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THE APOLAR BILINEAR FORM IN GEOMETRIC MODELING 

GERT VEGTER 

ABSTRACT. Some recent methods of Computer Aided Geometric Design are 
related to the apolar bilinear form, an inner product on the space of homo- 
geneous multivariate polynomials of a fixed degree, already known in 19th 
century invariant theory. Using a generalized version of this inner product, we 
derive in a straightforward way some of the recent results in CAGD, like Mars- 
den's identity, the expression for the de Boor-Fix functionals, and recursion 
schemes for the computation of B-patches and their derivatives. 

1. INTRODUCTION 

A common problem in Computer Aided Geometric Design (CAGD) and ap- 
proximation theory is the construction of suitable bases for the space of piecewise 
polynomials, defined over simplices in some higher dimensional euclidean space. 
Several methods have been designed to obtain algorithmically convenient bases. 
The constraint to work with basis polynomials having local support leads to the 
construction of the well-known B-splines in the univariate case. Traditionally, these 
are defined in terms of a recursion scheme, see e.g. de Boor [7] and Schumaker [25]. 
(There are other, equivalent constructions, like the approach based on finite differ- 
ences [8], and Schoenberg's geometric construction; see [5] and [17].) 

More recent methods employ polarization (also called blossoming), a classical 
mathematical tool, first introduced into the realm of CAGD by de Casteljau in his 
seminal work [2], and also [3], and by Ramshaw [21]. These polarization techniques 
greatly simplified the derivation of many results in the theory of Bezier and B-spline 
curves. Cavaretta, Dahmen, Micchelli and Seidel [4, 6, 17] succesfully applied the 
blossoming technique to construct B-patches, which can be considered as local 
multivariate generalizations of B-splines. Experience with the implementation of 
this scheme in two dimensions is described in [11]. A multivariate generalization of 
Marsden's equality (see [16] for the original univariate version) plays an important 
role in the development of a recursion scheme for B-patches. Multivariate versions 
of the de Boor-Fix functionals have been considered by Lodha and Goldman [14] 
and [15] to derive some of the important properties of B-patches. 

In this paper we relate some of these recent results of computer aided geometric 
design and constructive approximation to techniques from mathematical disciplines 
like 19th century invariant theory and differential algebra. The key tool is a general- 
ization of the apolar bilinear form defined on the space of homogeneous polynomials 
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(of a certain degree, and with a fixed number of variables). This bilinear form, used 
extensively in the symbolic method of the classical theory of invariants, has been 
revitalized by Rota and his co-workers, cf. [9] and [13]. A similar binary form on the 
space of urnivariate polynomials of a fixed degree has been studied by Goldman [12]. 

In this paper we introduce a bilinear pairing between the spaces of homogeneous 
polynomials of degrees n and m, where n > m, with values in the space of polynomi- 
als of degree n -m. This pairing, introduced in Section 2, coincides with the apolar 
bilinear form mentioned above in case n = m. In Section 3 some simple properties 
of this pairing are used to derive in a straightforward way some of the recent results 
in multivariate approximation theory mentioned above. Among these are straight- 
forward proofs of the equivalence of Marsden's equality and duality for any pair 
of bases of the space of homogeneous polynomials, and the relation of this apolar 
inner product to the de Boor-Fix functionals. These results are applied to derive 
well-known results of multivariate Bernstein-Bezier theory, like degree elevation, 
expressions for derivatives, and recurrence relations for Bernstein polynomials. 

In Section 4 we introduce a general criterion for deciding whether a collection of 
polynomials forms a basis for the space of multivariate polynomials of a fixed degree. 
These results are applied to study so-called lineal polynomial bases and their dual 
bases. The B-patch basis is introduced in [6] as the dual of a special lineal basis. 
Starting from this definition, we almost mechanically obtain the recursion schemes 
for B-patches and the generalized de Casteljau/de Boor algorithms for evaluation 
of a polynomial in B-patch form. 

In Section 5 we announce future research concerned with applications of the 
methods of this paper to problems like solving constant coefficient polynomial 
PDE's, and degree reduction of Bezier patches. 

2. VECTOR SPACES OF FORMS 

2.1. Introduction and terminology. Let e1,... ,eS be the standard basis vec- 
tors on IRi, and let x = (x1,... ,x.) be the standard coordinates on JRS. The 
standard inner product on IR' is denoted by (-,*), i.e., (u, v) ulvi + + u 
for u,v EIRS. 

A central object in this paper is the space of real homogeneous polynomials 
of degree n on IR', denoted by 1-n(R(). A polynomial in 1-n((R5) is the sum of 
monomials of the form c,,x"' x'- , where c,, E IR and a, = (a, .. ca5) E s0 is 
a multi-index of weight Io = a1 +- +a,. For convenience the monomial x1' X.. 

is denoted by xo. Linear homogeneous polynomials on IR' are of the form f (x) = 

(u, x), for some u E JR'. We denote f by (u, .). A lineal polynomial of degree m is the 
product of m linear polynomials, and hence of the form (u ,.) ... (um,) E 'm (Rs)) 
foru1,... ,umERs. 

For multi-indices ae = (ai, ... , c) and>0 = (:i,... ,f) in o we define ce z 
iff ai < fi for i = 1,... , s. The relation ? is a partial order on Z'. The set of 
multi-indices in Z' of weight n, denoted by F,,n7 is a finite set with 

#F, (n+s-1) 
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elements. For ae E .F,, the factorial function is defined by o! = a,! ... !, and the 
multinomial coefficient (c) is defined by 

tn n! 

ta a,! ..a,!' 

Let & = (01... 0,), with Di = /&xi . With a polynomial f(x) = co, Cx 

we associate the homogeneous differential operator f(&) = r co 0', where 
O = 0 ... 00s . The directional derivative D : 11 (Rs) >- 1Hn-I (RS) with respect 
to u E IR' is the differential operator (u, 0), i.e., Du = ul 01 + + us &s. Note 
that hi = (ei, 9) = De.. Considering ei as a multi-index of weight one, we also have 

-i = aei. 

2.2. Apolar pairing. This subsection is concerned with a straightforward gener- 
alization of the rather well-known apolar inner product [f, g] = f(a)g, defined 
on the space of homogeneous polynomials -H,(1R). The main result concerns a 
characterization of this inner product in terms of three simple properties, that will 
be the basis for the construction of special bases of H, (]R5) in later sections. 

Definition 2.1. For fixed integers m and n, with 0 < m < n, the apolar pairing 
is the map 

[ - 
]m,n : -m (R-) x Hn (R-) >- 'H- (Rs) 

associating to the homogeneous polynomials f E 1Hm(IRE) and g E Hn-(JR5) the 
homogeneous polynomial [f, 9 ]m,n of degree n - m, defined by 

[f g ]m,n = (nm)! f (a)g. 
The constant (n - m)!/n! in the right hand side of the latter identity is chosen 

in such a way that apolar pairing is a reproducing kernel, cf. Corollary 2.3. 
Note that we have in fact a family of pairings, one for each pair of integers m 

and n with 0 < m < n. In this paper, the term pairing refers to the whole family 
of bilinear maps. From now on we shall drop the subscripts m and n, since they 
are implicitly known as the degree of the first and second argument of the pairing 
operator. 

Theorem 2.2. The apolar pairing is the uniq'ue bilinear pairing with the following 
properties. 

1. A polar pairing with constants. For f E 'Hn (1R5): 

[1 f] = f, 

where 1 E 11o(R5) is the constant homogeneous polynomial of degree 0. 

2. Apolar pairing with linear forms. For f (E 1Hn-(RS) and u E RI: 

1 
[(U,.) ) f] = -Duf. 

3. Transposition of a homogeneous factor. For fi E 'Hm,(IRS), f2 E 

11m2 (R), and g E 1Hn(Rs), with ml + m2 < n: 

[flf2, 9] = [fl, [f2g 9]] 
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Proof. It is obvious that apolar pairing is a bilinear operator, satisfying properties 
1, 2 and 3. We prove uniqueness using mathematical induction. So assume that 
[. ] is a bilinear pairing satisfying properties 1, 2 and 3; then we need to prove 

that [f , g] = )! f(0)g. To this end, let P(m) be the predicate: 

For all integers n, with m < n: if f E H,m(RS) and g E Hn(RS), 

then [f , g] = (n-r)! f(0)g. 

Obviously, property 1 implies that P(O) holds. So consider m > 0, and assume that 
P(k) holds for 0 < k < m. To express the pairing [f, g] in terms of pairings of 
homogeneous polynomials of lower degree, we use Euler's identity for homogeneous 
polynomials to rewrite f E IH,(IRS) as 

(2.1) f=1Y(ei, ) tif. 

Using the fact that (ei, 0) = 6i we get 

(2.2) f(0)g = S aif( ()) (Dig). 

On the other hand, using (2.1) and properties 2 and 3 of the pairing operator, we 
see that 

(2.3) [ f 7 g] = [ tif , [ (ei, ) ), g9 ] ] [ 3if, 79ig] - (2.3) ~~~~~in i=1n 

Since o9f E lHm,-(1R5), we may apply the induction hypothesis P(m - 1) to the 
bracket in the latter expression, yielding 

(2.4) [0if, gig] = ((n mI)! a0f(0)(0ig). (n -i)! 

Hence P(rm) follows from (2.2), (2.3) and (2.4). This completes the uniqueness part 
of the proof. D 

Using the defining properties 1, 2 and 3 of the main theorem we obtain the 
following simple result concerning the pairing with polynomials of a special form: 

Corollary 2.3. 1. A polar pairing with a lineal polynomial. Let u1 ... , um E 
Rs and f E 1H n(R[), with 0 < m < n. Then 

(2.5) [(t> ,*) *.* (tl .) ) f] = (n m! )Du *U,. 

