated problem.
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Let T < T. Find (¢ = (&%), q) such that
—pr— A+ B*(u,U;0) + Vg =0, inQ x (0,T),

div ¢ = 0 and / o(z,t)dz =0, in Q x (0,T),
Q

©(.,t) and q(.,t) are Q-periodic, te (0,7),

(p[t.—_T = @
where we set

6(U1 - ul) 8902
(3.7) B*(u,U; ) = ( g TNy |
0

Using standard Galerkin techniques, one can check that, if p; € V, then ¢ €
£nc(0,1); D(4)).

Through the solution ¢ of (3.6), we are now able to define the following stability
constants C?, i =1,...,5.

(3.8a)
max (¢l o7 5uPo<e<1/e [10gel 2 i~ il dt)

CS(T,u,U) = sup sup

0<T<T P+€EH |90T| ’

SUpg<ect /e |log |12 [T |Ap| dt
(38b)  CS(TuU)= sup sup Posesiellgel” )y 1AV
0<P<T prEH loz|

|5 e,

y

3.8¢c CS T,’U,,U = sup sup )
3
o<T<T p3E€EH |‘PT|
log kg |72 N ko Ap(t
38d)  CSTuU) = sup sup LBETT 2nmy FalAp(ta-i)]
1<N<N ¢7€H lop]
V d
o€ ,u,U) = sup sup s,
3.8 CS(T,u, U S lets)]
o<T<T ¢r€H o]

where |.| denotes the (L?(£2))% norm and

llullr = sup [u(., ).
tel

If the discretization is fine enough, we may assume that the constants C’is (T,u,U)
can be approximated by C’f (T,u,u). Then, as already mentioned, these constants
can be bounded from above as follows (proof omitted):

(3.92)  CF(T,uw) < max {2+ min(1, VI jus s, 3/2 + 2Vt }
(3.9b) C5 (T, u, u) < 3/2 + 22|t | o,

(3.9¢) C3 (T, u,u) < 3+ 2min(1, vV2T)|u1 | oo,

(3.9d) CS(T,u,u) < {2 + min(1, \/ﬁ)llmlloo} min(1,7),
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where ||u1]lco denotes the L>(0,T; L°(€2))-norm of u;. Moreover, since the con-
stant Cy is the analogue of C§ with the integral replaced by a rectangle formula,
in the implementation we also use the bound (3.9b) for C3 (T, u,u)

We can now state the following a posteriori error estimate.

Theorem 3.1. If up € D(A), and if f, f; € L*°(0,T; H), then the following error
estimate holds:

(3.10)
lu(tn)—Un| < (2+ Ly)CF (T, u,U) {[[kat”T o mex Uy, — Un_ll}

+4LNCy (T, u,U) _max Qn,Un—1

ne{l,..,N} | knM?

+4LNCS (T, u,U) ‘ Qj\%f

s QMnB(Un)
+4LNC5 (T, u,U) nE?ll,?j}.(,N} I

+CJ(T,u,U) max |Py,(B(Uy) — B({Un_1))|

ne{l,...,N}
QMNB(UN)
M3, ’

+4C5 (T, u,U) {'

“ kQMft

where we have set

Ly = log k|, = .
N= | max |log &y, | Up = ug

The constants C5 (T, u,U) are defined by (3.8).

The proof of this theorem is given in the Appendix.

We now interpret the different terms arising in the right-hand side of (3.10). Up
to the stability constants, the first two lines of (3.10) are similar to the estimate
(2.5) of the linear problem.

The third and fourth lines of (3.10) are composed of terms involving the nonlin-
earity B. The first (resp. second) one is due to the spatial (resp. time) discretiza-
tion. Again, since
OB(u)

IPMn(B(Un) - B(Un—l))l = kn Ot (tn)

)

we see that the scheme is of order one in time.

Finally, the last line is composed of L® norms on the interval Iy. Apart from
this, the corresponding terms are analogous to previous terms of (3.10).

We can now introduce an adaptive algorithm for approximating problem (3.1)
with some given tolerance. Of course, we want the numerical cost to be optimal.

