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ON THE CONVERGENCE 
OF CERTAIN GAUSS-TYPE QUADRATURE FORMULAS 

FOR UNBOUNDED INTERVALS 

A. BULTHEEL, C. DIAZ-MENDOZA, P. GONZALEZ-VERA, AND R. ORIVE 

Dedicated to Professor Ndcere Hayek Calil on the occasion of his 75th birthday 

ABSTRACT. We consider the convergence of Gauss-type quadrature formulas 
for the integral fo? f(x)w(x)dx, where w is a weight function on the half line 
[0, oc). The n-point Gauss-type quadrature formulas are constructed such that 
they are exact in the set of Laurent polynomials A-p,q1 = {k= -p 

where p = p(n) is a sequence of integers satisfying 0 < p(n) < 2n and q = 

q(n) = 2n - p(n). It is proved that under certain Carleman-type conditions 
for the weight and when p(n) or q(n) goes to oo, then convergence holds for all 
functions f for which fw is integrable on [0, oc). Some numerical experiments 
compare the convergence of these quadrature formulas with the convergence 
of the classical Gauss quadrature formulas for the half line. 

1. INTRODUCTION 

In this paper, we consider the very classical and yet up-to-date problem of ap- 
proximating a definite integral 

b 

(1.1) Io(f) = j (x)do(x), 

where Oz is a distribution function, i.e. a real valued, bounded, nondecreasing func- 
tion with infinitely many points of increase on (a, b). Many approaches have been 
proposed to estimate (1.1), especially when [a, b] is a finite interval and doz(x) _ dx 
on (a, b). 

Most of these methods yield estimates of the form 

n 

(1.2) In(f) = E Ajf (xj) 
j=1 
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with n a natural number, {xj}ki points on (a, b), and {Aj}k=i coefficients or 
weights, determined such that 

Ia(f) = In(f) 
for all f belonging to a certain class of functions with special features. Assume that 
for the distribution a all the moments 

b 

(1.3) Ck = xkda(x) 

exist for all nonnegative integers k. Under this condition, it can be assured that 
there exist n distinct nodes x1,... , xn on (a, b) and n positive weights A1, ... , An 
so that 

n 

Ia(f) = In(f) = LAj f(xj), Vf E 112n-1, 

j=1 

where Hk, k > 0, denotes the space of all polynomials of degree at most k. This 
gives rise to the well known Gauss-Christoffel quadrature formulas [14], and these 
are studied together with the intimately related problems of orthogonal polynomials 
and Pade approximation. This can be seen as follows. Let Qn denote the nth 
orthogonal polynomial with respect to the distribution a, i.e. Qn E -n and 

b 

bQn()da(x) = = o,1... , n- 1, 

while this integral is nonzero for j = n. Then the nodes xj are the zeros of Qn. 
Moreover, Qn is the denominator of the [n - 1/n] Pade approximant at ox of the 
Cauchy transform Fc, of the distribution a: 

Fa(z) = jb da(x) 

Note that Fc, has the asymptotic expansion 
00 

Loo(z) = Ecjilz-T, z -x 00, 
j=1 

and the [n - 1/n] Pade approximant is of the form Pn-l/Qn with Pn-l E HIn- 
and it is defined by the condition 

Fc (z) Pn 1 (Z) 
- o(Z-(2n+l)), z __ 00. 

The convergence of the sequence {In(f)} to the integral Is,(f) for all functions 
f in a class that is as large as possible is a problem that was almost completely 
solved in the case of a finite interval (a, b) by Stieltjes [21]. However, the case of 
an infinite interval needs special care. A first contribution was given by Stieltjes in 
[22], where the special case f (x) = 1 /(z - x) is considered for z ? [a, b) = [0, oo). 

Other contributions in this field are the papers by Uspenski in 1916 [23] and 
1928 [24]. Further details, as well as a long list of references, can be found in the 
comprehensive survey by Gautschi [9] and the book by Davis and Rabinowitz [7]. 

In the sequel we shall assume for the sake of simplicity that a is absolutely 
continuous on (a, b), so that we have 

da(x) = w(x)dx 
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with w(x) > 0 almost everywhere on (a, b), and we shall write 
b 

IC() = IW(f) = jf(x)w(x)dx, 0 < a < b < +oo. 

If a is not absolutely continuous, then the Riemann integrals should be replaced by 
Riemann-Stieltjes integrals, but the results are basically the same. F'urthermore, 
we shall assume that all the moments 

b 

Ck = jx (x)dx 

exist for k = 0, ?1, ?2.... This gives rise to quadrature formulas like (1.2) in- 
tegrating exactly, not only polynomials, but more general functions, namely the 
Laurent polynomials (or L-polynomials), which are given by 

q 

Ap,q={L(z)= /3jz}, p,qEZ, p?q. 
j=p 

As far as we know, quadrature formulas valid in certain subspaces of A, the space 
of all Laurent polynomials, were first introduced by Jones, Thron and Waadeland 
in connection with the strong Stieltjes moment problem [13]. 

In a similar way as for the Gauss formulas, two topics immediately arise here: 
the orthogonal Laurent polynomials (or equivalently orthogonal polynomials with 
respect to a varying weight function on intervals contained in [0, oo)) and two-point 
approximants to 

F (z) b (X) dd 

in the points 0 and oo. Now, F, allows two asymptotic expansions: one at the 
origin and one at oo: 

00 00 

Lo= Z C_(j+l)zj (z - 0); Loo = ?cjiz-, (z -* oc). 
j=O j=l 

Among the most relevant works in this field, we can mention the contributions by 
W.B. Jones, 0. Njastad and W. Thron [12, 11], L. Cochran and S. Cooper [6], S. 
Ranga [19], and G. Lopez-Lagomasino [15]. 

Very deep investigations of the special case f(z) = 1/(z - x) with z f (0, oo), a 
parameter, were given in [15] as a compilation of several papers [16, 17, 18] by Lopez- 
Lagomasino. His results were derived in the framework of Pade approximation 
for meromorphic functions of Stieltjes type. This work can be considered as the 
unbounded equivalent of Stieltjes' work [21]. 

The present paper can also be considered as a continuation of the previous papers 
[4, 2, 3] by the present authors. In [3] we proved, under appropriate conditions, the 
convergence of the quadrature formulas I, (f) to I, (f) for any function f in the 
class CB [0, oc) of continuous functions on [0, oc) such that limx+?00 f (x) exists and 
is finite. The aim of this paper is to extend the convergence to a class of functions 
f which is larger than CB [0, xc). We shall make use of the ideas used by Uspensky 
in [24]. 