2. Apolar pairing is a reproducing kernel. For f (E 1Hn(R5) and y E R', 

(2.6) [ f , (Y, )n 
= 

f (Y)- 

3. Apolar pairing with the power of a linear form. For f E 'Hm(R5), 
y E RS, and O < i < n, 

f , (Y,. n f (y (Y.) n-m. 
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Proof. 1. Since (u1, 0) ... (um, 0) = D,1 * Dum , the first property follows from the 
definition of apolar pairing. 

2. Identity (2.6) obviously holds for n = 0. So assume, inductively, it holds 
for n - 1, where n > 0. Using properties 2 and 3 from Theorem 2.2, we see that 

[f, (y, .)l] = - [ (y .)nil, Dyf ]. Using the induction hypothesis yields 

- [(y,.)n-l Dyf] =-Dyf (y) = Yi 1if (Y) = f (Y)7 n nn 
i=1 

by Euler's identity for homogeneous polynomials of degree n. 

3. In the special case f = (Z, .)m, for z E IRW, the identity follows by induc- 
tion, where we repeatedly use properties 2 and 3 from Theorem 2.2, together with 
Dz(y, *)k = k (y, z) (y,.)k-l. To prove the identity for general f E lHm(]RS), con- 
sider the polynomial g = [f, (y, )n] E lHn_m(WR). Since we have already proven 
that apolar pairing is a reproducing kernel, we see that, for z E IRi: 

g(Z) = [ (Z, )n , g = [ f [ (Z,*)n-m ( )n ] ] 

= (y, z)nm [f, (y,.)m] = (y,z)n-m f (y). 

Identifying the space of zero degree polynomials with IR, we see that, for n = m, 
apolar pairing corresponds to a real bilinear form on the space of homogeneous 
polynomials of degree m. The next result states that this bilinear form is even an 
inner product. 

Proposition 2.4. The apolar bilinear form [, 1: 'Hm(IRS) X Hm(IRS) -> JR is an 
inner product on the space of homogeneous polynomials of degree m. 

Proof. Bilinearity and symmetry of the pairing are obvious from the definition. 

Since f (0)f = ZE,,r,m ! (090f)2, we see that [f, f > 0 for all f E .Hm(RS). 

Furthermore [f, f] = 0 implies 0of = 0, for all ae E Fs,m, so f = 0. Therefore the 
bilinear form is positive definite. D 

To prove that a polynomial f E 7Hm(JRS) is the zero-polynomial we just have to 
show that [ f, g ] = 0 for all g E Hm (IRs). This follows directly from Proposition 2.4. 
The next result is an extension of this observation to the case in which the degrees 
of f and g are not necessarily equal. 

Lemma 2.5. Let 0< m < n. 

1. Let f E Hm(IRs). If [ f, g] = 0, for all g E Hn(RS), then f = 0. 
2. Let g E Hn1(Rs). If [ f, g] = 0, for all f E lHm(IRS), then g = 0. 

Proof. 1. For y E IRs we have [f, (y,.)n] = 0 E 7Hn-m(IRs). By Corollary 2.3, 
[f , (y,.)n ] = f (y) (y,.)n-m, so f (y) = 0 for all y EIR \ {0}. Therefore f = 0. 

2. For all y E IRS we have g(y) [(y,.)n , g] = [(y,.)n-nl [(y,.)m, g ]] = 0, so 

g=0. D 
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As an immediate consequence we have the important spanning property; See also 
Reznick [23]. Rephrased loosely, it allows us to conclude that all polynomials in 
7Hm(IRE) have a certain property if the property holds for all m-th powers of linear 
forms. More precisely: 

Lemma 2.6 (Spanning property of powers of linear forms). Let 0 C R' be an 
open subset of RS. Then the set {(y, *)m ) y E O} spans the space of homogeneous 
polynomials of degree m. 

Proof. We first prove the result in case 0 =IRS. Let U be the linear subspace 
of 'Hm(IRS) spanned by the m-th powers {(y, )m I y E JRS}. Then U'1 {f E 

'Hm(IRs) [(y, .)m , f ] = O for all y E IRs}, so f E U' iff f(y) = 0 for ally E 

IRs according to Corollary 2.3.2. This implies U1 = {0}. As we have seen in 
Proposition 2.4, apolar pairing is an inner product in case n = m, so U = lHmm(IR5). 

To prove the general case, let YM be a finite subset of IRi such that {(y, .)M I 

y E YM } is a basis for Hm (IRS). Such a set exists in view of the first part of the 
proof. Furthermore, #YM = #Fs,m. Let A be a non-singular s x s matrix such 
that Ay E 0, for all y E YM. For f E 'Hm(1R5) consider the homogenous m-th 
degree polynomial f((AT)-lx). There are real constants cy, y E YM, such that 
f ((AT)-X1) = ZYGYM (y, X)m. The polynomial f can now be expressed as a linear 
combination of powers of linear forms as follows: 

f(x) = E c (y, ATX)m= E cy (Ay, x)m - C (y, x)m, 
YEYM YEYM YGYM 

where YM { fAy I y E YM} C 0, and c'Y = CA-ly E R. This completes the proof 
of the general case. CG 

One can in fact prove that the set {(a, .)n I a E F5,n} is a basis for Hn-(IR'). This 
is a generalization of a theorem of Biermann, who proved it for the case s = 3; see 
Reznick [23, Proposition 2.11]. 

2.3. Apolar pairing and polar forms. Ramshaw [21] uses the technique of po- 
larization (also called blossoming) to obtain a very elegant definition of univariate 
B-splines. This technique is based on the identification of the space of homoge- 
neous polynomials with the space Sn(1R5) of symmetric n-linear real forms on IRS. 
More precisely, consider the diagonal map diag: Sn (R') 'Hn (JRS), defined for the 
symmetric n-linear form F: IRs x ... x R' -* R by 

(diagF)(x) = F(x, ... , x). 
n 

Obviously diagF E 1Hn(R5). We shall refer to it as the diagonal of F. In fact, the 
diagonal map is an isomorphism of vector spaces, as we shall prove presently. Its 
inverse is the well-known polarization operator, defined as follows. 

Definition 2.7. The polarization operator pn maps the homogeneous polynomial 
f E Hn1(IR') to the n-linear form 7Pnf defined by 

pnf ( 4(n)) = 1 D~(,) ... D~() f1 
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Example: Polar form of a bivariate polynomial. From the definition it is obvious 
that the polarization operator is easily implemented in a computer algebra system 
like Maple or Mathematica. Doing so for, e.g., the fourth degree homogeneous 
polynomial f on R2, defined, for X = (X1, X2) E R2, by f (x) = X2X2, we obtain 

p4f ( (1) ((2) (3) 4(4)) = 1 (1)2)(3)(4) + 1)(2)3)4) + (1)4(2)4(3)4(4) 

+ 4(1)4(2)4(3)4(4) + 4(1)4(2)4(3)4(4) + 4(I)4(2)4(3)4(4) 

Taking &i) - x, for i = 1, ... , 4, it is easy to check that we recover the polynomial 
t * p4f A) _2 2 _ 0 f, i.e., f (X, X, X, x) X2= f(x). 
A straightforward application of Corollary 2.3 shows that the polar form of a 

polynomial is just the apolar pairing of the polynomial and a lineal polynomial: 

Proposition 2.8. For f E 1n(RS) and a, ... ,En E Rs: 

,p f 
1 

(( .. , n) 
- 

[ ((, ) ..((n ,), 7 f 

In particular, fPnf (y, ... ,y) = f (y), for y E RE. 

n 

As announced, diagonalization and polarization are inverse to one another. More 
precisely: 

Proposition 2.9. The polarization operator Pn' is an isomorphism between the 
linear spaces 1Hn(R5) and Sn(Rs). Its inverse is the diagonal map. 

Proof. In view of Proposition 2.8 the polarization operator 19n maps a homogeneous 
polynomial to a symmetric n-linear form, so its image is indeed contained in the 
space Sn(IR5). The second part of Proposition 2.8 can be rephrased by saying that 

1pn is a right inverse of diag : Sn(R5) 11Hn(Rs). From this we conclude that 

the diagonal map is injective. Therefore, to show that it is an isomorphism, it is 

sufficient to prove that 

dim Sn (Rs) < dim E-(Rs(). 

This inequality follows from the observation that a symmetric n-linear map F is 

uniquely determined by the values 

F(eI7 ... ,el, I... , es. es) , 

where ae = (ai,?I... a,) ranges over Fs,n Therefore dimSn(IRs) < #Fs,n = 

dimlHn (1R5). D 

Finally, the apolar pairing of two polynomials can be defined in terms of their 

polar forms. In case the paired polynomials have the same degree, this definition 

coincides with the definition of Beauzamy et al. [1]. 

Proposition 2.10. Let f E EHm(1R) and g E Hn-(R), where 0 < m < n. Then 

[f) g](x) =pE f (e, 1 . , ",eim) g F (eil, *,eim,,x,... , x)- 
t1v--- ,tm=l ~~n-m 
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Proof. Denote the right hand side of this identity by u(f,g). Obviously, u is a 
bilinear map 'Hr(IRs) x 1H,(IRs) H Hn-m(IRS). In view of the spanning property, 
viz Lemma 2.6, it is sufficient to prove that u(f,(y,.)n) [f, (y)?)n, for all 
y E RS. So let g = (y .); then Pg ((l... , n) = (y l).(y, ~n). This follows 
readily from Proposition 2.9, in view of the observation that both sides of the latter 
identity are symmetric n-linear forms on IR', that coincide upon diagonalization. 
In particular 

p ng ( . , eim, x, ... , x) = Yj1 . Yim (y, X)nrm, 

n-m 

and hence the result follows from the following derivation: 

s 

u(f,g)(x) = E vpmf (eil ... , eim) Yim Yim (y)X m 
u~ ~ ~~~i). 

Y7g (),) , 

..Ym=Y 

) 

s 

- 

E prnf 
(Yileil )* * * e Yi?n ei.?n) (y, X)nm 

= Pmf (y,. y) (y, X)n-m 

m 

= f(y) (y, X)n-m 

= [f, g](x). 