The algorithm is built by analogy with the one devised for the linear problem.
For a nonnegative n, we define the following functions:

Estg,, (kn, My, Un) = (2 + Ln)Cig (k'rzL”ft”In +|Un = Un—ll)
+ C5|Pu, (B(Un) = B(Un-1))l,
Esta, (kn, M, Un) = 4(LnC5 + C5)M? (|Qus,, £l 1, + Qs BUR)))

Qum,Una

+ALCE | =

+ 405 kn M 2| Qo i1,
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Est,, = Esty, + Estys,,,
Estr = max Est,,
ne{l,....N}
where L, = max;e(1,... n} \/|logk;|. The constants C? are defined by (3.8) with
(T,u,U) = (tn,u,U).

Then, at a typical time step, suppose that (k,—1, Mp—1,U,—1) is known. To
find ky,,, M, and the corresponding U,,, we introduce a sequence (k3,, M3, U3) >0,
where U} is computed in terms of k¥, M7 and U,,_1, thanks to the scheme (3.5), as
follows. First, we set (kO, MO)=(k,_1, M,_1), and compute UQ. Next, for j > 1,
k} is given by

. -1 -
(3.11a) (ka)2{(2+ L,)C} (Hftllzz;—l + %)
Pyi-1(B(Ui™Y) = B(Un—
+o5S' i ( ((k%_3)2 (Un-1))|

where I7~1 denotes the interval (t,,t, + kJ~!). Next, M is the smallest M € N*
satisfying

9
- 2o,

(8.11b) A(LnCS + CHYM2 {|Qur fll =1 + 1@ g~ BUL 1}
s |Q@mUn—1 S 2 p—2 ' 1
+4L,Cj THME + 40Tk, M2 Qm fell 1 < 16 1oL

and we compute UJ by (3.5).
This procedure is reiterated until we reach the stopping condition

(3.11c) Est,,(k, MZ,U?) < TOL.

In this case, we set (kn, M,,U,) = (ki, MJ,U3).

3.2. A multilevel adaptive method. We keep the notation of Section 2.2 for
the heat equation, except that the polynomials of Sy, now satisfy a divergence
free condition as in Section 3.3. So, the approximate solution U of (3.1) belongs to
the space Fp, defined by (2.10).

For g € {1,...,Q}, we recall that n, is the index of the first interval I,, contained
in Jg, that is,

Vg € Ng, ng =min{n € {1,..., N} such that I,, C J,}.
Then, the sequences (V,,), and (Wy), are recursively defined by
(3.12a)

Vo — P, Un—1 4+ kn AV, + kP, B(Up—1) = / P, f(s)ds, n=1,...,N,

In

(3.12b)
W, = (Prt, = Py )Uny—1 + K AW,

+ K4(Py, — Prm,)B(Up,-1) =/J (Pym, — Pr,)f(s)ds, ¢=1,...,Q,

with
(3.12C) Uo = Ug.



568 J. B. BURIE AND M. MARION

Equations (3.12a) and (3.12b) are coupled, on one hand, through the projection
on the new set of lower (resp. higher) modes of U,_1, and, on the other hand,
through the nonlinear term B. For both V;, and W,, the nonlinear term is computed
explicitly.

The following theorem gives an a posteriori estimate for this scheme; we refer
the reader to the Appendix for its proof.

Theorem 3.2. Let ug € D(A) and f € L*(0,T;H). If f, f: € L°°(0,T; H), then
the following error estimate holds:

(3.13)
tx)=Ux| < @+ L)CS (T 0) { [l + e 10~ U}

S QMf S QMqUnq—l
+4LnC5 (T, u,U) ‘ e —I— 4LNCP (T, u,U) qe{Inl,?j).(,Q} _—_—kong
+4LyCE(T,u,U) _max ‘QM .B(Un)
+C§(T,u,U) max |Pmn(B( n) — B(Un-1))|

ne{l,...,N}
k B
+4c§(T,u,U){| “ Dfy) |G B0) Q(UN)‘}
In MN
+ (24 Ly)CZ (T, u,U) ||K2 Pr — Po) fill
S
P m ng ~ Yng—
+(2+ Ln)Cy (T,u,U)qe{mLéfo}l( My = Pmg)(Un, — Un,—1)|
C2(T,u, U)max{ max _ |(Pu, —qu)(B(Un)—B(Unq_l))l},
q ns. t. InCJg
where
Ly = pemax llogknl,  Uo = uo.