The paper has the following structure: first we give some preliminary results in 
Section 2, then Section 3 gives the results about convergence, and in Section 4 we 
give some numerical examples. 
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2. PRELIMINARY RESULTS 

Throughout the remainder of the paper, we shall deal with the unbounded in- 
terval (a, b) = (0, oo), so that we shall treat the integral 

(2.1) IW(f) = j f(x)w(x)dx, 

where w is a weight function on (0, oo) such that the moments 

(2.2) Ck = j xkw(x)dx 

exist for all integer k. 
Let p and n be nonegative integers with 0 < p < 2n. Then it can be proved (see 

e.g. [2]) that there exist nodes xl,n, X2,n,... ,Xn,n (Xj,n i Xi,n for i; j) in (0, oc) 

and positive weights A1,n, A2,n,... , An,n such that 

n 

(2.3) In(f) Z: Aj,nf(xj,n) = I,(f), Vf E A?p,2n-1-p 
j=1 

We refer to In(f) as the n-point Gauss-type quadrature formula for the subspace 
A-p,2n-1-p- 

Set Qn(X) = an (X - X1,n) ... (X-Xn,n ) ( n; 0); then it is known that Qn(x) 

represents the nth orthogonal polynomial with respect to x-P(x), i.e., 

x'Qn(X) ( )dx = 0, j = 0, 1,. n ,- 1. 

Furthermore, Qn is the denominator of the [p/n] two-point Pade approximant (2PA) 
in the points 0 and oo for the Cauchy transform 

F.(z) = j (dx. 

This means that there exists a unique polynomial Pn1l E Hn-1 such that the 
rational function Pnl (Z)/Qn(Z) satisfies 

Fw (z) Pn- (Z?) (P), v 
-- 

) 

F P(z) Q1(Z) _= 0(ZO(2n-p+l)) Z 00 

For further details concerning 2PA, we refer to [4]. Observe that when we take 

p = 0, 2PA at z = 0 and z = oo become one point Pade approximants at z = oo 

and thus the classical Gauss-Christoffel quadrature formulas arise as a special case. 

For a given sequence fp(n) }l of nonnegative integers such that 0 < p(n) < 2n, 
we are interested in convergence of the Gauss-type formula In(f ) in -p(n),2n-1-p(n) 
to IW (f ) as n -* oc. This convergence should hold for all f in a class of functions 

that is as large as possible. 

Some preliminary results for p(n) = n were given by Jones et al. [11] in the case 

of a bounded interval. As for the classical case (p(n) = 0 for all n), an infinite 

interval is more difficult than a finite one. In the work of L6pez-Lagomasino [15], 
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some Carleman type conditions on the moments Ck and conditions on the numbers 
p(n) were assumed, namely 

lim 2n-p(n) = oo and E 2j = 0o 
n-+oo 

j=1 

or 

lim p(n) = oo and Zc4j = oo. 
n--oo E _ 

j=1 

Under these conditions, it can be deduced (see [3]) that the corresponding se- 
quence of Gauss-type formulas In(f) in A_p(n) 2n-1-p(n)will converge to I (f) for 
any function f in the class CB [0, oc) of continuous functions on [0, oo) such that 
limx+CO f (x) exists and is finite. To extend the convergence to a larger class, we 
need some preliminary results. 

Theorem 2.1 (see [3]). Let {p(n)} be a sequence of integers such that 0 < p(n) < 
2n. Let w be a weight function on [0, oo) and let InT(f ) E 1 Aj,nf (xj,n) denote 
the corresponding n-point Gauss-type formula for A-p(n),2n-1-p(n). Define Qn(X) = 

(X-X1,n) ... (X-Xn,n). Then, if f E C(2n) [O,oo), 

Iw(f) = In(f) + (2)n! [xP(n) f (x)1() 

where n E [0, oc) and 

Yn j Q n (X) p(dx 

Remark 2.1. Clearly, this theorem implies that 

In(L) = Iw(L), VL E A-p(n),q(n)-lv 

where p(n) + q(n) = 2n. 

Observe that the classical polynomial case corresponds to p(n) = 0 for all n. 
The case p(n) = 2n is similar because a simple change of variables x -* 1/x will 
reduce it to the polynomial case. To deal with quadrature formulas which are 
valid in subspaces of proper Laurent polynomials, we will assume in the sequel that 
O < p(n) < 2n 

F'urthermore, we recall that the weights Aj,n are positive, and, because 1 E 

A-p(n),2n-1-p(n) for any n, one has 
n 

Aj,n = co, n=1,2. 
j=1 

We will now give extensions of the Chebyshev inequalities [5] that are applicable 
in our situation. Therefore, we need two lemmas. 

Lemma 2.2. Let p, k and n be integers such that 0 < p < 2n-1 and 1 < k < n-i, 

and set = 2n - 2 - p. Consider the positive numbers {xj}jk'1, ordered so that 

0 < X1 < X2 < ... < Xn. Then there exists an L A p,q satisfying 

1. L(xi) = 1, i = 1V ... ,k, 

2. L(xi) = 0 i =k + 1,... ,n, 

3. L(x) > O, Vlx > O, 
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X1 X2 Xk-1 Xk Xk?1 Xk+2 Xn-1 Xn 

FIGURE 1. The function L(x) 

4. L(x) > 1, Vx E (O, Xk] - 

Proof. Take into account that dim(A-p,q) = p + 1 = 2n -1 since q = 2n -2- -p. 
Thus, there exists a unique L E A-p,q satisfying the interpolation conditions (all 
the xi are nonzero and different from each other) 

L(xi) = 1, i = 1, ... k, 

L(xi) = 0, i= k+1,... ,n, 

L'(xi) = 0, i= 1,... ,n, i; k. 

We now prove that this L satisfies the requirements of the lemma. 
For p = 0, we have the polynomial situation, and in this case the lemma is 

known. It can be found for example in [5]. 
Thus assume 0 < p. Using Rolle's theorem, it can be seen that L'(x) vanishes 

at at least 2n -3 points on (0, xn). 
If p = 2n - 2, then L'(x) = x-(P+l)P(x), P E H2n-3; thus L'(x) has exactly 

2n - 3 zeros in (0, xn), and it can only behave as in Figure 1. Therefore L(x) 
satisfies the conditions of the lemma. 