3. DUAL BASES 

Dual bases, the topic of this section, are the second key tool for the construction 
of computationally convenient polynomial bases. In CAGD dual bases have been 
used successfully in the construction of special bases, like the B-spline basis for the 
space of piecewise polynomials. Recursive expressions (with respect to the degree 
of the basis functions) are derived from Marsden's identity; see, e.g., [4] and [17]. 

First it is shown, in Section 3.1, that two bases form a dual pair iff they satisfy 
Marsden's identity. Section 3.3 starts with Euler's identity for the decomposition 
of a polynomial of degree n with respect to a basis of degree m in case the dual of 
the latter basis is given. This identity is the basis for the development of recursive 
algorithms for dual bases in later sections. 

3.1. Dual bases and Marsden's identity. In CAGD, the notion of dual bases 
is slightly different from the usual notion in linear algebra. Therefore we recall the 
definition of a dual basis pair with respect to the apolar inner product [, ] on 
'Hm (Rs) . 

Definition 3.1. The dual basis of a basis {ff, I a E Fs,,m} of Hml(IRS) is a collection 
{fg, I a E Fs,m} of polynomials in 'Hm(IRS) such that, for oa,? E Fs,r, 

[fao, g g] 
= 

63. 

It is an easy to prove standard fact from linear algebra that a dual basis is indeed 
a basis. Given a dual basis pair (Y, g), a polynomial f E 'Hm(IRS) can be expressed 
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with respect to either basis in terms of coefficients depending on the other one: 

(3.1) f = Z [gc', f]fc,= E [fc, ,f]gc. 
YErs,m YErs,m 

It should be noted that traditionally the dual basis of Y is a basis {Ao, I a E Fs,m} 
for the space of linear functionals on Km (IRS), such that Ao, (fl) = 68c3. Obviously, in 
the context of Definition 3.1 these linear functionals are defined by AO, (f ) = [ go,, f ] . 
With the help of this collection of linear functionals we can express any f E 1-,(1R8) 
with respect to the basis Y as f = Ao A,(f)fo,. In Section 4.1 we introduce 
the multivariate B-patch basis and its dual. There it will become clear that the 
functionals A,, defined with respect to this B-patch basis and its dual, are equal- 
up to a constant-to the de Boor-Fix functionals. See also [14]. 

Proposition 3.2. Let Y = {fo, I a E Fs,m} and G = {9g, a E Fs,m} be two 
collections of polynomials in JHm(]RS). Then the following statements are equivalent: 

1. YF and G are dual bases with respect to the apolar pairing on m (IRS). 
2. Marsden's identity. For x, y E IRs: 

(x y)m = 5 fc, (x)gc, (y) 
aErs,m 

Proof. First assume that Y and G are dual bases. Since apolar pairing is a repro- 
ducing kernel, we have [ fo,, (x, )m] = fo,(x). Therefore (3.1), with f = (x, -)m 
yields 

(3.2) ( , )m fc, (x)go,, 
1E rs ,m 

which is equivalent to Marsden's identity. 
Conversely, assume that Marsden's identity, or, equivalently, identity (3.2) holds. 

In view of the spanning property, Lemma 2.6, this implies that G spans 1Hm(IR). 
Since g contains dimHm (IRS) elements, G is even a basis of 'Hm (RS). By symmetry, 
the same holds for F. Apolar pairing of both sides of (3.2) with fo yields 

f (x) = [f3, (x, .)] = E fc,(x)[f0, gc,]. 
ClErs,m 

Since Y is a basis, it follows that [fl, g, ] = Qj3c,. This completes the proof. D 

3.2. The Bernstein-Bezier basis. 

The homogeneous Bernstein-Be'zier basis. As an instructive application we use 
Proposition 3.2 to determine the dual of the homogeneous Bernstein-Bezier ba- 
sis of 1-n((R). This example will serve to illustrate that many familiar results 
from the theory of multivariate Bernstein-Bezier patches are straightforward conse- 
quences of the rather general theory developed in later sections. Furthermore, it is 
also our starting point for the generalization of the Bernstein-Bezier basis, thereby 
constructing the B-patch basis. Here we follow the approach of [6] and [17]. 

Let {xl, ... , XS} be a basis of 1R', and let the set of linear forms {ul,... ., uu} on 
RS be its dual basis in the usual sense, i.e., ui (xj) = 8ij. In view of the reproducing 
kernel property, the basis of linear forms is dual, in the sense of Definition 3.1, to 
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the basis {(xi,.),... , (xs, -)} of 'Hi(JRs). Since every x E IRS can be written as 
S 

= Zui(x)x, 
i=l1 

we see that, for x,y E IRW, 

(x,7y) = Z ui(X)(xi ,y). 
i=1 

(This is, in fact, Marsden's identity on 'HI (R8).) Taking n-th powers of both sides 
of the last equality, and using the multinomial theorem, one readily checks that 

(Xvy)Th = E Bo (x)lo (y) v 
CaErs,n 

where, for a e F,,n, the polynomials 

Bo,(x)= 
n 

)u(x)0'I ..U u(x) 0 

form the homogeneous Bernstein-Bezier basis of 7Hn (Ri) with respect to the basis 
{xI, ... ,)S} of R', whereas 

lo (y) = (x I, y) a'l . .. (X y) a, 

are the lineal polynomials with respect to that basis. Now Proposition 3.2 implies 
that these lineal polynomials form a basis of 'Hn (R'), as a ranges over rs,n, which 
is the dual basis of the Bernstein-Bezier basis. O 

The following simple lemma states necessary and sufficient conditions for the 
orthogonality of the Bernstein-Bezier basis with respect to the apolar inner product. 

Lemma 3.3. Let n > 1, and let the lineal polynomials l and Bernstein-Be'zier 
polynomials B>, IV E cF,n, be defined with respect to the basis {xi,... ,X } of Rs. 
The following statements are equivalent: 

1 = (vn) Iv, fralMEr, 
2. BIuv Iv ]=() /, for all v 1 CZ E s,n 

3. [BlI, Bv] = (n) 6v for all ti, v E ,,n 
4. {x1, . x. , X'} is orthonormal with respect to the inner product (,.). 

Proof. The equivalence of the first three claims follows from the definition of duality. 
To prove that the second claim implies the fourth one, observe that 

(X) xj)n = [ (xiv )nv (X,.)n ] = [lnei , Inej] = &ij 

Therefore (xi xJ) = 6ij, i.e., the basis {xi,... , X'} is orthonormal. Finally, if the 
fourth claim holds, then ui(x) = (xi, x), so Bv = (n) Iv, and hence the first claim 
holds. This completes the proof of the lemma. C] 

Homogenization and the affine Bernstein-Be'zier basis. Let Pn(Rs-l) denote the 
space of polynomials over isl of degree at most n. Consider the degree-n homog- 
enization operator Hn : Pn (Rj- ) An J(n(R ), associated with a non-zero linear 
form p on IRs, defined by 
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for f e n(RI -) and x = (xi, . .. , x5) E Ris. If f E Pm (R-l 1) and n > m, then 

(3.3) Hnf (x) = p(x)n-m Hmf (X). 

Suppose p(x) = 1 has solution x, = q(xi, ... , x.-I). Then the inverse of Hn is 
the operator Kn :Hn(RJS) - Pn (RI-s), defined by 

KnF(xl, ... , x,-,) =F(x,.... ., x.-I, q (XI) .. *, Xs-l)) 

Below we take p(x) = xi + .. + x5, so q(xI ... ., x51) = 1-x1- -x5-. 
The monomial basis of 'Pn (R]-S1) is formed by the monomials x81, with ,u ranging 

over the union s-1,<n := FIU,,o U U s-1,n- The affine Bernstein-Be'zier basis 
of Pn(Rs-l) is defined as follows. For zy E Us-i,m, with 0 < m < n, let the 
Bernstein-Bezier polynomial Bn E pn(R'-l) of degree n be defined by 

Ban (x) = KnB-y+(n-m)es,) 

or, equivalently, 

B-n(x) = B(-yl,...,r-y,n-m)(XI.... vX8 1- X,- - ,) 

Here B-y+(n-m)e, E Hn (JRS) is the homogeneous Bernstein-polynomial associated 
with the multi-index -Yi ej ?.. .?ts-1 e5_1 +(n-m) e5 E r,n. For instance, taking 
s = 2, we obtain, for 0 < m < n, the familiar univariate Bernstein polynomials: 

Bn(x) = KnB(m,nm)(X, 1-x) ( 
M 

(m(l -X)n-m. 

Since Kn is an isomorphism between JHn-(RS) and Pn(R'-S1), the Bernstein-Bezier 
polynomials Ba, where zy ranges over IU- ,<n, indeed form a basis of Pn (RS-l) 

Finally, the barycentric Bernstein-Be'zier form (of degree n) of a polynomial 

f E Pn (Rs-l) is the decomposition 

f = E n 
VEIPs,n 

where the c, are the coefficients of F = Hnf E 7Hn(RS) with respect to the homo- 
geneous Bernstein-Bezier basis of 'Hn(Rs). Obviously, this representation of f is 
closely related to its homogenized version of degree n, viz. Hnf = E Is,n cvBv. 

a 

3.3. Dual bases and Euler's identity. The following result generalizes identity 
(3.1) to the case where the degree of f exceeds m. Euler's identity for homogeneous 
polynomials turns out to be a special case of this result, corresponding to m = 1. 

Proposition 3.4. Let .F = {f, I a E Fs,m} and 5 = {9g at E Cs,m} be a pair of 
dual bases of 7Hm(Rs) 

1. Decomposition with respect to dual basis pair: Euler's identity. 

Every f E Hn ((s), with 0 < m < n, can be written as 

f = E [fe, )f]ge. 