The constants C?(T,u,U) are defined by (3.8).

Let us compare estimate (3.13) with the one for the scheme (3.5). The first five
lines of the right-hand side of (3.13) are analogous to the estimate (3.10).

The other terms of (3.13) are due to the multilevel strategy. Up to the stabil-
ity constants, the first two terms are similar to the two last terms of (2.13). As
previously noted, if m is close to M, they are small in comparison with previous
corresponding terms of (3.13). This result is still valid for the last term of (3.13)
since, if m ~ M, then

emax |(Prty = Prng)(B(Ung—1) = B(Un))| = | K(Par = Pr) B(u)ill

< max, (B(U) = BUn-1)| = kBl

An adaptive algorithm can be built by using (3.13). It has some common features
with the one for the heat equation, that is, (2.15). In particular, the number p of
iterations of V during which W is frozen is again fixed and chosen a priori. For the
sake of brevity, we do not present this algorithm here and refer to Burie [1].



ADAPTIVE MULTILEVEL METHODS IN SPACE AND TIME 569

3.3. Numerical tests. We again give some indications on the implementation of
the algorithms. Compared with the linear case, the new ingredients are the stability
constants (3.8), and, the quadratic nonlinear term B, which is computed thanks to
a pseudo-spectral method.

For both methods, in the estimators the stability constants C’is (tn,u,U) are
replaced by their upper bounds (3.9).

The Fourier coefficient of ¢ associated to the mode I = (I1,13) € Z? is denoted
by Fi(¢). We also define

=B+ 8, |l =max(|ll,[l2]).

The projection of ¢ on the divergence-free and zero-mean functions is easily
expressed by

(3.14) Paiv(p)(z) = Z (]:l(so) — #(1 -7:1((,0))) il e

lezZ?,1#£0

One-level method. Since U,_; € Sy, _, (= vector of trigonometric polynomials
of degree < M,,_1/2), B(Up—1) belongs to Saps,,_,. To compute all the Fourier coef-
ficients of B(U,—_1), before using the pseudo-spectral method, it would be necessary
to pad the Fourier coefficients of U,,_; for modes ! such that M,,_1/2 < |l|occ < Mp_1
with zeroes.

Actually, we use the 3/2 rule (see for instance Canuto, Hussaini, Quarteroni, and
Zang [3]). This method is a standard one in order to remove the aliasing error due
to the pseudo-spectral method. It provides the Fourier coefficients of B(U,_1) for
oo < 3Mp—1/4, and for |l|eo < M,—_1/2 the aliasing error is removed. Of course,
to allow a FFT algorithm, the quantities 3M/2 belong to G defined by (2.16).

Then, assuming that M, < 3M,_1/2 (the variation of M between two time
steps is small), the computation of U,, through formula (3.5) is achievable.

Concerning now the computation of the a posteriori estimate, the nonlinear terms
are computed by using their Fourier coefficients thanks to the Parseval equality. In
particular, we write

(I = Pas, ) B = (Paas, j2 — Pas, ) B(U)|
= 2n S RBO)PE

M /2< |00 <B3Mp, /4

Multi-level method. At a typical time step n, to find V;, and evaluate the a
posteriori estimator, we need to compute Py, B(U,—1). We assume that 3m,, >
M,,_1. Although U,_; belongs to Sy, _,, we compute P, B(U,_1) with FFT
based on (3m,,/2)? points rather than (3M,,_;/2)?, which is compulsory if we wish
to allow the multi-level method to be faster than the one-level.