If p; 2n - 2, then L'(x) = x-(P+1)Q(x), with Q(x) E H2-2. Thus L' has 
2n - 2 zeros, of which 2n - 3 are as in Figure 1. Our aim is to prove that the 
remaining zero of L'(x) cannot be on (0, xn). This is immediate for p > 2n - 2 
because L(oo) = 0 and L(xn) = 0, so that there should exist some ( > xn such 
that L'(() = 0. Finally, assume 0 < p < 2n - 2. We know that Q(x) has at least 
2n - 3 positive zeros. If the other one were positive too, then we know that by 
the Cardan-Vieta formulas, the coefficients of Q(x) should all be nonzero. Set for 
0 < p < 2n -3 

2n-2 

L(x) = x-PP(x), P(x) = E bjxj E H2n-2- 

j=O 

Hence 
2n-2 

L'(x) = x-(P+1)Q(x), Q(x) = -PP(x) -XP'(X) =E aixi 
j=o 

where ao = -pbo and aj = bj(j-jP) for 1 < j < 2n-2. Thus ap = 0, which is a 
contradiction. Therefore, the remaining zero in the case 1 < p < 2n - 3 should be 
negative. We thus find that the behavior of L is again as in Figure 1. g 

The following lemma can be proved in a similar way. 
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Lemma 2.3. Let p, k and n be integers satisfying 0 < p < 2n- 1 and 1 < k < n-1, 
and defined byp+?q=2n-2. Let O<x1 < X2 < **. < Xn be real numbers. Then 
there exists an R E _ satisfying the conditions 

1. R(xi) =1, i =l,)...,)k, 

2. R(xi) = 0 i =k + 1,... ,n, 

3. R(x) < 0, Vx > Xk+l, 

4. R(x) < 1, Vx > O. 

Now we can state the following 

Theorem 2.4 (Chebyshev inequality). Let In(f) = En=1 Aj,nf(Xj,n) be the n- 
point Gauss-type formula in A-P,2n-l-p (O < p < 2n - 1) with respect to the weight 
function w(x). Then 

/Xk,n XSk+l,n 

j/kn w(x)dx < Aln + A2,n+ ? + Ak,n < w (x)dx, 

where k is a fixed integer such that 1 < k < n- 1. 

Proof. Take the Laurent polynomial L as in Lemma 2.2, where the points xj are 
replaced by the nodes of the quadrature formula. Because L E A-P,2n-l-pi the 
quadrature is exact for L, so that 

jd n k 
L L(x)&) (x)dx = Aj,nL(Xj,n) = Z Aj,n 

j=1 j=1 

Thus 
/xk,n /X Zn k 
X,n (x)dx < L(x)w(x)dx < EAj,n 
Jo J? ~~~~~~j=1 

On the other hand, using the L-polynomial R of Lemma 2.3, we obtain in a similar 
way that 

k Xk+l,n Xk+l,n 

1:Aj,n < / R(x)w(x)dx < w}&(x)dx. 
j=1 J 

This proves the theorem. 

3. CONVERGENCE 

We start this section with a general result on convergence of Gauss-type quad- 
rature formulas which is inspired by the work of Stieltjes [22]. 

Theorem 3.1. Let {p(n)} be a sequence of nonnegative integers with 0 < p(n) < 
2n - 1. Let InT(f) = , 1 A',nf(X ,n), n = 1, 2,.. ., be the sequence of Gauss-type 
formulas in A_p(n),q(n)-1, where p(n) + q(n) = 2n. Then limn ooInT(f) =I(f) 

for any f such that f (x)w(x) is integrable on [0, oc), if and only if Iimn,+ Aj,n = 0 

uniformly in j. 

Proof. "f" Assume that limn+oo Ajn = 0 uniformly in j, and take any f such 
that f(x)w(x) is integrable on [0, oc). Set h(x) = fx w(t)dt. Since w(x) > 0 
a.e., this h(x) is strictly increasing in (0, oo) and h(oo) = f0? w(t)dt = co. Define 
Yj,n = h(Xj,n), j = 1,... , n; n = 1, 2..... Then, by Theorem 2.4, it is seen that 

0 < Yl,n < Aj,n < Y2,n < A1,n + A2,n < Y3,n < Aj,n + A2,n + A3,n <K.. 
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Since h(x) is continuous, there exist Oj,, such that 

Aln + A2,n+ ? * + A,n = h(pj,n) = Yj,n 

and Qj+l,n -j,n = Aj,n 0 O uniformly in j. Now the function f(y) = f(h (y)) 
is integrable on [0, co], and since Zjn.= f(yj,n)(j+1-,n - Qj,n) is a Riemann sum on 
[0, co], we can write 

r00 /CO- 
Iw(f) = J f(y)w(x)dx = J f(y)dy 

n n 

= lim Zf(Yi,n)(i+ ,n - Yj,n) = lim ZAj,nf(Xj,n) = lim In(f). 
j=1 j=1 

"=" Let us take f(x) = X[a,b] (X), the characteristic function for an arbitrary 
interval [a, b] c [O, oo), i.e., 

f(x) = X[a,b](X) {O, x 
l 
[a,b]. 

Then 
b 

lim Z Aj,n jw(x)dx > O. 
a<xj,, <b 

Let us assume that there exists a sequence { (n) } of natural numbers such that 

lim Al(n),n = A 0. 
n--+oo 

Recall that for any j, 1 < j < n, Ajp 
n Zk=i Ak,n = co. Now let the sequence 

xI(n),n (or possibly a subsequence) converge to x, i.e. limnoo Xl(n),n = x. This x 
is either finite or infinite. If x is finite, then we can choose , c > 0 such that 

JX+< A 
x-e 

and this yields a contradiction since 

A < lim S A,n =(()d(. 
X-/ Xj,<n <X+e X-C 

Similarly, if x = oo, we choose M > 0 such that fj w(x)dx < A/2, which leads 
again to a contradiction. Thus limn,o Aj,n = 0 uniformly in j. O 

As an immediate consequence we have 

Corollary 3.2. Let p(n) and In (f) be as in Theorem 3.1 and assume furthermore 
that limnoo A- - = 0 uniformly in j. Let f be a function satisfying either 

1. f(x) is integrable on any subset [0, a] c [0, oo) and there exist M and m such 
that 

If(X)I < xm" Vx > M, M > 0, m E N 

or 
2. f(x) is integrable on any subset [b, oo) c (0, oo) and there exist k and h such 

that 

If(x) < x-k Vx < h h > 0 k E N. 