2. Factorization of apolar pairing over a pair of dual bases. For f E 
7Hn((RS) and g E 'Hk(Is), with m < n < k 

[f, g] = E [[f ,f], [g9)9g]] 
er.s,m 
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In particular, if m = n we have 

[f,g9]= , [Ea ) f][ga) 9] 
RCFs ,m 

To see why Property 1 is called Euler's identity, consider the basis F= {(ei,.) I 
i = 1, ... , s} of hi(IRS) (in particular, we take m = 1). Since apolar pairing is a 
reproducing kernel, we see that [ (ei, , (ej, ) ] = (ei, ej) = &ij, so the basis fF is its 
own dual. Furthermore, [ (ei, , f] = f in view of Theorem 2.2, part 2, so in this 
case the first part of the proposition is just Euler's identity Ei>1 xi&f(x) = nf(x). 
In the other extreme case, viz. in case m = n, the first property boils down to 
Marsden's identity if we take f = (y, .)m. 

Proof of Proposition 3.4. 1. To prove the first part, write f(y), for y E IRS, as the 
apolar pairing of the homogeneous polynomials (y, .)m and [(y, )n-m, f], both 
belonging to rnm(RS). This is justified by first using the fact that apolar pairing is 
a reproducing kernel to rewrite f(y) as [ (y, .)n, f ], and then transposing a factor 
(.)n-m using Theorem 2.2, part 3. 

Subsequently express these polynomials with respect to the bases F and g of 
'Nm(1R5), respectively, and compute their apolar pairing using the fact that these 
bases form a dual pair. In more detail, the expression of the polynomial (y,)m 
with respect to the basis F is equivalent to Marsden's identity: 

(3.4) (Y*)m = E g(y)f 
CeErs,m 

To write the polynomial [(y,. )n-m f] as jc,g, we have to determine c, = 

[fe,, [(y, .)n-m, f]], cf. (3.1). Using Theorem 2.2, part 3, and the reproduc- 
ing kernel property, we obtain c, = [f, (y,*)n-m , f] = [(y,)n-m [fe,e f ]] 
[ f,, f ] (y). In other words, 

(3.5) [(Y,.)nm , f S = I f ](Y)9 
'CErs,m 

Since the bases F and g are dual, it follows from (3.4) and (3.5) that 

f(Y) = [(y*)m, [(y,.)n-m) f]] = S [fe, f](Y)g,(y)I 
* REr~'~Cs,m 

which is just the generalized version of Euler's identity. 

2. Use part 1 and the fact that [ [f,I f]g,, g] = [ [f,, f], [ga, gI]. In 
the special case m = n, the result follows from the fact that [ f,, f] E R, so 
[[fa, f]90, I9] [fM,I f][gac, 9]. 0 

Application: Down-recurrence for Bernstein-Be'zier polynomials. As we have seen 
in Section 3.2, the multivariate Bernstein-Bezier basis is the dual of the lineal basis. 
Euler's identity can be used to express the Bernstein-Bezier basis functions of degree 
n in terms of those of degree m, for 0 < m < n. More precisely, for /3 CZ F,n, 

(3.6) B,= E [le,,Be1B] Ba. 
CeErs,m 
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We claim that the polynomial f [[1a, BO] E 7Hn,-r(RS) is a Bernstein-Bezier 
function: 

(3.7) [1a) B - B= o if a-- i3 -{0 if a/. 

To prove this claim, consider the apolar inner product [ 1a, f ] for Fy E Fs,n-m, Since 
1 c y = 1+c,, transposition of a factor 1, yields [ 1a, f ] [ la+y, Bo ] = 6a+a,o. 

First consider the case a i /3. Then a + -y 5 /3, and hence [1a, f ] = 0, for all 
-Y E Fs,n-mr Since {l^ I a E cs,n-m} is a basis of 1n-m(RS), it follows that f = 0 
in this case. 

If a -< /3 the previous derivation shows that [1, f] = Therefore f = 

BO-,, since the Bernstein-Bezier basis and the lineal basis of 7Hn-m(RS) form a 
dual pair. 

Plugging the identity (3.7) into (3.6), we obtain the following simple recurrence 
equation for the multivariate Bernstein-Bezier basis functions Bo, E c Fn. 

(3.8) B= E B,_a B. 

rs, 
c<,F 

The well-known one-step recurrence Bo L =1 ui B-e,,, with BQ-e, = 0 if /3i = 0, 
is an immediate consequence of (3.8), since Bc, = ui for a = ei E FU,1. See, e.g., 
[10, Chapter 18]. In the next section we generalize the recurrence (3.8), as well as 
the identity (3.7), to a rather general class of dual bases. C 

Application: Degree elevation. Since Pm (RI-1) C Pn (RI- ), for 0 < m < n, every 
polynomial f E 2mP(Rs- ) can be expressed in the affine Bernstein-Bezier basis of 
2Pn (Rs- 1). The process of expressing the coefficients with respect to the latter basis 
in terms of those with respect to the former is called degree elevation. Usually the 
degree is elevated by one, i.e., n = m + 1. See, e.g., [10, Chapters 5 and 18]. 

More precisely, consider the barycentric form f = Erm c,1B, Bg In 
particular, F = Hf = Z/IC'rs,m c1,Bl,. Our goal is to determine the barycentric 
form of f of degree n. In view of identity (3.3), this is equivalent to expressing 
the polynomial pn-m F with respect to the homogeneous Bernstein-Bezier basis as 
pnmFn FZEvr cvBv. 

Since p = (y, .), where y = e1 + + es , Marsden's identity yields 

pn-m S B,(y)l = , (n-m)I 

CrFs,n-m rs,n-m 

Therefore 

Co = [p -mF,3,]= S) [ 1, 
'YCrs,n-m 

In view of the fact that l, = (An)1 Bo, and identity (3.7), we see that 

[ Ia F, I ] = [ F, [ 1a 1/ ] ] 3. 
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Finally, for zy 3, we have that [F, B ^] = (n-m)[F, F)1_] = (nB-m)c,_,, so 
we get the following degree elevation identity: 

CjO p) ( )( )3 cPy )3 = ( 
A CA 

Consider the special case where f is the monomial f(x) = x81, with x E R's-1 and 
,u E Fs-i,m. We apply the previous identity to elevate its degree to n, n > m. The 
degree-m barycentric form of f is ZCFs,m c,A Bm.A8' where cx = 6xA (Mm)1 
with 7 = (ti,... , Us-I, 0) ?E rs,m. Hence the coefficients of the barycentric form 
of degree n are, according to the degree elevation identity above 

{(n)-l(m)-l(v) cv 
0 

A 
Eif V( . 

Therefore, the homogenized form of degree n is 

Hnf = E ()()(m)B (+ . 
AFs,n-m 

Decomposing A E FS,n-m as A = ? + (n - k) es, with n = i ej + + ?is-i es-I 

Fs-1,k-m, we transform the latter identity into 

Qz) (:b) k=m __Ers l,k ( 

Since Bn+/bt+(n-k) e,8 HnBn+IJ it follows that, for x E Rs-1 and ,u E Fs-i,mI 

k=m (E r'C-1,k-m 

This identity in fact expresses the monomial basis functions of Pn (RS- 1) in terms of 
the affine Bernstein-Bezier functions. In particular, if s = 2, we have -, {j}, 
so the latter identity reduces to the well known relation, cf [10, (5.24)], 

()xm = En )B (X). 

j~~~~~~ 

A direct application of Proposition 3.4 yields the following identity for m-th 
derivatives of a homogeneous polynomial of degree n in terms of (n - m)-th degree 
basis functions and the derivatives of the dual basis functions. 

Corollary 3.5. Let {f, I a C Fs,n-m} and {9g a E Fs,n-m} be dual bases of 
71n-m(RI). Then, for 1,... .,m E Rs and f E 7H (R(S), with 1 < m < n, 

(3.9) D~ . D~mf - (n ) Fc(' I M 
ge 

(n - m)! ErCJ's,n- m 

where F, is the polar form of [ f, f] f 7Hm(IRs). In particular, the m-th directional 
derivative with respect to z C 1R is 

(3.10) Dmf= (n-rn)! S f 

~Cers,n-mn 
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Proof. Recall from Corollary 2.3, part 1, that 

Dfi .. Dd7 f =(n m)![(1* I ( &4 ) 

Now apply Euler's identity to express the right hand side of the latter identity with 
respect to the basis {9g a C Fs,n-m}, observing that 

[ ) (,) ((,*, (~M f (01 -) ... ((m, )f ) ]f 

='. ..., ((M, ) , [( f, f 

= Fa 1, ... , M. 

Finally, (3.10) follows by taking - m = z. This completes the proof. 0 

Application: Derivatives of Bernstein-Be'zier polynomials. We continue our leading 
example by considering derivatives of Bernstein-Bezier basis functions. Take f = 

Bo, with E /3e ,n, in (3.9); then 

Dei.. D4m Bo = n! E Fo,B,,...,m B,. 
(n-r) 

rs In-m 

Here F,, is the polar form of [ 1, Bo], for a E 1s,n-m. Hence, in view of (3.7), 

D61...D6mnBQ= (n-rn)! E pmBQ_l,... , 

Cer'sn-m 

Passing to the diagonal, i.e., taking z E = (m Z ERE, we get the well-known 
expression 

DmB,(x) (n )! E B3o(z)B.,(x). 
Ce Es n-m 

For m = 1 this identity reduces to DzBQ(x) = nZ_= ui(z)B/30ej(x), again with 
the convention that B,8ej = 0 if /3i = 0. See also [10, Chapter 18]. O 

4. ORDER COMPATIBLE BASES 

In this section we present a rather general framework for constructing compu- 
tationally convenient polynomial bases. Section 4.1 deals with examples of bases 
consisting of lineal polynomials, and their dual bases. These dual bases are con- 
structed as generalizations of the Bernstein-Bezier basis, introduced in Section 3.2. 
We also present an algorithm for converting between representations with respect 
to two lineal bases. This algorithm is the same as the one presented in Lodha and 
Goldman [15] (for the trivariate case), but the derivation is different. 