For this, we proceed as follows. First, by analogy with the 3/2 rule used for
the one-level method, we start with Ps,, ,2Un,—1. Then, we project the Fourier
coefficients for modes between 3m,, /2 and 3m,, upon the modes lower than 3m,/2
(see Burie and Marion [2]). So, if 3m,, > M, _1, the nonlinear term P, B(U,_1)
is exactly computed.
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FIGURE 10. First component of the solution 3 at T' =4

We have performed several numerical tests, but, for the sake of brevity, here we
only present the ones related to the solution defined by (see Figure 10)

2exp(—2((e1 — m)° + (22 — 7)?))
exp(—((@1 — ) + (22 = 7)?))
exp(—0.1((z1 — m)% + (z2 — m)?)) cos(nt/2)°

exp(—0.1(((z1 — )% + 2(x2 — 7)?)) cos(nt/2)®

uo(x1,22) = Paiv )

f(z1,22) = Paiv

We choose T = 4 and TOL=0.01. In Figure 11 the results of the multilevel
method for p = 10 are displayed.
We again define the efficiency index by

_llu-Ully
(3.15) Bff = S

Probably due to the bounds (3.9) for the stability constants C5, here Eff depends
on the solution. It has been computed for various values of TOL:

TOL [ 10~* [5.102 [ 10~2 | 5.10—3
Eff 0.055 | 0.051 | 0.060 | 0.091
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Concerning computing time, we have

| Solution 3 (T=4) [1level [ p=4]p=8]p=10][p=12]p=16|
TOL | CPU time (seconds) || 190s || 105s | 88s 87s 88 s 91s
=0.01 | M-L time/1-L Time 1 0.55 | 0.46 0.46 0.46 0.48

TOL | CPU time (seconds) || 886s | 377s | 285s | 274s | 271s | 270 s
=0.005 | M-L time/1-L Time 1 0.43 | 0.32 0.31 0.31 0.30

For this solution, the gain in computing time reaches 70%, and again increases
as TOL decreases. Indeed, as shown on Figure 12, and as in the linear case, p being
a constant, there exists a function mc(t), which does not depend on TOL, such that
if M(t) > mc(t) then m(t) ~ mc(t)).

Therefore, compared with the one-level algorithm, the smaller TOL is, the more
modes are integrated with a time step pk > k, and the greater the gain is.

This behaviour can be heuristically justified with an argument similar to the one
given in the linear case. The details are omitted.

APPENDIX

A.l. Proof of Theorem 3.1. Following the general approach developed by
C. Johnson and his coworkers (see in particular [7, 10]), the main steps of the
proof consist in:

1. introducing variational formulations of the scheme (3.5) and of the linearized
dual problem (3.6);

2. obtaining an error representation thanks to an appropriate solution ¢ of prob-
lem (3.6);

3. using Galerkin orthogonality to condense this representation; and

4. combining interpolation error estimates and the strong stability constants Cis
defined in (3.8).

We aim to derive (3.10), that is, to estimate the error e = u — U at time ty.
Recall that the continuous solution u belongs to the space £ defined by (3.4),
while the approximate solution U lies in & given by (2.3) supplemented with the
divergence-free condition.

We will need some additional notation. The scalar products in H and V are
respectively denoted by (.,.) and ((.,.)). Also, the error e = u — U lies in the
following space D that contains both £ and &:

(A1) D={veL®0,T;V)nL*0,T; D(A));

Vne{l,...,N}, v, € L*(I,; H) and v} _,, v, exist},
where we have set
(A.2) vt = 1ir(r)1+ v(th—1+8), v, = 1i1(l)’l V(tn +5), [vn] =vi —v,.
88— s§—U™

We now introduce variational formulations of (3.5) and (3.6). It is easy to check
that the approximate solution U given by (3.5) satisfies

(A.3) Cr(U,v) = F(v), Yv € &p,
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where F' is given by

N
(A.4) Fo)=3 /I (f,0)dt + (w0, v)

and C}, is defined by
(A.5)

N N-1
Ch(U,v) = Z/I {(U,0) + (BUn-1), Put,0)} dt+ S (Ul ) + (UF 0,

where v € D, and we agree to set Uy = ug for all U € &,.
Next, the dual linearized problem (3.6) runs backward in time. Introducing the
operator

N
(A.6) Ly (u,v; z,w) = Z/I {(~we, 2) + ((w, 2)) + B*(u,v; z,w) } dt

N-—-1
= > (fwn) z7) + (Wxy2y),  wv,w,z €D,
n=1

the solution ¢ € &£ of (3.6) with final condition @7 € V satisfies
(A7) Lh(u7 U; dja <P) = (QOTa /‘7[)]_\_])7 vdj €D.