Then lim_o ILM(f) = I (f). 
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Observe that this convergence result holds under very general conditions on the 
moments Ck. That is why we allow f to behave like powers of x in the neighborhood 
of 0 and oo. To allow other types of behavior in these points, we need to impose 
more restrictions on the moments. 

So our key problem boils down to the question: Under what conditions on the 
moments Ck (i.e. on the weight w(x)) and on the sequence of integers p(n) with 
0 < p(n) < 2n -1, does it hold that limjOO Aj,n= 0 uniformly in j? Here the 
Aj,nare the weights for the Gauss-type quadrature formula for A-p(n),q(n)-l (where 
p(n) + q(n) = 2n). 

FRom now on, we will assume that either 

(3.1) cn < CF((n + 0 + I)1>)R n, n E N, 

or 

(3.2) c-n < CI((n-0 1)_y)R?n, n E N, 

where 0 > -1, 0 < -1, C, C,R and 1 are positive constants, 0 < -y < 2, and F(s) 
is the gamma function. Note that by these conditions, the moments Ck, and hence 
the integrals 1 (f) and the quadrature formulas In(f), will depend on -y. 

The following theorem involves the Mittag-Leffler function, which is defined as 
c k 

(3.3) Ey(y) = E r( k +1) Vy E C. 

(Note that Ey is an entire function.) Its proof follows closely the techniques used 
in [24]. 

Theorem 3.3. Let w(x) be a weight function whose moments satisfy condition 
(3.1). Let {p(nI)} and {q(nI)} be sequences of nonnegative integers such that p(n) + 
q(n) = 2n and limnoo q(n) = oo. Then 

lim In(Ey(sa'x)) = Iw(Ey(sax)) n-0oo 

uniformly in compact subsets of the region {s E C: Isl < 1/R}. 

Proof. Set 
n n ?? s-ym xm 

bn(s) = E Ak,nE,(S7Xk,n) = EZAk,n kE km 

k=1 k=1 (z0 +~mm1 
m=O rfymt' n oo ^wn 
ZAk,ThEismxk,T) knX, __ IFQYM + 

where 
n 

hm,n= IEAk,nXk,n < Cm, m= 0,1... 
k=1 

as follows from Theorem 2.1. Thus 

Lo ]P(-m + 1 
=00 

and from (3.1) it follows that 

kbn(s)l ? c>3 E Qr((m + 1)) (I sR)ml. 
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Now, by the Stirling formula (see e.g. [1, (6.1.37)] or [8]) 

(3.4) 17(z) = e-zz-1/2(27r)l/2 [i + + 2 .], z --- o in Arg(z) <7r, 

and therefore 

IT(y(m + 0 + 1)) 1d 
Q(-ym + 1) ml-a(0+1) 

are equivalent as m -- oo in the sense that their ratio tends to a nonzero finite 
number. Therefore the series 

m=o F(-/m + 0+1)) EJ1ym??1)(sR7mY 

is absolutely and uniformly convergent in the region Isl < 1/R. Thus jon(s)j is 
uniformly bounded in s and n, so that 

0(s) = lim On$(S) = lim E AknEy(SXk,n) = E Ck+I n--~oo n-*S Ak=-O sxk~ k= 
S r(-k + 1)' 

Recall that limnoo hk,n = Ck when hk,n is as defined above. 
On the other hand (recall that Ey is an entire function, so that the series ex- 

pansion converges uniformly on [a, b] so that summation and integration can be 
interchanged in the second line below), 

00 ~ ~ ~ ~~~Ib (00 8-ykk 
j EysaYx)w(x)dx lim ( I) w(x)dx 

b-*0o r(-I7 k +1 

( k=OX ( ) ) - lim (lim Thb s'Ykxkw(dx 

(3.5) - ~~~~~~lim lim fb )d 

k=o rZ(k+ 1) Jo k=0 

We note that 

sxf kw (x )dxskc 
E|r(-/k + I) X xd|< E 

r(-/k + I) . 

k= y+1)Jok=0 

Since the series Ek=o SCkCk/r(,yk + 1) converges absolutely and uniformly in Isl < 
1/R, limits can be interchanged in (3.5), giving 

?? S-yk b 
I, (Ey(s'yx)) limoolim ZFCy+1 jb (x d 

- < 5Cyk?1 k v 
k=! r(-ik + q) 

= ?(s) = lim ?On(S) = lim In(Ej(s^x)). 
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Remark 3.1. Note that by (3.3) E2(y) = cosh(yl/2). Thus, Theorem 3.3 with -y = 2 
implies that with Inh (f) the Gauss-type formula for A_p(n),q(n)_1 and p(n) + q(n) = 

2n, we have 

(3.6) lim In(coshsx1/2) = I(coshsx112), s E C, Isl < 1/R, 
n-0oo 

where convergence is uniform in compact subsets of the indicated region. On the 
other hand, suppose that in (3.1) we take -y < 2. Then, taking into account that 
now 

FQty(m + o + 1)) and y I1 

r(2m + 1) 4 d m(2-y)mml1-(0+1) 

are of the same order at infinity, i.e., their ratio tends to a nonzero finite number as 
m -+ oo, it can be shown, by paralleling the proof of Theorem 3.3, that convergence 
in (3.6) holds uniformly on compact subsets of C. 

We finally observe that Theorem 3.3 was proved by Uspensky [24] in the case 
= 2 and p(n) = 0, n = 1, 2,... (polynomial situation). 

By using (3.6) and proceeding as in [24], we arrive at 

Theorem 3.4. With the same notation and under the same conditions as in The- 
orem 3.3, 

lim A = 0 n-oo 

uniformly in j. 

Proof. Define 4Dn (s) = In(coshsx1/2) and 4b(s) = I,(cosh SX1/2). By Remark 3.1, 
we know that limnoo 4bn(s)= 4>(s) uniformly in compact subsets of isl < 1/R and 
independelntly of ay E (0, 2]. 

Next we show uniform convergence for s in the region (0, b) x R with 0 < b < 1/R. 
Therefore we should check that the sequence {4bn (s))} is uniformly bounded in this 
region, and indeed it is because I cosh(a + ib) I < cosh a, so that for all s E (0, b) x R 
we have 1bn (s)I < 4bn(Res) < 4bn(b'), where b' < b < 1/R. 