Lineal bases are an instance of order compatible bases, a concept introduced in 
Section 4.2. This general setup is extended in Sections 4.3 and 4.4, where recursive 
algorithms are derived-more or less routinely-for the computation of these basis 
functions and their derivatives, and for the evaluation of polynomials expressed in 
these bases. Among the algorithms derived in this section is a generalization of the 
classical algorithms of de Boor and de Casteljau for the evaluation of a polynomial. 
These results are in fact generalizations of the work of Micchelli [17, Section 5.6] 
and Cavaretta and Micchelli [4]. 
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4.1. Lineal bases. 

4.1.1. Lineal B-basis. As a first example we generalize the lineal basis introduced 
in Section 3.2 as the dual of the Bernstein-Bezier basis. Every point xi appearing 
in the basis of 1R' in Section 3.2 is replaced with a cloud of points xi,... ,x 

More precisely, we consider an s x n array X of points in IR', 

X =xi 1 <i < s 1 <s j <j }. 

For a multi-index o z s,m 1 < m < n, we consider the subset X' of X defined by 

x c = fxiCj E X I I < j < ai, I < i < s}. 

(If ai = 0 the set contains no points of the form xi J.) Note that X' contains 
lol = m points, so the lineal polynomial 1, defined by 

la (X)= II1 (U) X) 
uExa 

is an s-variate homogeneous polynomial of degree m. By definition, lo = 1. Note 
that these lineal polynomials coincide with those of Section 3.2 in case all clouds 
consist of exactly one point, viz. xij = xi. 

To guarantee that the collection of lineal polynomials {l, a a E ]F,n} forms a 
basis of 1-n(4R() we require, roughly speaking, that selecting a point from every 
cloud yields a basis of 1R'. More precisely: 

Definition 4.1 (Transversal basis property). Array X has the transversal basis 
property if, for every multi-index a = (ai,... a,a) c Z8 with IaK < n - 1 the 
set 

(4.1) {x1 ae+l,... xS es+l 

is a basis for JR'. The corresponding dual basis of 'H1 (IR) is denoted by 

The terminology is derived from the observation that the set of points in (4.1) 
is a transversal of the collection of sets Xi : = {xij I 1 < j < n}, where the index i 
ranges over 1,... , s. Note that, by definition, the dual basis satisfies ui,,(xi, i+l) - 

6ij. 

Proposition 4.2. Let the s x n array X satisfy the transversal basis property. 
Then, for 0 < m < n the set Lm(X) = {lc 1a o E Fs,m} is a basis for 7Lm(IRi). 

The proof is given in a more general setting in Section 4.2. The basis L,m(X) is 
called the lineal B-basis of J(m(IR8) (with respect to the array X). Its dual basis, 
called the B-patch basis, is denoted by Bm(X); the basis functions b,1, ,u E Fs,m, 

of 1m(X) are called B-patches. These are introduced in Dahmen, Micchelli and 
Seidel [6] and [17], who use this basis as the starting point for the development of 
the theory of multivariate B-splines. Some of their basic results are straightforward 
consequences of the theory developed in the next sections. 

The following result gives the decomposition of a polynomial in 7Hn(IRi) with 
respect to the B-patch basis, cf. [17, Proposition 5.4]. 
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Corollary 4.3. Let the s x n array X satisfy the transversal basis property. Then a 
polynomial f E Hn-(JRi) has the following decomposition with respect to the B-patch 
basis BnI(X): 

(4.2) f (x) = E3c b(x), 
Cers,n 

where c, = F(X"), with F the polar form of f. 

Proof. According to Proposition 3.4.1, the polynomial f has the decomposition 
(4.2), with c, = [1,, f ]. Now Proposition 2.8 yields c, = F(X"). O 

The previous result immediately implies that the de Boor-Fix functionals (see 
Section 3.1), defined with respect to the B-patch basis, are determined by the 
identity Ao,(f) = F(X'), for o E F5,n. See also [14]. 

4.1.2. Conversion between lineal B-bases. A central problem in geometric modeling 
is basis conversion. Here we consider the conversion between representations of a 
homogeneous polynomial of degree n with respect to two lineal B-bases L4n(X) and 
Ln (X). A similar change of basis algorithm is presented in Lodha and Goldman [15], 
although their derivation differs from the one presented here in that it is based on 
duality of so-called simplicial recurrence schemes. 

First consider the simplest case in which the s x n arrays X and X only differ in 
their last rows, i.e., xij = -T , for I < i < s. Both arrays are assumed to satisfy 
the transversal basis property. Let h = 

n c, C, be the representation of a 
polynomial h E 'Hn(1RS) with respect to the lineal basis Ln(X); then our goal is 
to compute the representation h = n-c lv, with respect to the lineal basis 

Ln(X). Isolating linear factors corresponding to the last row of X, we write 
n 

h E gm l(n-m)es, 
m=O 

where gm E 7Hm(RW) is defined by gm = E vrsPn Cv lv-v8e*. Note that gm has the 
v- v=r-m 

same representation with respect to both lineal bases, since the lineal polynomials 
defining gm do not contain linear factors from the last row of X. Therefore 

gm = p E Cu(n -m) es A1 
Irs 0 Usq =o0 

For multi-indices ,u, v E Z'o with ,u < M we observe that 1, is a divisor of lv. Their 
quotient, denoted by lvI,,, is again a lineal polynomial, viz. the product of all linear 
factors (u, ) when u ranges over xv \ X8. Put 

m 

hm = Zk l(n-k)e, I (n-m)e., 
k=O 

Then the following simple properties allow us to set up an iterative basis conversion 
algorithm: 

1. hn =h, 
2. ho= Cnes,) 
3. hm = (Xs,n-m+lv) hm-i + gm, for 0 < m < n. 
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Let a' be the coefficients of hm with respect to the basis Lm(X), i.e., hm = 

ZEr.1 aM Al. To transform the third property into a recurrence for these coeffi- 
cients, we use the fact that Xs,n-m+l = ES j1vi s(sn-m+l) x-i +so 

(xS,i+ ) S E b U,( Xs, +)l 1bteil 
i=l1 

The latter identity leads to 
S 

5 am|l1~ = xE E- i(X' +) a7 1A+ei + E Cp+(n-m)e, li' 
btCPs,m ACPs,m-i i=l btCPs,m 

Us =o 

for m > 0 and ,u E Fs,m. Collecting coefficients corresponding to the same basis 
functions, we finally obtain the following recurrence: 

0a = Cne,) 

(4.3) am = SUi_ei (Xs,n-m+l) am ? 60+,, sCi+(n-m)es,v 

%1 if m >O, ,u C Fs,m* 

Summarizing, recurrence (4.3) yields an algorithm that converts the representation 
h = Ec c, 4, with respect to the lineal B-basis Ln(X) to the representation h 
>j an lv with respect to the the lineal B-basis L4(X). 

To deal with the general case, let Xk, 0 < k < s, be the s x n array obtained 
from X by replacing the last k columns with the corresponding columns of X. 
Obviously Xo = X, X, = X, and Xk and Xk+1 differ only in their k-th column. 
Under the assumption that Xk satisfies the transversal basis property, we may run 
the algorithm just derived to convert a representation with respect to Ln(Xk) into 
the representation with respect to L4n(Xk+ 1), successively for k = 0, . . . , s - 1. This 
is exactly the approach of Lodha and Goldman [15]. 

Application: Conversion from monomial to Bernstein-Bezier form. As a simple 
application we consider the conversion of a univariate polynomial of the form h(t) = 

zn=0 aktk to its Bernstein-Bezier form h(t) = En O bkBk(t). To prepare for the 
application of the recurrence (4.3) we first homogenize as in Section 3.2. In other 
words, we use the fact that h(t) = H(t, 1 - t), where the homogeneous polynomial 
H is defined by H(x1, x2) = kO C(kn-k)X k(X1 + X2))n-k, with C(k,n-k) = ak. 

After conversion to the monomial form H(xi, X2) = k=-C(k5nk)Xx2 -k we see 

that the Bernstein-Bezier coefficients are bk = C(k,n-k)/ k() 
The actual conversion is established by applying the recurrence (4.3) in case 

s = 2, with x1ij = e1, x25j = e1 + e2, x1,j = e1 and x2 j = e2. Note that in this case 
i, (X 2J-) = 1, for i = 1,2 and ,u E Fs,m with 0 < m < n. In the notation of (4.3) 

we put cm = a(mk) for 0 < m < n and 0 < k < m. This yields the recurrence 

(4.4) { Cm -c + C1 + 6km Cmc ifm > 0 and 0 < km. 

To obtain the coefficients of the Bernstein-Bezier form, let bm = ck/(m); then (4.4) 
transforms into 

b =Cn 

lbkm (1 k )b? ? + k k-1 + 6km Cm, if m > 0 and 0 < k < m. 
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The previous recurrence translates directly into the following in-situ algorithm: 
/* Input: b[O..n] - coefficients of monomial form */ 
for ( m = 1; m <= n; m++ ){ 

b[m] += b[m-1]; 
for( k = m-1; k > 0; k-- ) 

b[k] += (float)k/m * ( b[k-1] - b[k] ); } 
/* Output: b[O..n] - coefficients of Bernstein-Bezier form */ 

4.1.3. Lineal knot basis. In the second example of a lineal basis of Ktn(IRS) the 
points defining the lineal polynomials are taken from a (multi-)set X, consisting of 
n + s - 1 points in RS. The index set A,,n is the collection of all n-element subsets 
of {1, ... , n + s - 1}, which has cardinality equal to dimH7n(Rs). With an index 
I Asn we associate the multi-set XI - {x i E I}, and the lineal polynomial 
II E Kn (Ri) defined by 

lI(X)= 17 (U, X). 

Again 10 = 1, by definition. We say that X is in general position if every subset of 
X consisting of s points is a basis of R'. 

Proposition 4.4. Let the set X be in general position. Then 

Lm(X) = {lI I I E As,m} 

is a basis for Km(IRS), for 0 < m < n. 