In order to obtain a representation formula of the error e at time ¢, we consider
the solution ¢ of (3.6) with final condition ¢ = ey = u(ty) — Un € V, and set
¥ =ein (A.6). Then, (A.7) reads

(A.8) lu(ty) — Un|*> = Ly(u,Us e, @).

We now seek to express Lp(u,U;e, ) in terms of the operator Cp. Let us
introduce the intermediate operator Ay defined, for v, w € D, by

(A.9)
N N-1

Ap(v,w) = Z/ {(ve,w) + ((v,w)) + (B(v), w)}dt + Y ([oal, wi) + (v, wg)-
n=1 In n=1

Then, by integrating by parts both in space and time, it is easy to check the

following identity:

(A.10) Yu,v,w € D, Ly(u,v;u —v,w) = Ap(u,w) — Ap(v, w).

Therefore, (A.8) can be written as

(A.11) lu(tn) — Un[? = An(u,¢) — An(U, )

Besides, if u € £ is the solution of the continuous problem, the following identity
is satisfied:

(A.12) Ap(u,v) = F(v), Yveg,
so that (A.11) becomes
(A.13) lu(tn) — Un|* = F(p) — An(U, ).
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Finally, recalling the definition (A.5), we find that
lu(tn) = UnI® = F(p) = Cu(U, )

+3° [ {(B(Un-1) — B(Us), Pa, ) — (B(Un), Qur, )} dt.
n In

Next, let ¥ € £,. Thanks to the variational formulation (A.3) of the scheme
(3.5), we obtain the following error representation formula:

Ju(t) — Un[? = F(p — ¥) — C(U, p — )

+ Z/ {(B(Un-1) — B(Un), Pu,p) — (B(Un), Qum, )} dt,

which we expand by replacing F' and C}, with their expressions (A.4) and (A.5), to
conclude that

(A.14)
jultn) — U2 =3 /I ((F.9— ) — (U, o — B)) — (BUnor), P, (¢ — T))} dit

N-1
- Z([Un]’ (o —T)7)

+Z/ {(B B(Uy), Pu, ) — (B(Un), Qu, )} dt.

Now we take ¥ = { in (A.14), where @ is the orthogonal projection of ¢ on &y,
that is,

~ . 1
@)1, = PrunTne(t) = mn Pyunp(t), with m,p = k—/ (., t) dt.
n JI,
Due to the Galerkin orthogonality properties

/1 (=)= /I (O =) de+ [ (@ @um e =

n

(A.14) reduces to

N N—-1
(A.15) |u(tN>—UN|2=Z/I(f,so—a)dt—Z([ Ul (0 - D))
n=1v+n n=0
+3 [ (BUw) - BU). Pue dt—z / ), Qur, ).

Next, we aim to majorize the right-hand side of (A.15). For that purpose, it is
convenient to write

(¢ = @)1, = (¢ — Pum,p) + (Pr,,p — P, mnip),
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so that (A.15) becomes

(A.16)
lu(ty) — Un/|?
N N
= ZL (fs Prm,sp — mn P, p)dt — Z([Un—l],PMn‘P:—l — 0Py, ¥)
n 1N N n=1
+3° [ (o= Pl = ¥ (Unoi) o — Posasi)
n=1 n n=1

N N
+y / (B(Un-1) = B(Un), Pu,0)dt — > / (B(Un), Qur,, )dt
n=1 In, n=1 In
=I4+II+II+IV+V+ VL

The terms in the right-hand side of (A.16) have been denoted by I-VI, and we
intend to bound them, thanks to the following interpolation estimates for Py, and
Tpt

(A.17) |u — Ppru| < 4AM 2| Aul,

(A.18) |t = mnul|7, < min (2]]u||1n, / | dt) :

n

together with the stability constants C defined in (3.8).
Beginning with the first term, we find that

N
lll = Z/I (f - mnf, PMn()D - WnPMn‘P)dt
n=1 n

N
<y /1 1 = 7 fl o — maipldt
n=1v1n
T—kn
<1l (2n¢um ‘f |¢t|dt) |

Therefore, due to the definition (3.8a) for C¥, we infer that

(A.19) 1| < (2+ Ln)C{ (T, u,U) ||k fe|  lu(tn) — Unl.
Similarly, it can be shown that
(A.20) 11| < (2 + Ly)CY (T, u,U) elmex [[Un—1]| Ju(tn) = Un|.