Now, for any integer p > 0 and real a, 0 < a < 1/R, 

1 /a?ioo e d_ wP/I(1 +p), w > 0, 
27rij .io sP 10, w < 0 

so that for t > 0 (interchanging integration and summation is justified by Fubini's 
theorem and the fact that 1d>(s)l < 4>(a)) 

27ri J e -ts 
+ bn(s)ds 

1+ S 
Ak,vn (X 

t- 2-xi s1?P 2I1( + p) kk,>t 

and 
a+?a+ioo e-ts 0 0o 

2',ri Ja ioo +4 (s)ds 2( +p) j(xl/2 - t)P4w(x)dx. 

Thus, by the uniform convergence of the sequence { 4n(s)} in (0, b) x ER, it follows 
that for any positive t and p 

(3.7) lim A k,n(Xk, 
_ t) - (x1/2 _t)Pw(x)dx. 
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Next we consider, for a positive integer n, the function 

fn.(t,p) = Ak(Xn - 

Xk,n >t2 

of the variable p, with t a parameter. If 0 < p < 1, we have 

1/21(421 + Ity< i /1+ ltl if 4X12 + It, > 1, 
IXk,n tl <( + tDP?{ 1/ if x < + t <1. 

Hence, we define 

1 = {k Xk > t2/ + |t| > 1} and 12 = {k Xk,n ? t-,xk/ + iti < 1}, 

so that 

fn(tp)I < E Ak,n(Xl/2 + Itl) + E Ak,n < EAk,nX4/2 + (Itl + 1) ZAAk,n, 
kcI, kGI2 k k 

But 

n n 1/2 \ 1/2 

S AkXnx1/2 < (i Ak,nXk,n 
< 

( k,n) ? (CgCo)1/2. 
k=1 k=1 k=J 

Thus for arbitrary t > 0, but fixed, we have 

(3.8) Ifn(t,p)l < (COc,)1/2 + (1 + t)co, Vn > 1. 

By (3.7) and (3.8), we see that fn(t,p) converges uniformly with respect to p on 
[0, 1] to 

f(tip)- j (x1/2 _ t)Pw(x)dx. 

Therefore, 

limn (lim fn (t, p)) = lim (lim fn(tiP)) = fP(ti0) p*O+ n-*oo n-*oo p*O+ 

or, equivalently, 
rOC 

lim Ak,n= jw (x) dx. 
x >t2t Xk,n ?t 

So, for any a, , > 0, we conclude that 

(3.9) lim Ak,n w(x)dx > 0. 
C<XkXn ?/3 

FRom (3.9), we see that for sufficiently large n, and for any given interval (a,/3) in 
R+, we can always find nodes Xi,n inside that interval. 

Finally, by (3.9), we also see that the sequence of quadrature formulas {In (f ) }?n=1 
converges for any characteristic function f, which implies convergence for any func- 
tion f for which f(x)w(x) is integrable on [0, oo). Therefore, the proof follows by 
Theorem 3.1. O 

It is a direct consequence of Theorems 3.1 and 3.4 that 
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Corollary 3.5. With the same notation and under the same conditions as in The- 
orem 3.3, we have 

lim In(f) = Iw(f) 
n-*oo 

for any function f for which f(x)w(x) is integrable on [0, oo). 

Now we are in a position to give our main results about the class of functions 
f for which the Gauss-type quadrature formulas converge if the moments satisfy 
either (3.1) or (3.2). 

Theorem 3.6. Let w be a weight function on [0, oo) whose moments satisfy (3.1), 
i.e. 

Cn < CP(y(n + I + 0))R-yn, n E N, 

with 0 > -1, C, R E R+, and 0 < -y < 2. Let {p(nI)} be a sequence of integers such 
that 0 < p(n) < 2n - 1, and define q(n) = 2n - p(n). Assume that limn,o q(n) = 
oo. Let {In(f)}l be the sequence of Gauss-type formulas in Ap(n),q(n)-1, n = 

1, 2,. Then, for any locally integrable function f satisfying for sufficiently large 
x 

erxl/Y 
(3.10) If(x)I < ? < r<1/R, O < p <l, 0 > -1 

we have 

lim ITn(f) = Iw(f). 
n-*oo 

Proof. Let us consider the Mittag-Leffler function Ey(y), as given in (3.3). Our 
first aim is to prove that the integral 

EI ( (s ^~x) ), s E C, Isl < 1/R, 

exists. Recall from (3.3) that 

(3.11) Eys^'x) = E F('y + 1) 
1=0 

Take b > 0; then by the uniform convergence of the series (3.11) on [0, b] we can 
write 

fb IEI(s^Yx)l ()n i 
Isr' 

I b 

j; l?7sx1 ?w (x) dx < lim E Fyl ? 1) i+ ?pw(x)dx 

(3.12) = Z j7 1 w(x)dx 

E r(-!i + I)./ + X1+0+P()x 1=0 

1=0 
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But the series (3.12) is convergent for any complex s in isl < 1/R. Indeed, with 
6 = 1 + p 0 > 0 we have 

0o Xi P00 

jo 1 + Xl+0+w(x)dx < j x1-6w(x)dx 

f x 0 
= w(x)dx + j w(x)dx 

? jlw(x)dx+ j xw(x)dx. 

Take p E N such that p > 6. Then x6 > xP for all x E [0,1], thus 
00 xi 

r1 
oo Jo 1 + 1?0?pw(x)dx < x w(x)dx + j x'w(x)dx < c-p + cl A + cl 

with A a constant. Therefore, the series (3.12) is less than or equal to 

E ( [yIl)[A+ cl]vAz:F4 -+l)+zE l) 
__0 1=0 

+ 
1=0 

1y0 s E(sl) + S (K 8 F l1 ). 

Now by (3.1) 

E0 cl * 7-' < 0 
r(-/(l +l i l+ ))R7Ill 

1=0Ir('yl+l1) 1=0 FQ+) 

which by (3.4) is convergent if [Rfsj]-Y < 1, i.e., if Isl < 1/R. 
Thus it follows from (3.12) that the integral 

iw (iIE-jp() 
' 

hence also 1w E1+ ( 
EIY 

P) ) 
I + X1++P I + 1+xl?OP 

exists. Using the asymptotic behavior for E- (z) (see [8]) 

E-y (z) =exp(z'/-7) + O ( I ) z oo in I Arg (z)l < -y-r/2, 

we find that 

(3.13) lim gyEG(x) - 1 
x->oo exp(x1/Y,)- 

Thus, from (3.10) and (3.13) we have that Iw(f) exists, and by Corollary 3.5 the 
proof now follows. g 

Remark 3.2. FRom the proof of Theorem 3.6 and from Theorems 3.1 and 3.4, we 
see that 

(3.14) lim In( E-a(s-Yx) ) ( E-(S x) sE ?, Isl < 1/f. 
n-*-oo 1+ X1+0+P / \1+Xl?OP/ 

On the other hand, proceeding as in Theorem 3.3, it can be easily checked that 
convergence in (3.14) holds uniformly on compact subsets of Isl < 1/R. 