The proof of this result is also deferred to Section 4.2. In the theory of multidi- 
mensional simplex splines points in X are called knots; see e.g. [17] and [18]. This 
is why we call Lm (X) the lineal knot basis of Km (R5) (associated with the knot set 
X). In analogy with the B-patches, the dual basis functions are called knot-patches; 
they are denoted by NI, I E As,m, with the convention [ II, NJ] = SIj. 

An immediate application of this proposition is the polar interpolation property; 
see Neamtu [18]. 

Corollary 4.5. Let X be a set of n + s - 1 points in R' in general position. Then 
there is a unique polynomial f E Ktn(R5) whose polar form F attains prescribed 
values at all subsets of X of cardinality n. More precisely, given CI E JR' for all 
I E As,n, the polar form F satisfies F(XI) = CI, for I E As,n, 

Proof. In view of Proposition 4.4, the collection of lineal polynomials II cE Kn (R.s), 
where I ranges over A5,n, is a basis of 7n (Rs). Then f = 

LIcA,n cINI is a polyno- 
mial in Hn((R'), whose polar form satisfies 1Pnf (XI) = [II, f]; see Proposition 2.8. 
It follows from Euler's identity, cf. Proposition 3.4, part 1, that [ li, f ] = cI, so the 
proof is complete. 7 

4.2. Order compatible bases. We now study more general collections {fv I v E 

Is,n} of polynomials of degree n, and in particular deal with the problem of deter- 
mining whether this collection is a basis for Ktn(Ri). Here I,n), n > 0, are general 
index sets such that 

#fsxn = dim tn(R') = (n + s-1) 
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and such that f,'m and f,n, are disjoint whenever m and n are distinct non-negative 
integers. The union of all index sets ls,n n > 0, is denoted by fs. For convenience, 
we denote the single element of 1f,O by 0. Obviously, the set of multi-indices rF,n 
of weight n is an example of such an index set. 

A partial order -<on fs is called regular if, for 0 < m < n and ,u E ?4,m, the set 
Is,n-m(b), defined by 

Is,n-m(Pi) = I V E s,n and ,u v I, 

consists of (n-m+s-1) = dimHn-m(lR85) elements. Throughout this section we 
assume that fs is an index set endowed with a regular partial order <. 

Consider collections Fm = {f, I IE 1s,m} and 1Fn = {f, I v X fs,n} Of 
homogeneous polynomials on R' of degree m and n, respectively. We say that the 
pair (Fm, Fn), with 0 < m < n, is -<-compatible if 

1. 0 'Fm and 0 XEn. 
2. For ,u E fs,m and v E 18,n, with ,u -i v, the polynomial f,l is a divisor of fv. 

The quotient fv/fl, is denoted by fvll Obviously fvl, CZ 7Hnm(R5). 

For convenience, we assume that F0 consists of the single constant polynomial 1. 
Under this assumption fl1-o = f1-. 

The sets of lineal polynomials, introduced in Section 4.1, are easily seen to be 
order compatible. More precisely, consider the lineal B-bases. The partial order < 
on the set of multi-indices Z' is regular, since the set II',n(a) of successors of a E 
Fs,m in F,,n consists of all multi-indices of the form a + y, where ^y ranges over the 
set T's,n-m. In particular, this set contains dimHn-m(lR5) elements. Furthermore, 
if a - ,3, then X' C X:, and hence the lineal polynomial l, is a divisor of l0. In 
other words, (LCm(X), Ln(X)) is an order compatible pair, for 0 < m < n. 

With regard to the lineal knot bases we consider the partial order _ on the 
index set A, = Un>o A8,n, defined by I - J if I c J, for I, J E As. For a fixed 
I e As,m, the set {1,... ,n+s-1}\I consists of n-m+s-1 elements, so 
there are n-m+8-1 dimHn-m(R8) distinct ways to extend I to an n-element 
subset of {1, ... , n + s - 1}. In other words: the set {J E A,,n I I - J} contains 
dim 7n_m(IRS) elements; hence < is a regular partial order. Furthermore, consider 
I E As,m and J E A8,n, 0 < m < n, with I _ J. Then XI C XJ; hence lj is 
a divisor of lj. So also in this case the pair (Lm(X), Ln(X)) is order compatible 
whenever 0 < m < n. 

The following result is the crucial tool for deciding when a collection of polyno- 
mials is a basis for 1-n (Rs). 

Theorem 4.6. Let 0 < m < n, and let the pair (.Fm, Fn) be <-compatible. 
1. If Fm be a basis of Hmm(RW), and for all ,u C 1s,m the set 

TFn-m(iUt) := {fvl, V C ,n and p jv} 

is a basis of 7Hnm(R8), then Fn is a basis of Hn(R')- 
2. If Fn is a basis of 7n-(R5), then Fn-m(ii) is a basis of %n-m(IRi), for all 

E 18;,m. 

The reader may wonder whether, under the assumptions of part 2, the set Fm 
is also a basis of 7Hm (1R ). This turns out to be true under a mild additional 
assumption on the index set Is. This assumption turns out to hold for the index 
sets ZL% and As, introduced in Section 4.1. We don't need this stronger version 



THE APOLAR BILINEAR FORM IN GEOMETRIC MODELING 711 

of Theorem 4.6 in this paper, so the details, which are not completely trivial, are 
omitted from this paper. 

Before proceeding to the proof, let us show how to apply this theorem to the 
collections of lineal polynomials in Section 4.1. 

Proof of Proposition 4.2. The claim is obviously true for m = 0, since L0o(X) = {1} 
is a basis for Ho (RtS). So assume the claim is proved for 0 < m < n. Then, for 
a8 E "sm, 

F1F(a) = {flc+elIo, * *, lce+esjcl} = {(Xl1+,.), ... , (X X S+, .)}, 

since -15,i(a) = F1? i(a) = {oa + e1, ... , a + e,}. Therefore the transversal property 
holds iff 5Fi(a) is a basis of Hi (Rs), for a E Kmm(R5). Using Theorem 4.6 we con- 
clude that Lm+1(X) is a basis of Htm+i (R5). Proceeding inductively, we conclude 
that Lm(X) is a basis of Km(R5) for 0 < m < n. 7 

Proof of Proposition 4.4. We only have to observe that for an index I E A,,m, 
i.e., a subset of X of cardinality m, with 0 < m < n, the set IDSX(I) = A5,1(I) 
consists of the m + 1-element subsets of {xi, ... , xm+ } containing I. Since X is 
in general position, its s-element subset {x; j E {1, ... , m + s} - I} is a basis 
of 1R5, and hence F1(I) = {(xj, ) j j E {1, . . . ,m + s} - I} is a basis for Hi (R5). 
This observation allows us to set up an inductive argument similar to the proof of 
Proposition 4.2. 7 

Proof of Theorem 4.6. 1. First observe that the cardinality of Fn is equal to the 
dimension of Kn (R5), so it is sufficient to prove that the elements of Fn are linearly 
independent. So let f cE 7n-(R5), and assume that [ f, , f ] = 0 for all v E h,,n. 
Then all we have to prove is f = 0. 

To this end fix,u E cs,m, and let {g9vl I v E Ts,nI (/,)} be the dual basis of 
Jn-m(i) = {fMI, I V E Is,n-m(i)}- Using Proposition 3.4, part 1, to express 
[ fit, f] E Kn_m(lRls) with respect to this dual basis, we get 

I flS f]= : I fvl, , fou f9]gA =?) 
VEiIs,n-m(A) 

since [ f I//,[ fl , f ] f] = I f_t * f, f ] = [ fv , f] = 0. Therefore [ frl, f ] = 0, for all 
/ CE 1s,m, so f = 0 according to Lemma 2.5. 

2. Since the partial order -< is regular, .Fn-m(p) contains dimHn-m(Rti) ele- 
ments. Hence it suffices to prove that zFn-m(i) is a linearly independent set. So let 
C. be real constants such that EVZ _ 

m(A) Cvfv11, = 0. Since fv,11 f.l = fr, mul- 
tiplying both sides of the latter equality by fl1 shows that EVEis,n-m(oi) Cp fv = 0. 

In view of the fact that {ffv V CE s,n-m(I)} is a subset of the basis iFn, it follows 
that c, = 0 for v E Is,n-m(i)- In other words, the collection .Fn-m(iii) is linearly 
independent. g 

Under the hypothesis of Theorem 4.6.2 the elements of the dual basis of .Fn-m ([) 

can be given explicitly, as reflected by the following result, cf. (3.7): 

Proposition 4.7. Let 0 < m < n, and let (.Fm, Fn) be an order compatible pair 
such that Fn = {fv I v E I,n} is a basis Of 7n((R), with dual basis gn = {v I vE 

s,n}. Let lE Is,m. 
1. The dual basis of.Fn-m(iu) is !gn-m(A) = fgvl, i V E Is,n and p < v}, where 

gv= [ f1, g9] E An-m(IR5), 
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2. For v E n with ,u 7 v, 

[fil, g] 0= C E Kn-m(RPS). 

Proof. 1. This follows from the fact that, for A E h,,n with ,u -< A, 

[ fAIL,, gvL,u ] = [ fAI,[fl)=[fA I[I = I LA I ft 9> ],g 9)] =[ fA,g 9 ] = 68Av 

2. Let g = [f1-,gi] E Hn-m(RS). We show that [f,g] = 0, for all f E 

Kn_m(RtS). The proof of the first part shows that, for A h,,n with ,u - A, 

[ fAL,u , g] = o, 

since A i v (otherwise ,u -< v). According to Theorem 4.6.2, the set { fi\1, I A E 

Is,n-m and u -< A} is a basis of 7Hn-m(RtS), so we even have [ f, g] = 0, for all 
f E XHn-m(RS). Now apply Lemma 2.5 to conclude that g = 0. 