Here, as U|;, = U, we have [U,_1] = U, — Up_1.
The estimate of the third term is more involved. We decompose it as follows:

N-1

(a2) W= [ (@, Que)di+ [ (@uryf, Quu) dt = Mlat 11D,
n=1 In, ’ In

The first term in (A.21) satisfies

tN-1
el < 41012 Que | [ gl a

<ALNCS (T, w,U) |M~2Qu f| lutn) — Un|.

(A.22)
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Next, in order to estimate IIIb, we consider

B(t) = /T o(s)ds,

and, by integrating by parts, we find that

(A23) IIIb = _(QMNf(tN—l)vQMN(I)(tN—l)) _/ (QMthvQMN@)dt

In

Then, on one hand, we note that

[(Qun f(tn—1), Quy (tn—1))| S AIM2Qus fll1y |AD(En—1)]

tN—1
< 4IM?Qurf 1 / Ap(s)ds
T

y

which implies by (3.8¢) that
(A.24)
[(@un F(EN-1), Quin ®(tn—1))| < 4C5 (T, u, U)|M~2Qu f 1y [u(tn) — Unl-

On the other hand, we similarly write

I <QMth,QMN<I>>dt| < Ak M| AB| 1y [Qary fill1n
N

T
/ Ap(s)ds
¢ In

<A4C5 (T, uw, U) kM2 Qu fi 1y lu(tn) — Unl-
Next, since Qur,, [Un—1] = —Qu, Un—1, the fourth term is such that

(A.25)

< 4k M2 1@ fell 1y

V] < Z e | el
which due to (3.8d) for C7 yields
Un_
(A.26) V| < 4ALNC3 (T, u,U) e, 9%471 lu(ty) — Un).

Thanks to (3.8¢) we obtain
(A27) V| < CF(T,u,U) cpax [ Pag, (B(Un) = B(Un—1))l [ultn) = Un|-

yeeey

Finally, the sixth term splits analogously to (A.21) and one can check that

N-1
(a29) |3 [ (B, Qu e
n=171n
< 4LNCS (T, u, ) e IM;QQMHB(Un)Hu(tN)—UNI,
(A.29) /I (B(UN)»QMN‘P)dt) < 4C5 (T, u, U)|My?Quary BUN)| |ultn) — Un|-
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Combining (A.15) with (A.19), (A.20), (A.26), (A.22), (A.24), (A.25), (A.27),
(A.28) and (A.29) provides the bound (3.10), and concludes the proof of Theorem
3.1

A.2. Proof of Theorem 3.2. The proof follows steps analogous to the ones above
for Theorem 3.1.

We aim to estimate the error e = u — U at time ¢y. Here, the approximate
solution given by the scheme (3.12) belongs to the space Fj defined by (2.10)
supplemented with the divergence-free condition. Since Fj, C D, the error e still
belongs to D given by (A.1).

First, we introduce a variational formulation for the scheme (3.12). The approx-
imate solution U satisfies
(A.30) Dy(U,v) = F(v), Yv € Fp,

where F is given by (A.4), and Dy, by

(A.31) Dy(U,v) = 2/ Uv))dt+2/ P, v)dt
+Z ) GRS B )+ 3 (Unl) + (U ),

where we have set Uy = ug for all U € Fp,.

The second step is quite similar to the one-level case. We again consider a
solution ¢ of (3.6) with ¢ = ey. Then the equalities (A.8)—(A.13) still hold, and
therefore we again have

(A.32) lu(tn) — Un|? = F(p) — An(U, ),

where the operator Aj is defined by (A.9). Making use of Dy, equality (A.32)
becomes

N
ultn) ~Ux P = Fl) = D) + 3 /I (B, P )t

N
+ Z / (Ung-2) (P, = B o)t =3 / (B,

This equality also can be rewritten as
N
(A39) Jultw) = UP* = Fl) = Du(Uie) + 3 / (BUn-1) = BU), P, p)it