Now if instead of condition (3.1) we have that (3.2) holds, a similar result can 
be proved in an analogous way. We give it for completeness. 
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Theorem 3.7. Let w be a weight function whose moments satisfy (3.2), i.e. 

c-n < Cr(y(n - 1 - 0))RTh, n E N, 

with 0 < -1, C, f E R+, and 0 < -y < 2. Let {p(n)} be a sequence of integers such 
that 0 < p(n) < 2n - 1, and define q(n) = 2n - p(n). Assume that limnoo p(n) = 
oo. Let {In((f)}j be the sequence of Gauss-type formulas in A_p(n),q(n)-I n = 
1, 2,.... Then, for any locally integrable function f on [a, oo) (a > 0) satisfying for 
sufficiently small x 

If (x)I < I+-p r < 1/R, O < p < 1,0 < -1, 

we have 

lim In(f ) = w(f ) n--oo 

Remark 3.3. Recall that by setting p(n) 0 for all n= 1, 2,. . ., we recover the 
classical Gaussian quadrature formulas. 

If we set -y = 2 and 0 = 0, we obtain the convergence result of Uspensky [24]. 
Other results for the convergence of Gauss-type formulas in A-p,2n-p- were 

given in [10] for the "balanced" situation, i.e. for p = n and for -y = 2 and 0 = 0. 
We also note that the weight functions studied by L6pez-Lagomasino and 

Martinez-Finkelshtein in [15] are of the form 

(3.15) w(x) = x'e-(T(x)) 

such that 

(3.16) lim (SX)1fT(X) lim (SX)-72T(X) = A > 0, 

where a E ER, s > 0, with 'Yl > 1/2 and -Y2 > 1/2. These weights satisfy both (3.1) 
and (3.2) for appropriate choices of 0 and 0 (see Section 4). 

4. NUMERICAL RESULTS 

Let us now illustrate this with some numerical examples. We restrict ourselves 
to the weight function 

e- (e?+/X) 
(4.1) w(X) , XE (0,00). 

It is a special case of (3.15)-(3.16) and therefore is included in the class mentioned 
in Remark 3.3. We first prove that the weight functions considered by L6pez- 
Lagomasino satisfy (3.1) and (3.2). Take 

(4.2) h(x) = X72 + ",' Y1W, Y2 > ? 

then by (3.15)-(3.16), there exist positive real numbers r, R and D such that 

(4.3) exp(-T(x)) < exp(-Dh(x)), Vx E (0, r) U (R, oo). 

For each integer k, consider the moments 

dk = xk xa exp(-T(x))dx. 
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These dk satisfy (3.1) and (3.2), since indeed for 0 < r < 1 < R, 
r rR roo 

dk = j xkxa exp(-T(x))dx + j a exp(-T(x))dx + J xkxa exp(-T(x))dx, 

which yields 

(4.4) dk < 2 xkx aexp(-Dh(x))dx + Fk(R, r), 

where 

Fk(R, r) = { doRk + k > 0 
dora?k, a +k <0. 

Setting 

Ck = xkx exp(-D(xy2 + ))dx, 
X'Y1 

we see by (4.4) that it suffices to check that the moments {Ck} satisfy (3.1) and 
(3.2). For the sake of simplicity, we assume that D = 1 and 'Yl= -Y2= 'y, i.e. 

Ck = 
k 

xxexp(-(xa +-))dx, a E R, ey> 1/2. 
Jox 

First, we consider the moments Ck with k E N. We distinguish between two cases. 
1. a > -1. Then 

Ck J xkxae`x e-l/xYdx < J xkxxae`-dx. 

Setting xy = t, x t1/1Y, dx = y-1t1/--1dt, we get 

Ck < -j ty (k+?+1)-1e-tdt = Fr(-/y1(k + a + 1)) 

2. a < -1. For an arbitrary given c > 0, we can find p > 0 such that a + p = 

-1 + 6, so that we have 

Ck = xkx+Pexy e/ dx. 
Jo ~ ~ ~ X 

Now x-Pe-l/lX < K for all x C [0, oo), and therefore 

Ck < IF(-ly(k + I)) = -(-y-I(k + 0 + 1)) 

with 0 E R such that c=1 + 0, hence 0> -1. 
Next, let us consider the moments C-k with k E N, i.e., with the sucstitution 

x t-1, 

C-k = j xxaee(xY+l/xx)dx = J tk-2 -e-(tY+?/tY)dt. 

Again we distinguish between two cases. 
1. a < -1. Then 

C-k < j tk 2e-t dt = 1F(^y1(k-1 )) 

Thus, it is sufficient to take 0 = a and thus 0 < -1. 
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2. a > -1. Set 6 = -(a + 2) < -1; then 

C = tk?e-(tY?l/tY)dt. 

Now, given c > 0, there exists a p > 0 such that 6 + p = -1 + c. Therefore 

C-k < K tkt- +?e-t dt = K(-_-(k + e)) 

where K is a positive constant. Since c is arbitrary, we can take c = -1-0 with 
< -1, so that it finally results that 

C-k <-ITQy(k + -1)), 0 <-. 

Thus all the convergence results of Section 3 can be applied to the weight function 
(3.15)-(3.16), and in particular to the one given in (4.1). 

In order to compute the moments Ck, let us introduce the auxiliary weight func- 
tion studied by Ranga [20]: 

e- 1/2(x+a/x) 
(4.5) Co(x) = , a E Rl, a > 0, x E (0, oo), 

and set 

an a = j xn(zx)dx, n E 2. 

It can be checked that 

(4.6) Cn = 2n+1/2 Cn,4 nE2. 

On the other hand, it is known that the sequence {an,4} satisfies [20] 

(4.7) 

=-2) 22an,v C4?1,4-(2n + 1)En,4 -= 0 n > 1, 

or explicitly 

(4.8) Cn,4 23ne2 [? (2r + ) j (+)Is (2n 2s)!] n>0O 

In short, from (4.6) and (4.7) or (4.8), we see that the moments {Ck} can be readily 
computed. 