The dual basis gn-m(u) can be used to express the m-th derivative of a polyno- 
mial h E 7tn((Rs) with respect to the basis gn-m: 

Proposition 4.8. Let 0 < m < n, and let (.Fn-m, Fn) be an order compatible pair 
such that Fn = {fv I v E C hn} is a basis of n (RIs), with dual basis gn = {gv I 
v C h,n}. The m-th derivative of h = C', g' E Kn (Rs) with respect to 

,1,... ,,m C RS has the decomposition 

Dei Dernh(x)= )! ... , m)g (x), 
I-IEs,n-m VEIs,n 

with respect to the basis gn_m of Kn_m(RS), where G,11, is the polar form of gvIL = 

[ f Yv, gv] CE Km(RS). In particular, for z E RS 

(4.5) Dmh(x)= (n )! c 
AELIs,n-m VEIs,n 

Proof. Applying Corollary 3.5, we see that 

D4i... Dmh(x) = (r )! E C7tm( 1... C) ls(X) 
(n- ) 

AEIs, n -rn 

where C0m7 is the polar form of [ fl, h] CE Km(RWS). In view of Corollary 2.3, part 1, 
we have, with 1 = ((' 1) ... (m, ) 

(4.6) C/7(m1,. ,W )= 5 cv l, [ fi,u I g] ] = 5 cv g, 9v, ]v 

VE s n v E' s,n 

so the proof is complete, since [I, gvli_] = Gvl,u((' I m) . 

Derivatives of a polynomial in Be'zier form. Consider the Bernstein-Bezier basis of 
7tn((RlS), indexed by the set of multi-indices ]F,n- More precisely, for A E Is,m, let 

fA(x) = xA = lA(x); then, as we have seen in Section 3.2, the dual basis functions 
are the homogeneous Bernstein-Bezier polynomials, i.e., g,9 = BA. For A E Fs,m the 
dual of the relative basis nFn-m(A) consists of the functions glI1A\ = [ 1A, BJ, I = BI, -, 
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where ,u E IF,, with ,u > A. Therefore, if h = E r, CV B>, identity (4.5) reduces 
to 

(4.7) D'jh(x) n ! E=E + x B (z) BA (x) 
(ni - in)! E j) A() 

ACFrs,n-m YCFrs,m 

Derivatives of a Be'zier curve. Consider a not necessarily homogeneous polynomial 
f(t) of degree n in t EE R with Bezier form f(t) = En=OCk Bn(t). Since Bkn(t) = 

B(k,nk)(t, 1 - t)), we see that f (t) = F(t, 1 - t), where F (E Kn (R2) is defined by 

F(x) = En=_ Ck B(k,n-k) (X). We can express the derivatives of f (t) in terms of its 

barycentric form F as follows: f(r)(t) = DzmF(t, 1 - t), where z = (1, -1) R R2. 
Applying (4.7), we get 

n-m m 

DzF(x) = z ZCk+i Bm (z) Bk (x). 
(-n!k=0 1=0 

Since, by definition, 

m m 

SCk+l Bm (Z) = E ()(-lCk+l = AmCk, 
1=0 1=0 

the m-th divided difference of the sequence Ck, Ck+1 ... , Ck+mi we conclude that 

I n-m 
f(m)(t) = n n - m 

This is Farin [10, (4.27)]. 0 

4.3. Downward recursion schemes. In the sequel we consider a family of bases 

JFn Of THnj(R'), n > 0, such that Fo = {1}, and for every n > O the pair (.Fn, Fn+ 1) is 
order compatible (with respect to some fixed regular partial order on a generalized 
index set 1f; see Section 4.2). We adopt the same notation as in the latter section. 

In particular, gn denotes the dual basis of Fn. Furthermore, the polynomials 

gvI_ = [fu, Yv], with v ranging over all indices in fs,n with ,u -i v, form the dual 
basis of Fn-m(p), consisting of the polynomials fvll, with v ranging over all indices 

in fs,n with ,u -< v (see also Proposition 4.7). 

The following rather general result will allow us to derive several useful recurrence 

relations for basis polynomials. 

Proposition 4.9. With the previous assumptions, let 0 < m < k < n, and let 

/ E s1,m and v E Is,n with , --< v. Then, for f E Hi (RW), with 1 such that 

k+l <n, 

[f, gvl[l] = 5 f gvlA ] gA\,u, 
A 

where the suTmmation ranges over all indices A E -s,k with ,u -< A -< v. 

Proof. Writing h = [ f , gv, I] E Hn-m-(RS), and observing that k-rm < n-m-1 

we may apply Proposition 3.4, part 1, to decompose h with respect to any dual 
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basis pair of tk_m(RO). In particular we consider the dual bases {f4, and { gIj,1 
where A ranges over all indices in l,,k with ,u -< A. Hence 

h = E [ fl,\1- h]x,. 
CEIs,k and pt-A 

Since (k - m) + 1 < n - m, we repeatedly apply Theorem 2.2, part 3, to transpose 
homogeneous factors: 

[ffAlIl, h I = [ fAlll_ [ f gvIllj]] = [fAll[ f, gvllIj 

= [f,[fAIll [fl, gl]]] 
= [f,[fAll fl ,9v]] 

= [f, [fA,9]]. 

This derivation yields the desired identity, since Proposition 4.7 yields 

[ > \ {gv l 
g, f A v, 

0 if A v i. 

The preceding result is used to obtain the following down-recurrence, defining a 
basis in terms of basis functions of lower degree. 

Corollary 4.10 (Down recurrence for (relative) dual basis functions). Under the 
assumptions stated at the beginning of this section, let 0 < m < n, and consider 
multi-indices p E 's,m and V E 1s,n, with ,u - v. 

1. Form<k<n, 

9vlt = 
Z 

91 I/9Ll, 
A 

where the summation ranges over all indices A (E s,k with ,u - A -< v. 
2. Forkl,... ,kERs, withrm+k<n, 

Dei*.. D(k g9l1_(X) = (n-mnk)! E GvIA(1'. , ) 9AI (x), 

where GV1A is the polar form of 9vgI E Kk(RtS), and the summation ranges over all 
indices A E 's,n-k with ,u - A -< v. In particular, the k-th derivative in direction 
z E R' is 

Dz g1 (x) (n -m k)! E Z9L' (Z) 9gI(11(X). 

Proof. The first claim follows by taking f = 1 E Ho(IRs) in Proposition 4.9. To 
prove the second part, take f = (1,) (Sk,j.) in Proposition 4.9. Applying Corol- 
lary 2.3, part 1, to g C1, E Kn_m(IR5), we see that 

(n - m -k)! v..Dkgl 

Similarly, for A C s,n-k we have gvIl E Kk(R5), so according to Proposition 2.8, 
we have [ f, gv I] = GVIA, which proves the first identity of the second part. Diag- 
onalizing, i.e., taking ' . = .k = z, completes the proof. . 
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Down recurrence for B-patches. Let X be an s x n array of points satisfying the 
transversal basis property. Taking m = 0 and k = n- 1 in Corollary 4.10, part 1, 
yields b (x) = E aIc -ei(x) bc-ej(x), for a E F,,n and x E RS, where we adopt 
the convention that gYalc-e, = 0 and bc,-ei = 0 if ao = 0. It follows from Defini- 
tion 4.1 that gYaIa-e, Ui,ao-ei, so we get the following recurrence for B-patches: 

ba (x) = Z Ui,-ei (X) 
bcxei(x)x i=l1 

Similarly, taking k = 1, m = 0, and 4 = z E R'5, the identity in part 2 of 
Corollary 4.10 translates into 

Dzba (x) = ~nE Ui,-ei (Z) 
baei(x). i=l 

For a different derivation of these recurrences we again refer to [6] and [17]. D 

Down recurrence for knot-patches. To obtain a similar recurrence for knot-patches, 
consider a set X consisting of n + s - 1 points of R' in general position. Taking 
again m = 0 and k = n - 1 in Corollary 4.10, we get the following recurrence for 
the knot-patch NI, for I E A,,n: 

N, (X) = E NI I J (X) NJ (X). 

J-<I 

Observe that the summation index J is a subset of {1, . . . , (n - 1) + (s - 1)} n I of 
cardinality n - 1, so J is of the form I - {i}, where i E I and i -& n + s - 1. 

For I E A,,n, let {uijI i cg {1,... ,n + s - 1} - I} be the basis of Hi (Rs) 
consisting of the linear functions dual to {xi I i E {1,. ... , n + s - 1} - I}, i.e., 
Uj,i(Xj) = Sij for i,j {1,... , n + s - 1} - I. Then the recurrence for NI boils 
down to 

NI(x) = , Uil(x) NI-{i}(X) 
iCI 

i#An+s-1 

In a completely similar way we obtain the following recurrence for the derivatives 
of knot-patches in the direction z E Ri: 

DzN1(x) = n : uji,I{j}(z) N-{i}(x). 
iCI 

ion+s-1 

D 

4.4. Upward recurrence: de Boor/de Casteljau's algorithm. de Casteljau's 
algorithm for the evaluation of a point on a polynomial curve in Bezier form is one 
of the basic algorithms in computer aided geometric design; see, e.g., [10]. Using the 
machinery developed in this paper we derive, more or less routinely, a generalized 
version of this algorithm in the context of order-compatible bases. 

Again we adopt the notation and assumptions stated at the beginning of Sec- 
tion 4.3. In this setting, the generalized de Casteljau's algorithm takes as input a 
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collection of scalars c, E R, for v E 's,n, and n points 41,... , E E R5. It evaluates 
the polar form of the homogeneous polynomial 

VEls ,n 

at (1, .. . , ( The classical de Casteljau algorithm solves this problem in case gn 
is the homogeneous Bernstein-Bezier basis of Htn(Rl), and 4l = ... = n = X E R9. 

The generalized algorithm computes, for m ranging over an increasing sequence 

O mO < ml < . . . < mt = n, 

the polar forms 1P? fl , h], for all ,u E csn-rn For m = 0 these polar forms 
correspond to the input values cp, ,u E I,n, since in this case 

'Po [ flix I h] i h] 

For m = n, the single basis function in F0 is 1 E HO (R5), according to the assump- 
tions stated at the beginning of Section 4.3. Therefore the corresponding polar 
form is pn [ 1, h ] = Pnh , i.e., the desired output. 