Q
+21/Jq< Un, 1) = B(Un), (Pat, — P, )g)dt Z/(B(U ), Qar, 0)dt
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Let ¥ be any element of F5. Thanks to the variational formulation (A.30) of
the scheme (3.12), we obtain

N
lu(tn) = Unl? = F(o— ¥) = Da(U, 0 — W) + Z/ (B(Un-1) — B(Un), P, )dt

+Z/ nq—l B(U)’(PMq dt_z QMn )

We expand this last equality by replacing F' and Dj, with their expressions. Then,
for all ¥ € F},, the following error representation formula holds:

N
lu(tn) — Un|® = Z/I {(f,o =) — (U, — 0))} dt
N "
- Z/ (B(Un-1), P, (¢ — ¥))dt
_Z/J Uny—1)s (Pum, = Pr,) (0 — ¥))dt

_Z([U (o= 0)7 +Z/(B n—1) — B(Uy), Pm, p)dt

n=0

(A.34)

+Z/ "q—l (U),(PMq ‘qu)QD)dt

—ZA@M@th

Now we take ¥ = $ in (A.34), where § is the orthogonal projection of ¢ on Fp,
that is,

o)1, = P mntp + (Pym, — Pm,)mqp, for I, C Jg,

q

where

1 / 1
TP = — (., t)dt, 7rg0=——/<p.,tdt
SD kn I, ( ) q Kq Jq ( )

Using Galerkin orthogonality properties such as

—Z/ (Un-1), P, (0 — )it~ Z/wnﬂnm—&www>m
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we see that

(A.35)

N N-1
uew) =Un? =3 [ (fro= D)t = Y (W0l (o~ 27)
N n=1 n=0
D3 /I (B(Uy1) = B(Ur), P )
Q N
+ g /J (B(Us,-1) = BO), (Pa, = P )= 3 / (B, Q)i

Next, writing
(¢ = D)1, = P, (I = mn)o + (Prt, — Py )(I = mg) 0 + (I = Pag,)p,
and using that fact that, for all n # ng such that I, C Jg,
(Pr, = Prn)[Un1] = (I = Pa,)[Un—1] = 0,
(A.35) becomes
(A.36)

N N
lu(tn) — Un? = Z / (f, P (T = 1))t — Z([Un_l], Prgt | — 1P )
+Z / (frp — Puro)dt - Z([Un bt~ Puet, 1)
+ ; /In(B(Un—l) — B(Uy), P, p)dt — ; /I (B(Uy), Qur, ) dt
Q
+ X_; /J q(f, (Pu, = P, )T — mg)ep)dt

- Z([Unq—l] (P, = Py )0 — ”q%o)nq—l)

2
+Z / (B(Un,~1) — B(U), (P, — P, ))dt
—I+II+III+IV+V—|—VI+VII+VIII+IX.

We now use the interpolation estimates (A.17) and (A.18) and the corresponding
ones for P, and m,; together with the stability constants Cf defined in (3.8) to
majorize the terms I-IX in (A.36). Actually, the terms I-VI are similar to the
previous ones in (A.16), and computations as above yield the first five lines of the
a posteriori estimate (3.13).



580 J. B. BURIE AND M. MARION

Next, we have:

Q
VI = 3" [ (= ma)(Pus, = Pn) oo = mag)d
q=1""Ja
T-Ko
< K P = Pl (2hellia+ [ lenlat

Therefore, recalling the definition (3.8a) of CY, since ky < Kg, which implies
V|log Kg| < Ly (assuming Ko < 1), we infer the following bound:

IVII| < (2+ Ly)C{ (T, u, U) | K*(Pas — P fe]| 1 [u(tn) = Unl.-
Similarly, it can be checked that

[VIII| < (24 Ly)CY (T,u,U) max

Finally, for the last term we have

Q
> [ (BUw-1) = B (P, — P, )l

g=1 Jq

< ng(T, u,U) méi,x {ns.rtr.l?i{ch |(PMq_qu)(B(Un)_B(Unq—l))l} |u(tN)_UN|'

Combining these estimates with (A.36) provides (3.13), and concludes the proof of
Theorem 3.2.
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