Now we want to estimate the integral 

foG e-(x+lx/) 
(4.9) 'W(f)=] f(x) a dx 

for different choices of the integrands f(x). We shall use Gauss-type quadrature 
formulas In(f) for A-p(n),q(n)-l with p(n) and q(n) nonnegative integers such that 
p(n) +q(n) 2n. In the sequel, we restrict our attention to the "balanced" situation 
where p(n) = n for all n E N, so that the resulting quadrature formula is exact in 
A-n,n-I for n E N. 
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The nodes {xj3,} are the zeros of Qn(x), the (monic) orthogonal polynomial of 
degree n with respect to the varying distribution x-nw(x)dx. From [20], we get the 
following three-term recurrence relation for the sequence {Qn}: 

Qn+ 1(x) (x - 1)Qn(x) - 2xQn1l(x), n > 1, 2 

with initial conditions Qo(x) 1_ and Qi(x) = x - 1. Let us consider the [n/n] 
2PA for F,(z) f=7O gI(xldx; then it is known that [n/n]F,(z) = Pn-1(z)/Qn(Z), 
with Pn-l E HI-1, and in this case it can be proved that Pn satisfies the same 
recurrence as Qn+l (see [20]), i.e., 

Pn(X) = (x - 1)Pn_l(x) - nxPn-2(x), n > 1, 2 
with P-1 _ 0 and Po = co. 

Now take into account that 

[nn]F P((z) = 
z 
(z) 

j Aj,n 

Then one has 

A3,n= ,( ') j= l,.n. 
Q'n (jx,n) 

' 

Thus, we see that our Gauss-type formulas can be easily computed. 
We shall compare these Gauss-type formulas with the classical Gauss formulas. 

Therefore, we write 

I f e-(x+l/x) dx 1 ex 

JO 
(f) 

fdx =r_ J () / dx =J g(x)o(x)dx = 1,3(g), 
with g(x) = f(x) exp(-1/x) and p(x) = exp(-x)/axf. Thus, the integral I(g) will 
be estimated by means of the Gauss-Laguerre quadrature formula of order -1/2. 
We shall denote this formula as 

n 
-In (g) = ALj,, g (tj, n). 

j=1 

It is well known that this formula is exact for all integrands 9 e H2n-1 while 
our Gauss-type formula is exact for all f E A-nn-1. The construction of the 
Gauss-Laguerre formulas In(g) require the moments 80,-.. n-1 with 8j = 
f7 (xW exp(-x)/lxf)dx, while the Gauss-type formulas In(f) require the moments 
Cn- . ... , Cn-1. We will see that the inclusion of the moments Ck both with positive 
and with negative index yields excellent numerical results. 

We shall take for f(x) the following functions: 

i fi (x) 
1 x-l 
2 (2 _- )X1 log(X) 
3 x-1/2 log(x) 
4 exp(-log(x)/ /a) 
5 sinx 
6 x-3/2ex/ log(1 + x) 
7 log(1 + x)el/x 
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0.16 I I 3 . . . . 

0.14 omega(x)- beta(x -) 
2.5 

0.12 

0.12 

0.08 1.5 

0.06 1 

0.04 

0.02 0.5 

0 0 
0 2 4 6 8 10 0 2 4 6 8 10 

FIGURE 2. The weights w(x) exp(-(x + 1/x)) and /(x) exp(-x)/x/ 

In Figure 2 we have plotted the weight functions w(x) = x-1/2 exp(-(x+ 1/x)) and 
p3(x) = x-1/2 exp(-x). In Figures 3-6 (on the following pages) one can find the plots 
of the integrands fi (x) of the table above, the functions gi (x) = fi (x) exp(-1/x) 
and the functions hi(x) = w(x)f2(x) = gj(x)0(x). 

In Figure 7 we plot, as a function of n = 1,... ,10, the absolute values of the 
absolute errors of the Gauss-Laguerre and the Gauss-type formulas of this paper. 
The solid line corresponds to the classical Gauss formulas, while the dotted line 
corresponds to the Gauss-type formulas of this paper. 

In the example f6 we note that limx?0+ f(x) = o0 and limxO,, f(x) = o0. It is 
at the "boundary" of what can be integrated, because for the function 

f6(x) ~ex e(x) = log(1 + X)X3/2+E' 
> 

the integral I (f6) is divergent. By our quadrature rules we do find convergence, 
but it is extremely slow. 

For the example f7, it should be noted that the factor el/x is "absorbed" by the 
weight. In fact, the integral reduces to 

r0 e_x 
Iw (f7) =/log (I + x) V- dx, 

and of course, this integral can be treated perfectly well by a classical Gauss- 
Laguerre quadrature formula. The Gauss-type formulas of this paper are obviously 
less appropriate. They still converge, but they are outperformed by the Gauss- 
Laguerre formulas. 

For fi and f3, the errors for the Gauss-type formulas of this paper are zero. 
There is an explanation for the surprising exactness. Observe that x-1 

A-n,n-1 for any n > 1. This is the explanation for fl. The explanation for f3 
is as follows. We have 

I = Iw(f) j f(x)w(x)dx = log x (x + I/I))dx 
o O ~~~x 

1 logx e/ j 
elogx 

+ /) ? 
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9 11(x) 2(x) 
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0.4 I 2 5 I 

0.35 91? 2(x)- 

20 
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0.15 1 0 

0.1 
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0.05 , 

0 
0 2 4 6 8 10 0 2 4 6 8 10 

0.25 0.18 I 

hl (x) 0.16 h2(x) 

0.2 0.14 

0.12 
0.15 

0.1 

0.1 0.08 
0.06 

0.05 0.04 

0.02 

0 0 
0 2 4 6 8 1 0 0 2 4 6 8 1 0 

FiGURE 3. The integrands fij, gj(x)= exp(-1/x)fi(x), hi(x) 
fi (x) w(x) gi (x)13 (x), i = 1, 2 

Making the change of variable x = l/t in 12, we see that I2 = -II, so that I = 0. 
Let us now explain why In (f) = 0 for all n E N. This is partially due to a certain 
symmetry in the weight function w(x) = x-1/2 exp(-(x + 1/x)). In general, for 
c > 0, it is said that w(x) is c-inversive on (0, oo) [19] if 

w(c/x) = - w(x), Vx E (0, oo). 