It remains to describe the basic step of the algorithm, where m is increased from 
m = mj_i to m = mj, for 0 < j < n. For convenience we denote 'P[fl, h] 
by C0/, for ,u E 'sn-n. In particular, C/7 is a symmetric m-linear form on RI. 
Assume we have determined Cl(1,... ,m), for all ,u E 's,n-rn Our goal is to 
determine Cm+k(E1, , (m+k), for all A (E 'sn-m-k . Since 

CM+k (l ,m+k) = [(41 .)...((m+k,.) [fA, h]], 

transposition of a factor (grn+1 ) .* ((r+k, .) cf. Theorem 2.2, part 3, yields 

(4.8) Cj7+k(l,l... ,[rm+k) n(l ((m) (m+l,.) ... (4m+k,.)fA h]] 

Suppose we have expressed the polynomial ((r+1,.) E *n* (rn+k, ) f C Kn-m(RS) 
with respect to the basis {f, / I E 's,n-mr} as 

(4.9) (ml. (+ 
)fl a E - afl- 

where ,u ranges over 's,n-m. Then the right hand side of (4.8) reduces to 

-) ... ((m,.) [a/f,h]= a[(l (m,) [flh] 

(4.10) = E a/- C/MW( m 

In view of Proposition 3.4, part 1, the scalar a, in (4.9) satisfies 

a -, [ ((m+l .) ... (.m+k. )f 
- 

[((m+l.) ...(rn+k. ) [f 9A ] ] 

G IA(+1 m+k) if A , 

tO, if A ,u, 

where GQI ((m+l,... (m+k) is the polar form of [fA, gl,= gl,I/\, evaluated at 
(rm+l ... , (m+k) in case A -< ,u (cf. Proposition 4.7). Therefore the summation in 
(4.10) ranges over the subset Is,k(A) Of 's,n-mr Summarizing, we get 
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Lemma 4.11 (Upward recurrence). Let n > 0. Under the assumptions stated at 
the beginning of Section 4.3, let c, E R, v Ec 'Sn, be the coefficients of the polyno- 
mial h = 

VE. c,g, with respect to gn. Let &,*** . n E RI, and let CJ7 be the 
polar form of [ fi,, h]. 

Furthermore, let 0 < m < m + k < n and, for all A E 'sn-r-k and pu E fs,k(A), 
let GI,, be the polar form of the basis function gll, E Kk(1(R5). Then 

C+k(' &m+k) =?C/m(&1 ()GI(ml (+ CM ~ ~ r+m)= ZCI_, QI\(~m+l, ... , rm+k) 

where the summation ranges over all indices ,u CE ',k (A). 

This upward recurrence relation yields a class of de Casteljau-like algorithms 

for computing the polar form of h, evaluated at (m1,... ,m), by computing the 

families {m ,m) I A E 's,n-m}, where m runs from m = 0 to m = n in 
arbitrary steps. Taking the step size e.g. equal to 1, we get the following result. 

Corollary 4.12 (Generalized de Casteljau/de Boor Algorithm). Let n > O. Un- 

der the assumptions stated at the beginning of Section 4.3, let c, E R, V E C Jn, 

be the coefficients of the polynomial h = 
,Es Cvgv with respect to gn, and let 

41) .. n E, R5. Let C7(1 ... ) with E C 'sn-m, be defined as follows: 
1. For all v E/ Csn, 

CV=( CV; 

2. For 0 < m < n, and A C 'sn-m-1, 

(4.11) CM+1( 1 ,r+1) = E ,(rn)g9I((r+) 

where the summation is over all indices / E fs,n-m with A < ,u. 

Then C0m/ is a symmetric m-linear form on R', equal to the polar form of [ fi,, h ], 

for / C 's,n-mr In particular, Con ((1. ),n) is the polar form of h, evaluated at 

Note that there are exactly s indices in the summation range of the recurrence 

(4.11); see Section 4.2. 

The up-recurrence in Corollary 4.12 is also derived in Micchelli [17, Section 5.6] 

and Cavaretta and Micchelli [4] for the special case of a polynomial in B-form. This 

case is elaborated in one of the examples later in this section. In the latter papers 

the fact that C/0m is symmetric requires a much longer proof. In our approach 

this symmetry comes for free with our characterization of C/0M as the polar form of 

[fr,- h]. 
Application of Corollary 3.5 yields the following decomposition of the m-th order 

derivative of h with respect to the basis gn-m of Kn-m(Rn): 

D4i. D4h= (n-r)! S E c/((,... ,Irn)gl1. 

See also (4.6) in the proof of Proposition 4.8. Therefore m steps of the generalized 

de Casteljau/de Boor algorithm are sufficient to compute the m-th order derivative 

of h (in the mixed directions 4,... cr). 
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The classical de Casteljau algorithm for evaluation of a polynomial in Bernstein- 
Bezier form at a point x E RS is obtained by taking for gn in Corollary 4.12 the 
Bernstein-Bezier basis of 7n(RJs), and diagonalizing, i.e., taking n = = (f = x. 
The derivation of de Boor's algorithm for the evaluation of a polynomial in B-form 
is illustrated in the following example. 

Application: Up-recurrence for B-patches. We describe the basic step in the gener- 
alized de Casteljau/de Boor algorithm, applied to a polynomial in B-form. So let 
X be an s x n array of points in IRS, satisfying the transversal basis property. In 
particular, consider h E Hn(Rs) with decomposition h = cVErs,n CM bv E Hn (Rs) 

with respect to the B-patch basis L3n(X) of 7n (Rls), corresponding to X. Then the 
polar form of h can be evaluated at (I1,... , (+1) by the following recurrence: 

S 

A 
I 

+1) = EC>+e (i '. (m) U (cm+1), 

starting from CO( ) = c>, for v E 1,n In particular, h(x) = Con(x,... , x). As 
indicated above, the linear form Cm is m-symmetric, since it is the polar form of 
[I1, h] . 

Application: Conversion between B-patch bases. An interesting application of the 
generalized de Casteljau/de Boor algorithm is the conversion between representa- 
tions of a polynomial with respect to two different B-patch bases, as described, e.g., 
in Lodha and Goldman [15]. 

Consider the setting of Section 4.1.2, in which two s x n arrays X and X only 
differ in their last rows, i.e., xii X Y'i for 1 < i < s. Both arrays are assumed to 
satisfy the transversal basis property. Let h = ZVGS,n cv b, be the representation 
6f a polynomial h E 7Hn(R() with respect to the B-patch basis Bn(X). Then our 
goal is to compute the representation h = E,, -C b, with respect to the lineal 

basis Bn(X). 
Since -c = [Iv a h], we obtain, by isolating linear factors corresponding to the 

last row of X, 

CV = [1V, h] = [lv-Vses iv,e, , h] 

[livses v [lv-vses v h]] 
- CiIjve (xS/l , - vS e) 

In other words, the coefficient -c of h with respect to the basis Ln (X) is obtained 
by running the generalized de Casteljau/de Boor algorithm to evaluate the polar 
form of h at the points in the last row of X. The coefficient -c is the entry in the 'de 
Casteljau simplex', at the position corresponding to the multi-index v - vs e,. Note 
that the latter multi-index lies in the face of the de Casteljau-simplex consisting of 
all multi-indices At with last entry equal to zero, i.e., with P,i = 0. 

The general change of basis algorithm is obtained by replacing the rows of X 
by those of X one by one; see also Section 4.1.2. It should be noted that the 
lineal change of basis algorithm, presented in Section 4.1.2, is derived in Lodha 
and Goldman [15] from the above algorithm for conversion between B-patch bases, 
using duality. [ 
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Application: Up-recurrence for knot patches. Finally, consider a set X, consisting 
of n + s - 1 points in RS in general position. Let h eE NHn(R5) have decomposition 
h = ZICA8,? CI NI E Hn(IR) with respect to the knot-patch basis of Hn(IR5), 
corresponding to X (cf. Section 4.1.3). Then the polar form of h can be evaluated 
at ((l,... , ~m+1) by the following recurrence: 

CI +1 (W 
qm 

)=EC+{i} W , )ui'I (S. ), 
iG{l.. n-m?s-1}-I 

starting from CIO( ) - CI for I E A5,n. Also in this case, h(x) = Con(x ... , x). [- 

5. FUTURE RESEARCH 

In a forthcoming paper the theory of order compatible bases, developed in Sec- 
tion 4, will be applied to compute a basis for the solution space of constant coeffi- 
cient PDE's. The computations to be presented will be based on the following obser- 
vations. Consider the partial differential equation p(&)f = 0, where p E Nm(1R5) is 
a fixed polynomial (e.g. p = x2+- *+xS2, in which case the PDE is the Laplace equa- 
tion). Solving this PDE for f E Hn(IR), n > m, amounts to finding the kernel of 
the linear operator Dp: tn (IR) -- Hn-m(IR), defined by Dp (f ) = [ p, f ], cf. Def- 
inition 2.1. It is not hard to show that this operator is the adjoint with respect to 
apolar pairing of the multiplication operator Tp: Hn-m(RW) 7-Hn((R), defined 
by Tp(f ) = p f . Therefore, we have the decomposition Hn (IR) = Ker Dp ED Im Tp, 
which is an orthogonal sum decomposition with respect to the apolar inner prod- 
uct on 7-n(R(). This property was also observed by Reznick [22] and [23], and by 
Beauzamy et al. [1]. In [24] these techniques are applied to obtain normal forms 
for the polynomial solutions of constant (complex) coefficient partial differential 
equations. Pedersen [19] applies similar techniques in the case of a PDE with real 
coefficients, and to a system of PDE's in [20]. Our forthcoming paper will ex- 
ploit properties of order compatible and dual bases to construct the solution space 
efficiently. 

We further intend to extend our work to obtain simple algorithms for, e.g., 
degree reduction and degree elevation of multivariate Bernstein-Bezier patches and 
B-patches, using the apolar inner product to define projections onto subspaces 
corresponding to polynomials of lower degree. 
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