In [19] we can find the following result. 
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1 , 1400 

0. ..f3(X)...- a 1200 f4(x) - 

1000 
-2 

-3 ~~~~~~~~~~800 
-4 600 
-5 

400 
-6 
-7 200 

-8 - 
0 2 4 6 8 10 0 2 4 6 8 10 

0.6 .4 

0.5 0.35g 

045 0.35 

0.3~~~~~~~~~~~~~~. 
0.25 

0.2 
0.1 ~~~~~~~~~~~~~0.2 
0.1~~~~~~~~~~~~01 

-0.1 0.1 

0 2 4 6 8 10 0 2 4. 6 8 10 

0.02 - h3)x)0x45h4(x) - 

0.4 

0 ~ A,= 4+linjl .L 2 ..... 

-0.02 l is the integer part of 0x35 
-0.042. 

0.25 
-0.064. 

-0.08 01 

-0.1 0.1 

-0.12 0.05 

0 2 4 6 8 10 0 2 4 6 8 10 

FIGURE 4. The integrands fi, gi(xv) = exp(-1/x)fi(x), hi(x)= 
fi(x)w(x), i = 3,4 

Theorem 4.1. Let Inh(f) 
n 

Aj;ft(j,n be the n-point Gau-ss-type formula 
i7n A-,- with re-spect to a c-inver-sive weight w(x). Then 

c [n1JI 

___n Xnj=,...[n?2 n>1 

xj,n An?l-j,n 
n+ 

n 

where Lxi is the integer part of x. 
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1 400 
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1 I I300 
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-0.4 -100 

-0.6 50 
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-1 0 
0 2 4 6 8 10 0 2 4 6 8 10 

0.12 p 1.6 

0.1 h5(x) - 1.4 h6(x)- 

0.081. 

0.06 
0.8 

0.04 
0.6 

0.020. 

0 ...........0.2 

-0.02 - 

0 2 4 6 8 10 0 2 4 6 8 10 

FiGURE 5. The integrands fi, gi (x) exp(-1/x)fi(x), hi (x) 
fi(x)w(x) = gi(x>3(x), i = 5,6 

Clearly our weight function (4.1) is c-inversive with c =1. Hence, the nodes of 
the corresponding quadrature formula verify 

F'urthermore, when n~ is odd, say nr= 2k + 1, then Xk+l,n 1.L On the other hand, 

Aj,nn I 

and since f (x) = x-1/2 log x, we have f (1/x) -xf (x). Therefore, we get for 
In, (f) the following results: 
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.0 , I I 
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FIGURE 6. The integrands fi, gi(x) exp(-1/x)fi(x), hi(x) 
fi(x)w(x) = gi(x):(x), i = 7 

1. n 2k: 
k n 

I2k(f) Aj,n f(Xj,n) + E Aj,nf (X,n) 
j=1 j=k+1 

k 

- S [Aj,nf (xi,n) + An+l-j,nf (Xn+l -,n)] 

j=l 

- 
E [Aj,nf (Xjn) + A) f (l/Xj,n)] 

k 

- 5 [Aj,nf (Xj ,n) -Aj,nf (Xj,n)] - 0- 
j=l 



744 A. BULTHEEL ET AL. 

1 . * * * * . , ,I , b" 0 1 : "''2b ' ' 

0.1 0'1 lz ] ~~~~~~~~~0001 

0.0001 

0.01 
l e-05 

0 e-06 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 
1 ' ' ' l1 

f3aZ -f4a 
1f3bo N 

0.1~~~~~~~~~~~~~~~~~~~. 
% 

0.1~~~~~~~~~~~~~~00 

0.01~~~~~~~~~~~~~00 
0.001 

0.001 
0.0001 

0.0001 1 e-05 
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

1 I I I I I I I I . 10 , , 
%%% Nf,%N . 6a" - 

01 e-0 0.001 

0.0001 -=----- 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 
10 : ' ' 

"f7a- 
1 'f7b - 

0.1 

0.01 ; 

0.001 

0.0001 

1e-05 

1 e-06 . I i 

1 2 3 4 5 6 7 8 9 10 

FIGURE 7. Errors as a function of n: II,(fi) -In (fi)I (dotted line) 
and II(gi) - In(gi)I (solid line) 
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FIGURE 8. Zeros and weights for 10 point formulas of Gauss- 
Laguerre type (solid line) and Gauss-type formula of this paper 
(dotted line) 

2. n = 2k + 1: As is the case of an even n, we find that 

I2k+1 (f) = Ak+l,nf (Xk+l,n)= Ak+l,n log(1) = 0. 

As a general conclusion from the examples above, we may say that the Gauss- 
type formulas In(f) compete very favourable with the Gauss-Laguerre formulas, 
taking into account that both require the same computational effort. In our opinion, 
the reason for this good numerical behavior is to be found in the distribution of the 
nodes. In Figure 8 we have plotted in the left figure the nodes Xk,1o as a function 
of k for the 10-point Gauss-Laguerre quadrature (full line) and of the 10-point 
Gauss-type formula of this paper (dotted line). In the right figure, one can see 
the corresponding weights. Aj are the weights Aj,10 and Bj are the weights of the 
10-point Gauss-Laguerre formula. 

As a final remark concerning the numerics, we should give a note of warning. The 
limitations of classical Gaussian quadrature formulas are well known. Convergence 
is especially slow when the integrand exhibits a non-smooth behaviour near the 
interval of integration. Our examples confirm this: the integrand g(x) contains the 
factor exp(-1/x), and when this is not compensated by a corresponding factor in 
f (x), the convergence is slow indeed. Similar observations can be made for the 
Gauss-type formulas studied in this paper. In general, however, convergence is 
faster, although it is possible to design examples where this is not true (see e.g. the 
last one), where the above argument is in favour of the classical Gauss formula. 

On the other hand, for many practical integration routines, one prefers to use 
so-called automatic integration rules, which may be adaptive or not and iterative 
or not, and which include many skillful techniques which go far beyond the kind 
of integration rules that we have studied in this paper and in the papers [4, 2, 3]. 
For further details see [7, Chap. 6] and the references therein. The Gauss-type 
formulas of our papers are not intended to compete with this kind of automatic 
integrators. Our interest in the formulas and the numerical examples is therefore 
mainly theoretical and because of the nice relation that exists with two-point Pade 
approximation. On the other hand, we do not know about experiments testing 
these rules in a numerical context. 
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